• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    1-D Directional Filter Based Texture Descriptor in Fractional Fourier Domain

    2015-07-24 17:34:42HongzhangJinandLiyingZheng

    ,Hongzhang Jinand Liying Zheng

    (1.College of Automation,Harbin Engineering University,Harbin 150001,China;2.College of Computer Science and Technology,Harbin Engineering University,Harbin 150001,China)

    1-D Directional Filter Based Texture Descriptor in Fractional Fourier Domain

    Kai Tian1?,Hongzhang Jin1and Liying Zheng2

    (1.College of Automation,Harbin Engineering University,Harbin 150001,China;2.College of Computer Science and Technology,Harbin Engineering University,Harbin 150001,China)

    Texture analysis is a fundamental field in computer vision.However,it is also a particularly difficult problem for no universal mathematical model of real world textures.By extending a new application of the fractional Fourier transform(FrFT)in the field of texture analysis,this paper proposes an FrFT-based method for describing textures.Firstly,based on the Radon-Wigner transform,1-D directional FrFT filters are designed to two types of texture features,i.e.,the coarseness and directionality.Then,the frequencies with maximum and median amplitudes of the FrFT of the input signal are regarded as the output of the 1-D directional FrFT filter.Finally,the mean and the standard deviation are used to compose of the feature vector.Compared to the WD-based method,three benefits can be achieved with the proposed FrFT-based method,i.e.,less memory size,lower computational load,and less disturbed by the cross-terms.The proposed method has been tested on 16 standard texture images.The experimental results show that the proposed method is superior to the popular Gabor filtering-based method.

    fractional Fourier transform;texture analysis;Radon-Wigner transform;1-D directional window

    1 Introduction

    The fractional Fourier transform(FrFT)initially proposed by Candon in 1937 was reintroduced and reinterpreted by Namias in 1980[1]and by McBride and Kerr[2],respectively.From then on,great attention has been paid to the FrFT,and many useful characteristics have been derived[3].So far,as a tool for investigating complex signals and images,the FrFT has been applied to many respects of optical engineering and signal processing,such as filter design[4],joint timefrequency offsets detection[5],cross-terms suppression in the Wigner distribution[6],and signal compressing[7].However,there are few studies of applying the FrFT to texture analysis.

    The texture analysis is particularly difficult for no universal mathematical model of real world textures[8]. Stimulated by the evidence from the psychophysical studies that visual perception is achieved by the accurate analysis of spatial frequency contents in local areas,many time-frequency tools are used for texture analysis.Such tools include Gabor transformation[9],wavelet analysis[10],and Wigner distribution(WD)[11-12].Among them,the WD-based texture image analysis method,which possesses good resolution in both spatial and frequency,is more consistent with the human vision system.The studies of Zhu[11]and Reed[12]have shown that the 2-D WD presents the advantage of efficiency for extracting the pertinent features of a textured image.However,the WD-based texture analysis suffers from heavy load of computation and large memory size,as well as the interferences in the WD.To solve these problems,an FrFT-based method for analysis textured images is proposed in this paper.Compared to the WD-based method,the proposed method requires less memory size,lower computational load,and less disturbed by the crossterms.

    2 Directional FrFT Filter

    2.1 Basics of the FrFT

    The FrFT is a linear transformation with the transform orderα∈(0,4].Mathematically,it maps a signal,f(t),onto(Fαf)(u)by the following equation[3]:

    Here the transform kernel

    One of the most important relations of the FrFT to the time-frequency representations is that of the Radon-Wigner transform:

    whereWfis the WD off(t).Eq.(3)indicates that the projection of the WD of a signal onto an axis making angleφαwith theuaxis is equal to the squared magnitude of theαth order FrFT of the signal.Thus,it can be deduced that|(Fαf)|2possesses timefrequency distributing characteristics off(t).

    2.2 1-D Directional FrFT Filter

    This paper extracts texture features from the squared magnitude of the FrFTs of a texture image based on the following two considerations:1)the squared magnitude of the FrFT of a signal is real,leading to an easy process to characterize textures;and 2)the squared magnitude of the FrFT of a signal is the Radon transform of the WD of the signal,from which some important texture characteristics can be revealed.

    Because the memory size as well as the computational load will be increased greatly for the feature extraction based on 2-D window,a 1-D directional FrFT filtering that is inspired by Gabarda et al.[13]is proposed in this correspondence.Firstly,several 1-D windows of lengthNWalong different directions and centered at an image pixel are employed to produce directional 1-D series.Let{I(px,py)}be the 1-D series of pixel(m,n)along angleθ.Then,mathematically,the position(px,py)can be computed with Eqs.(4)and(5).

    Then each 1-D series of a pixel is transformed intoNFrfractional Fourier domains with Eqs.(1)and(2),gettingNFrFrFT series ofNWlength.Here,NFris the number of FrFT performed on each series.It is clear now that the proposed 1-D directional FrFT filtering consists of two sequential steps:1-D directional series calculation followed by several FrFTs.

    3 Texture Feature Extraction

    The success of classification largely depends on the ability of the method to describe textures.Because the coarseness and directionality are two essential perceptual cues used by the human visual system for discriminating different textures[14-15],the orientation and the spatial-frequency are used as texture features.

    The above mentioned 1-D directional FrFT filters is used to measure those two types of features.Firstly,the 1-D directional FrFT filtering appliesNDr1-D windows along different directions to the textured image,gettingNDr1-D directional series ofNWlength for each pixel(NDris the number of 1-D windows).By doing so,the orientation characteristics of the textured image can be measured.Each of the 1-D series is then transformed intoNFrfractional Fourier domains,gettingNFr1-D FrFