• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    1-D Directional Filter Based Texture Descriptor in Fractional Fourier Domain

    2015-07-24 17:34:42HongzhangJinandLiyingZheng

    ,Hongzhang Jinand Liying Zheng

    (1.College of Automation,Harbin Engineering University,Harbin 150001,China;2.College of Computer Science and Technology,Harbin Engineering University,Harbin 150001,China)

    1-D Directional Filter Based Texture Descriptor in Fractional Fourier Domain

    Kai Tian1?,Hongzhang Jin1and Liying Zheng2

    (1.College of Automation,Harbin Engineering University,Harbin 150001,China;2.College of Computer Science and Technology,Harbin Engineering University,Harbin 150001,China)

    Texture analysis is a fundamental field in computer vision.However,it is also a particularly difficult problem for no universal mathematical model of real world textures.By extending a new application of the fractional Fourier transform(FrFT)in the field of texture analysis,this paper proposes an FrFT-based method for describing textures.Firstly,based on the Radon-Wigner transform,1-D directional FrFT filters are designed to two types of texture features,i.e.,the coarseness and directionality.Then,the frequencies with maximum and median amplitudes of the FrFT of the input signal are regarded as the output of the 1-D directional FrFT filter.Finally,the mean and the standard deviation are used to compose of the feature vector.Compared to the WD-based method,three benefits can be achieved with the proposed FrFT-based method,i.e.,less memory size,lower computational load,and less disturbed by the cross-terms.The proposed method has been tested on 16 standard texture images.The experimental results show that the proposed method is superior to the popular Gabor filtering-based method.

    fractional Fourier transform;texture analysis;Radon-Wigner transform;1-D directional window

    1 Introduction

    The fractional Fourier transform(FrFT)initially proposed by Candon in 1937 was reintroduced and reinterpreted by Namias in 1980[1]and by McBride and Kerr[2],respectively.From then on,great attention has been paid to the FrFT,and many useful characteristics have been derived[3].So far,as a tool for investigating complex signals and images,the FrFT has been applied to many respects of optical engineering and signal processing,such as filter design[4],joint timefrequency offsets detection[5],cross-terms suppression in the Wigner distribution[6],and signal compressing[7].However,there are few studies of applying the FrFT to texture analysis.

    The texture analysis is particularly difficult for no universal mathematical model of real world textures[8]. Stimulated by the evidence from the psychophysical studies that visual perception is achieved by the accurate analysis of spatial frequency contents in local areas,many time-frequency tools are used for texture analysis.Such tools include Gabor transformation[9],wavelet analysis[10],and Wigner distribution(WD)[11-12].Among them,the WD-based texture image analysis method,which possesses good resolution in both spatial and frequency,is more consistent with the human vision system.The studies of Zhu[11]and Reed[12]have shown that the 2-D WD presents the advantage of efficiency for extracting the pertinent features of a textured image.However,the WD-based texture analysis suffers from heavy load of computation and large memory size,as well as the interferences in the WD.To solve these problems,an FrFT-based method for analysis textured images is proposed in this paper.Compared to the WD-based method,the proposed method requires less memory size,lower computational load,and less disturbed by the crossterms.

    2 Directional FrFT Filter

    2.1 Basics of the FrFT

    The FrFT is a linear transformation with the transform orderα∈(0,4].Mathematically,it maps a signal,f(t),onto(Fαf)(u)by the following equation[3]:

    Here the transform kernel

    One of the most important relations of the FrFT to the time-frequency representations is that of the Radon-Wigner transform:

    whereWfis the WD off(t).Eq.(3)indicates that the projection of the WD of a signal onto an axis making angleφαwith theuaxis is equal to the squared magnitude of theαth order FrFT of the signal.Thus,it can be deduced that|(Fαf)|2possesses timefrequency distributing characteristics off(t).

    2.2 1-D Directional FrFT Filter

    This paper extracts texture features from the squared magnitude of the FrFTs of a texture image based on the following two considerations:1)the squared magnitude of the FrFT of a signal is real,leading to an easy process to characterize textures;and 2)the squared magnitude of the FrFT of a signal is the Radon transform of the WD of the signal,from which some important texture characteristics can be revealed.

    Because the memory size as well as the computational load will be increased greatly for the feature extraction based on 2-D window,a 1-D directional FrFT filtering that is inspired by Gabarda et al.[13]is proposed in this correspondence.Firstly,several 1-D windows of lengthNWalong different directions and centered at an image pixel are employed to produce directional 1-D series.Let{I(px,py)}be the 1-D series of pixel(m,n)along angleθ.Then,mathematically,the position(px,py)can be computed with Eqs.(4)and(5).

    Then each 1-D series of a pixel is transformed intoNFrfractional Fourier domains with Eqs.(1)and(2),gettingNFrFrFT series ofNWlength.Here,NFris the number of FrFT performed on each series.It is clear now that the proposed 1-D directional FrFT filtering consists of two sequential steps:1-D directional series calculation followed by several FrFTs.

    3 Texture Feature Extraction

    The success of classification largely depends on the ability of the method to describe textures.Because the coarseness and directionality are two essential perceptual cues used by the human visual system for discriminating different textures[14-15],the orientation and the spatial-frequency are used as texture features.

    The above mentioned 1-D directional FrFT filters is used to measure those two types of features.Firstly,the 1-D directional FrFT filtering appliesNDr1-D windows along different directions to the textured image,gettingNDr1-D directional series ofNWlength for each pixel(NDris the number of 1-D windows).By doing so,the orientation characteristics of the textured image can be measured.Each of the 1-D series is then transformed intoNFrfractional Fourier domains,gettingNFr1-D FrFT series ofNWlength.From Eq.(3),it is known that the squared magnitude of the αth order FrFT of a signal intimately related to its Wigner distribution.Thus,the above obtainedNFr1-D FrFT series must contain spatialfrequency characteristics of the textured image. Furthermore,to reduce the size of features,the frequencies with maximum and medium amplitudes of each FrFT series are selected as the feature parameters.

    Now the length of the feature vector for each pixel isNDr×NFr,whereNDrandNFrare related to the orientation and space/spatial-frequency distribution of the texture,respectively.Then,the mean and the standard deviation of the featured image are used to compose of the feature vector of the class represented by the input image,i.e.

    wherei=1,2,…,NDr×NFr,andμiandσiare the mean and standard deviation of the class;WandHthe widthand height of the image;I-Feathe featured image. The feature vectorVis constructed as

    Fig.1 summarizes the proposed FrFT-based texture description method.Firstly,NDr1-D windows are applied to the input image to get the 1-D directional series of each pixel with Eqs.(4)and(5).Then, each 1-D directional series is transformed intoNFrfractional Fourier domains,and the frequencies with maximum and medium amplitudes are chosen as the feature parameters.Next,the mean and the standard deviation of the featured image are calculated with Eqs.(6)and(7),based on which the feature vector of the input image can be constructed with Eq.(8).

    Fig.1 Main stages of the proposed method

    There are two benefits which can be achieved with the above FrFT-based method.Firstly,|(Fαf)|2is real leading to an easy process to characterize textures. Secondly,the Wigner transform of a 1-D signal is a 2-D distribution,but theαth order FrFT of such a 1-D signal is still one dimensional,resulting in a less memory size required for the FrFT-based method.

    4 Experimental Results and Analysis

    To demonstrate the performance of the above texture descriptor,it is applied to texture classification. Here,the nearest neighbor classifier with the standardized Euclidean distance computed by Eq.(9)is employed to classify the input texture image.

    whereVaandVbare two feature vectors;Pthe length of the feature vector andCithe standard deviation of theith class.

    The tested 16 texture images,each of which is with the size 128×128,are shown in Fig.2.Each input texture image is divided into 49 overlapped sub-images with size of 32×32.21 of them are as the training samples,while the other 28 are test samples.

    Firstly,to select suitable transform orders,we letNFr=1,and the transform order,α,varies from 0.1 to 0.9 with step 0.1.FixNW=8 andNDr=4,(the orientations of the 1-D windows are 0,π/4,π/2 and 3π/4,respectively).Table 1 lists the classification rates with different values ofα.

    Then,setNW=8,NDr=4,andNFr=2 to evaluate the effects ofNFr.The classification rates are listed in Table 2 in which the first three groups are selected from the best threeαin Table 1,while the fourth one corresponds to the best and the worstαin Table 1.The last group is the combination of the twoαwith the two worst classification rates.

    Table 1 Classification rates withNDr=4,NW=8,NFr=1

    Table 2 Classification rates withNDr=4,NW=8,NFr=2

    The comparison result between Table 2 and Table 1 shows that the performance ofNFr=2 is better thanNFr=1.However,one should note that the memory size as well as the computational load required forNFr=2 are greater thanNFr=1.It is worth mentioning thatthe setting ofα={0.2,0.9}gives the algorithm the best classification rate forNFr=2.From the view of the phase plane,the 0.2th order FrFT possesses more characteristics from the time domain,whereas the 0.9th order FrFT has more characteristics from the frequency domain.This provided us with this insight:when selecting the transformation domains,one may make some of them approach the time domain,while others approach the frequency domain.

    Finally,we perform a comparison to the Gaborbased method that is a very popular method for texture analysis.The parameter settings areNDr=4,NW=8,andα={0.2,0.9}.The results in Ref.[16]gives 22 misclassified patches with the quadratic distance,i.e.(as shown in Fig.2),95.1%classification rate,while our proposed method gives 14 misclassified patches,i.e.96.88%classification rate.The results show that the FrFT-based method is better than the Gabor filters based method.

    Fig.2 16 textures in Ref.[16]

    5 Conclusions

    Stimulated by the evidence from the psychophysical studies that visual perception is achieved by the accurate analysis of spatial frequency contents in local areas,many time-frequency tools are used for texture analysis.In this paper,considering the close relationship between the FrFT and the Wigner distribution,a new texture description method is proposed.It enjoys an easy process to characterize textures,less memory size,and less disturbed by the cross-terms.The method has been tested on 16 benchmark textures.From the simulation results,we can conclude that when selecting the transformation domains,one may make some of them approach the time domain,while others approach the frequency domain.Furthermore,the simulation results also show that the classification rate based on the quadratic distance can reach 96.88%which is better than that of the popular texture analysis method,i.e.,Gabor filtering based method.

    [1]Namias V.The fractional order Fourier transform and its applications to quantum mechanics.Journal of the Institute of Mathematics and Its Applications,1980,25(3):241-265.

    [2]McBride A C,Kerr F H.On Namias's fractional Fourier transforms.IMA Journal of Applied Mathematics,1987,39:159-175.

    [3]Ozaktas H M,Zalevsky Z,Kutay M A.The fractional Fourier transform:with applications in optics and signal processing.Wiley,2001.

    [4]Yetik I S,Kutay M A,Ozaktas H M.Optimization of orders in multichannel fractional Fourier filtering circuits and its application to the synthesis of mutual-intensity distributions.Applied Optics,2002,41(20):4078-4084.

    [5]Oonincx P J.Joint time—frequency offset detection using the fractional Fourier transform.Signal Processing,2008,88(12):2936-2942.

    [6]Qazi S,Georgakis A,Stergioulas L K,et al.Interference suppression in the Wigner distribution using fractional Fourier transformation and signal synthesis.IEEE transactions on Signal Processing,2007,55(6):3150-3154.

    [7]Vijaya C,Bhat J S.Signal compression using discrete fractional Fourier transform and set partitioning in hierarchical tree.Signal Processing,2006,86(8):1976-1983.

    [8]Sagiv C,Sochen N A,Zeevi Y Y.Integrated active contours for texture segmentation.IEEE Transactions on Image Processing,2006,15(6):1633-1646.

    [9]Jain A K,F(xiàn)arrokhnia F.Unsupervised texture segmentation using Gabor filters.Pattern Recognition,1991,24(12):1167-1186.

    [10]Laine A,F(xiàn)an J.Texture classification by wavelet packet signatures.IEEE Transactions on Pattern Analysis and Machine Intelligence,1993,15(11):1186-1191.

    [11]Zhu Y M,Goutte R,Amiel M.On the use of twodimensional Wigner-Ville distribution for texture segmentation.Signal Processing,1993,30(3):329-353.

    [12]Reed T,Wechsler H.Segmentation of textured images and Gestalt organization using spatial/spatial frequency representation.IEEE Transactions on Pattern Analysis and Machine Intelligence,1990,12(1):325-331.

    [13]Gabarda S,Cristóbal G.Discrimination of isotrigon textures using the Rényi entropy of Allan variances.Journal of the Optical Society of America-A,2008,25(9):2309-2319.

    [14]Campbell F W,Robson J G.Application of Fourier analysis to the visibility of gratings.The Journal of Physiology,1968,197(3):551-566.

    [15]Maffei L,F(xiàn)iorintini A.The visual cortex as a spatial frequency analyser.Vision Research,1973,13(7):1255-1267.

    [16]Azencott R,Wang J P,Younes L.Texture classification using windowed Fourier filters.IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(2):148-153.

    TP391.4

    :1005-9113(2015)05-0125-04

    10.11916/j.issn.1005-9113.2015.05.019

    2014-09-12.

    Sponsored by the National Natural Science Foundation of China(Grant No.61003128).

    ?Corresponding author.E-mail:tiankai@hrbeu.edu.cn.

    亚洲国产欧美在线一区| 少妇熟女aⅴ在线视频| 麻豆av噜噜一区二区三区| 最近中文字幕高清免费大全6| av国产免费在线观看| 人体艺术视频欧美日本| 国产 一区 欧美 日韩| 最近手机中文字幕大全| 国产欧美另类精品又又久久亚洲欧美| 国产爱豆传媒在线观看| 99re6热这里在线精品视频| 精品久久久久久久久久久久久| 麻豆乱淫一区二区| 亚洲aⅴ乱码一区二区在线播放| 777米奇影视久久| 草草在线视频免费看| 亚洲欧美日韩无卡精品| 永久免费av网站大全| 亚洲无线观看免费| 狠狠精品人妻久久久久久综合| 亚洲四区av| 日日干狠狠操夜夜爽| 亚洲自偷自拍三级| 黄色配什么色好看| 亚洲av电影不卡..在线观看| 观看美女的网站| 97在线视频观看| 国产欧美另类精品又又久久亚洲欧美| 2022亚洲国产成人精品| 亚洲av日韩在线播放| 国产高清不卡午夜福利| 99热这里只有是精品50| 亚洲图色成人| 高清在线视频一区二区三区| 精品人妻熟女av久视频| 校园人妻丝袜中文字幕| 有码 亚洲区| 国产 亚洲一区二区三区 | 精品熟女少妇av免费看| 国产男女超爽视频在线观看| 99久久精品一区二区三区| 日本三级黄在线观看| 国产成人aa在线观看| 国模一区二区三区四区视频| 噜噜噜噜噜久久久久久91| av免费在线看不卡| 国产不卡一卡二| 精品久久久久久久久亚洲| av网站免费在线观看视频 | 十八禁国产超污无遮挡网站| 国产精品国产三级国产专区5o| 97热精品久久久久久| av一本久久久久| 精品国产三级普通话版| 97超视频在线观看视频| 亚洲av中文av极速乱| 三级男女做爰猛烈吃奶摸视频| 中文字幕av在线有码专区| 丝瓜视频免费看黄片| 51国产日韩欧美| 国产人妻一区二区三区在| 免费看美女性在线毛片视频| 国产精品爽爽va在线观看网站| 丰满乱子伦码专区| 91久久精品国产一区二区三区| 少妇人妻一区二区三区视频| 午夜福利在线观看免费完整高清在| 久久精品国产亚洲av涩爱| 联通29元200g的流量卡| 直男gayav资源| 又爽又黄无遮挡网站| 午夜激情欧美在线| 能在线免费观看的黄片| 一本久久精品| 18禁在线无遮挡免费观看视频| 日韩欧美精品免费久久| 一本一本综合久久| 春色校园在线视频观看| 一个人观看的视频www高清免费观看| 卡戴珊不雅视频在线播放| 淫秽高清视频在线观看| 国产精品爽爽va在线观看网站| 97在线视频观看| 久久久国产一区二区| 国产男人的电影天堂91| 久久精品国产自在天天线| 免费看a级黄色片| 亚洲av中文av极速乱| 国产午夜福利久久久久久| 身体一侧抽搐| 免费av不卡在线播放| 免费av不卡在线播放| 插逼视频在线观看| 免费av观看视频| 中文字幕av在线有码专区| 亚洲人成网站高清观看| 亚洲在线自拍视频| 老女人水多毛片| 精品久久久久久久久久久久久| 国产高清三级在线| 青春草视频在线免费观看| 18+在线观看网站| 精品一区二区三卡| 尤物成人国产欧美一区二区三区| 嘟嘟电影网在线观看| 中文乱码字字幕精品一区二区三区 | 91av网一区二区| 国产极品天堂在线| 国产免费福利视频在线观看| 亚洲成人av在线免费| 天天一区二区日本电影三级| kizo精华| 午夜免费观看性视频| 成人美女网站在线观看视频| 亚洲美女搞黄在线观看| 免费看日本二区| 韩国av在线不卡| 久久久久网色| 毛片女人毛片| 国产精品久久久久久av不卡| 国产黄色小视频在线观看| 麻豆国产97在线/欧美| 国产一区亚洲一区在线观看| 成人特级av手机在线观看| 国产精品久久久久久精品电影| 色综合亚洲欧美另类图片| www.色视频.com| 国产亚洲91精品色在线| 嫩草影院精品99| 在线观看免费高清a一片| 成人午夜高清在线视频| 亚洲国产欧美人成| or卡值多少钱| 日韩成人av中文字幕在线观看| 欧美一区二区亚洲| 一夜夜www| 国产综合精华液| 淫秽高清视频在线观看| 精品久久国产蜜桃| 国产一区亚洲一区在线观看| 亚洲综合色惰| 日韩伦理黄色片| 3wmmmm亚洲av在线观看| 亚洲欧美日韩无卡精品| 亚洲精品亚洲一区二区| 久久久久久九九精品二区国产| 亚洲欧美一区二区三区黑人 | 亚洲aⅴ乱码一区二区在线播放| 一夜夜www| 69人妻影院| 国产黄片视频在线免费观看| 亚洲精品久久午夜乱码| 天美传媒精品一区二区| 免费看美女性在线毛片视频| 18禁在线播放成人免费| 国产黄片视频在线免费观看| 国产精品女同一区二区软件| 国产亚洲最大av| 噜噜噜噜噜久久久久久91| 在线观看免费高清a一片| 国产人妻一区二区三区在| 69av精品久久久久久| 亚洲aⅴ乱码一区二区在线播放| 国产成人a∨麻豆精品| 亚洲欧美清纯卡通| 久久久久网色| 久久人人爽人人片av| 久热久热在线精品观看| 丝瓜视频免费看黄片| videos熟女内射| 中文字幕久久专区| 成人高潮视频无遮挡免费网站| 国产av码专区亚洲av| 久久久久久九九精品二区国产| 久久久久久九九精品二区国产| 亚洲熟女精品中文字幕| 国产成人91sexporn| 久久久久久久久久黄片| 乱人视频在线观看| 我要看日韩黄色一级片| 我要看日韩黄色一级片| 午夜福利视频精品| 2021少妇久久久久久久久久久| 人妻系列 视频| 亚洲av不卡在线观看| 欧美高清性xxxxhd video| 亚洲人成网站高清观看| 成人美女网站在线观看视频| 麻豆成人av视频| 高清午夜精品一区二区三区| 久久热精品热| 男人舔女人下体高潮全视频| 国产精品三级大全| 97热精品久久久久久| 五月天丁香电影| 狂野欧美白嫩少妇大欣赏| 天堂俺去俺来也www色官网 | 极品少妇高潮喷水抽搐| 大又大粗又爽又黄少妇毛片口| 午夜视频国产福利| 久久久久久久久久成人| 欧美不卡视频在线免费观看| 美女脱内裤让男人舔精品视频| 国产成人精品久久久久久| 男女啪啪激烈高潮av片| 91aial.com中文字幕在线观看| 久久精品夜夜夜夜夜久久蜜豆| 高清日韩中文字幕在线| 少妇的逼好多水| 免费看美女性在线毛片视频| 色播亚洲综合网| 日本欧美国产在线视频| 最近的中文字幕免费完整| 亚洲精品中文字幕在线视频 | 好男人视频免费观看在线| 69av精品久久久久久| 日韩亚洲欧美综合| 啦啦啦啦在线视频资源| 黄色欧美视频在线观看| 夫妻性生交免费视频一级片| 伦理电影大哥的女人| 日本免费在线观看一区| 国产精品国产三级国产av玫瑰| 六月丁香七月| 久热久热在线精品观看| kizo精华| 一级毛片黄色毛片免费观看视频| 男女边摸边吃奶| 搡女人真爽免费视频火全软件| 国产精品日韩av在线免费观看| 日本爱情动作片www.在线观看| 毛片女人毛片| 久久久久久久大尺度免费视频| 国产成人a区在线观看| 亚洲,欧美,日韩| 1000部很黄的大片| 亚洲av.av天堂| 亚洲aⅴ乱码一区二区在线播放| 成人鲁丝片一二三区免费| 99久久精品一区二区三区| 欧美不卡视频在线免费观看| 久久久亚洲精品成人影院| 99久久中文字幕三级久久日本| 搡老乐熟女国产| 亚洲欧美清纯卡通| 丝瓜视频免费看黄片| 成人欧美大片| 免费无遮挡裸体视频| 中文欧美无线码| 丰满人妻一区二区三区视频av| 国产视频首页在线观看| 亚洲最大成人手机在线| 欧美激情国产日韩精品一区| 国产成人精品福利久久| 国产精品无大码| 夫妻午夜视频| 好男人视频免费观看在线| 麻豆精品久久久久久蜜桃| a级一级毛片免费在线观看| 亚洲成色77777| 纵有疾风起免费观看全集完整版 | 最近最新中文字幕免费大全7| 一级二级三级毛片免费看| 99热6这里只有精品| av在线老鸭窝| 欧美不卡视频在线免费观看| 国产黄频视频在线观看| 91久久精品国产一区二区三区| 人妻少妇偷人精品九色| 老师上课跳d突然被开到最大视频| 亚洲人成网站在线观看播放| 国产精品1区2区在线观看.| 亚洲精品亚洲一区二区| 免费av毛片视频| 舔av片在线| 能在线免费观看的黄片| 天堂俺去俺来也www色官网 | 麻豆成人av视频| 神马国产精品三级电影在线观看| 精品久久久久久久久av| 国产精品久久视频播放| 国产精品美女特级片免费视频播放器| a级毛色黄片| 精品久久久久久久久久久久久| 看黄色毛片网站| 男的添女的下面高潮视频| 日韩制服骚丝袜av| 国产精品爽爽va在线观看网站| 最后的刺客免费高清国语| 干丝袜人妻中文字幕| 日韩一区二区视频免费看| av福利片在线观看| 亚洲欧美日韩无卡精品| 舔av片在线| 国产精品国产三级国产专区5o| 国产成人午夜福利电影在线观看| 99视频精品全部免费 在线| 国产亚洲5aaaaa淫片| 国产成人福利小说| 性色avwww在线观看| 99热这里只有精品一区| 色5月婷婷丁香| 国产永久视频网站| 亚洲18禁久久av| 亚洲国产最新在线播放| 久久久久久久国产电影| 色5月婷婷丁香| 欧美精品一区二区大全| 欧美另类一区| 国产精品国产三级国产专区5o| 亚洲欧美成人精品一区二区| 免费高清在线观看视频在线观看| 亚洲18禁久久av| 欧美成人一区二区免费高清观看| 高清毛片免费看| h日本视频在线播放| 哪个播放器可以免费观看大片| 日韩强制内射视频| 国产精品一二三区在线看| 成人欧美大片| 一区二区三区高清视频在线| 亚洲内射少妇av| av女优亚洲男人天堂| 最近最新中文字幕大全电影3| 亚洲成人av在线免费| 我的女老师完整版在线观看| 欧美成人a在线观看| 亚洲图色成人| av.在线天堂| 亚洲国产精品专区欧美| 美女内射精品一级片tv| 亚洲国产精品国产精品| 免费av不卡在线播放| 日韩中字成人| 啦啦啦中文免费视频观看日本| 亚洲久久久久久中文字幕| av天堂中文字幕网| 日韩大片免费观看网站| 欧美日韩国产mv在线观看视频 | 男的添女的下面高潮视频| 日韩三级伦理在线观看| 性插视频无遮挡在线免费观看| 国产亚洲一区二区精品| 伊人久久精品亚洲午夜| 又大又黄又爽视频免费| 老司机影院成人| 日本一本二区三区精品| 免费av不卡在线播放| 日韩不卡一区二区三区视频在线| 免费观看性生交大片5| 欧美3d第一页| 色5月婷婷丁香| 日本与韩国留学比较| 亚洲最大成人av| 非洲黑人性xxxx精品又粗又长| 亚洲在线自拍视频| 日本-黄色视频高清免费观看| 一级毛片 在线播放| 欧美成人一区二区免费高清观看| 欧美成人午夜免费资源| 少妇高潮的动态图| 又大又黄又爽视频免费| 日韩av在线大香蕉| 精品99又大又爽又粗少妇毛片| 黄色一级大片看看| 国产不卡一卡二| 一二三四中文在线观看免费高清| 久久精品国产鲁丝片午夜精品| 精品国产露脸久久av麻豆 | 国产精品久久久久久av不卡| 99久久人妻综合| 大话2 男鬼变身卡| 亚洲最大成人av| 国产v大片淫在线免费观看| 91狼人影院| 国产淫语在线视频| 午夜福利网站1000一区二区三区| 国产黄a三级三级三级人| 午夜激情欧美在线| 久久久久久久久久成人| 久久久久精品久久久久真实原创| 国产精品久久视频播放| 亚洲av成人精品一区久久| ponron亚洲| 深爱激情五月婷婷| 如何舔出高潮| 亚洲欧美精品自产自拍| 成人特级av手机在线观看| 欧美成人精品欧美一级黄| 国产熟女欧美一区二区| 男女国产视频网站| 久久草成人影院| 免费av不卡在线播放| 国产成年人精品一区二区| a级毛色黄片| 色综合色国产| 七月丁香在线播放| 麻豆成人午夜福利视频| 精品少妇黑人巨大在线播放| 男女下面进入的视频免费午夜| 国产免费视频播放在线视频 | 日韩中字成人| 亚洲欧美清纯卡通| 成年女人在线观看亚洲视频 | 只有这里有精品99| 免费观看性生交大片5| 极品少妇高潮喷水抽搐| 男人舔奶头视频| 国产成人a∨麻豆精品| 国产色爽女视频免费观看| 久久久亚洲精品成人影院| 久久精品久久精品一区二区三区| 久久久久久久亚洲中文字幕| 午夜福利在线在线| 国产av国产精品国产| 又爽又黄a免费视频| 成人毛片60女人毛片免费| 欧美性感艳星| 老女人水多毛片| 美女大奶头视频| 国产人妻一区二区三区在| 天天一区二区日本电影三级| 久久精品综合一区二区三区| 精品亚洲乱码少妇综合久久| 欧美日韩视频高清一区二区三区二| 舔av片在线| 久久精品久久久久久久性| 黄色一级大片看看| 777米奇影视久久| 韩国高清视频一区二区三区| 老司机影院毛片| 亚洲欧洲日产国产| 天堂俺去俺来也www色官网 | 亚洲最大成人中文| 亚洲国产精品专区欧美| 在现免费观看毛片| 人人妻人人看人人澡| 国产 一区精品| 性插视频无遮挡在线免费观看| 在线观看人妻少妇| ponron亚洲| 免费大片18禁| 九九爱精品视频在线观看| 九九在线视频观看精品| 床上黄色一级片| 啦啦啦啦在线视频资源| 亚洲欧美精品自产自拍| 九草在线视频观看| 一级毛片 在线播放| 国产精品蜜桃在线观看| 国产极品天堂在线| 久久精品国产亚洲网站| 亚洲国产高清在线一区二区三| 免费播放大片免费观看视频在线观看| 久久久久性生活片| 欧美97在线视频| 亚洲精品日韩av片在线观看| 天堂俺去俺来也www色官网 | 亚洲国产精品成人综合色| 大香蕉久久网| 久久国内精品自在自线图片| av网站免费在线观看视频 | 最近中文字幕2019免费版| 99久国产av精品国产电影| 午夜福利高清视频| 麻豆av噜噜一区二区三区| 少妇丰满av| 中文在线观看免费www的网站| 一级毛片 在线播放| 亚洲丝袜综合中文字幕| 日本免费a在线| 亚洲av二区三区四区| 美女cb高潮喷水在线观看| 国内少妇人妻偷人精品xxx网站| 人妻系列 视频| av国产免费在线观看| 亚洲精品一区蜜桃| 2018国产大陆天天弄谢| 亚洲性久久影院| 69av精品久久久久久| 精品国产露脸久久av麻豆 | 精品国产露脸久久av麻豆 | 精品一区二区三区人妻视频| 久久人人爽人人片av| 3wmmmm亚洲av在线观看| 日本一本二区三区精品| 国产精品爽爽va在线观看网站| 久久鲁丝午夜福利片| 97热精品久久久久久| 国产精品一区二区性色av| 少妇熟女欧美另类| 欧美bdsm另类| 亚洲av成人精品一区久久| 狂野欧美激情性xxxx在线观看| www.av在线官网国产| 日本一二三区视频观看| 国产av在哪里看| 中文字幕免费在线视频6| 色吧在线观看| 日韩在线高清观看一区二区三区| 男女视频在线观看网站免费| 我的老师免费观看完整版| 99热这里只有是精品在线观看| 久久精品夜夜夜夜夜久久蜜豆| 亚洲在线观看片| 听说在线观看完整版免费高清| 国产毛片a区久久久久| 国产亚洲精品久久久com| 日韩av在线免费看完整版不卡| 成人二区视频| av免费在线看不卡| 亚洲人成网站在线观看播放| 国精品久久久久久国模美| av.在线天堂| 久久精品国产亚洲网站| 国产成人91sexporn| 国产伦精品一区二区三区四那| 69人妻影院| 国产精品久久久久久久电影| 久久久久性生活片| 99热网站在线观看| 午夜免费男女啪啪视频观看| 一个人观看的视频www高清免费观看| 大话2 男鬼变身卡| 成人鲁丝片一二三区免费| 免费av毛片视频| 午夜视频国产福利| 卡戴珊不雅视频在线播放| 寂寞人妻少妇视频99o| 成年人午夜在线观看视频 | 少妇裸体淫交视频免费看高清| 三级男女做爰猛烈吃奶摸视频| 亚洲综合精品二区| 国内精品美女久久久久久| 久久久久精品性色| 国产不卡一卡二| 国产免费又黄又爽又色| 校园人妻丝袜中文字幕| 国产一级毛片七仙女欲春2| 久久99热6这里只有精品| 亚洲国产精品专区欧美| 少妇的逼水好多| 一个人观看的视频www高清免费观看| ponron亚洲| 午夜福利成人在线免费观看| 一级a做视频免费观看| 免费大片黄手机在线观看| 五月天丁香电影| 91av网一区二区| 天堂网av新在线| 亚洲精品久久午夜乱码| 日本黄大片高清| 成人二区视频| 高清av免费在线| 国产成人freesex在线| 午夜精品在线福利| 美女脱内裤让男人舔精品视频| 青青草视频在线视频观看| 联通29元200g的流量卡| 亚洲精品成人久久久久久| 国产精品久久久久久精品电影小说 | 91精品一卡2卡3卡4卡| 欧美性感艳星| 色综合色国产| 日本一二三区视频观看| 麻豆久久精品国产亚洲av| 成年人午夜在线观看视频 | 国产精品精品国产色婷婷| 美女国产视频在线观看| 久久久久网色| 亚洲欧美精品自产自拍| 国产精品久久久久久精品电影小说 | 免费观看性生交大片5| 天天一区二区日本电影三级| 日日摸夜夜添夜夜爱| 亚洲色图av天堂| 欧美zozozo另类| 黄色日韩在线| 欧美成人一区二区免费高清观看| 欧美区成人在线视频| 大香蕉97超碰在线| 国产爱豆传媒在线观看| 日韩一区二区三区影片| 亚洲自拍偷在线| 欧美3d第一页| 五月伊人婷婷丁香| 别揉我奶头 嗯啊视频| 色吧在线观看| 黄色欧美视频在线观看| 夫妻午夜视频| av在线亚洲专区| 欧美激情在线99| 欧美区成人在线视频| 精品欧美国产一区二区三| 1000部很黄的大片| 能在线免费观看的黄片| 亚洲精品,欧美精品| 午夜福利成人在线免费观看| 久久久久久久久大av| 啦啦啦韩国在线观看视频| 国产精品一区二区三区四区久久| 91精品国产九色| 精品人妻视频免费看| 狂野欧美白嫩少妇大欣赏| av网站免费在线观看视频 | 久久精品国产鲁丝片午夜精品| 又大又黄又爽视频免费| 中文在线观看免费www的网站| 国产欧美另类精品又又久久亚洲欧美| 一级毛片aaaaaa免费看小| 国产一区二区亚洲精品在线观看| 在线播放无遮挡| 成人午夜高清在线视频| 国产有黄有色有爽视频| 亚洲精品国产av成人精品|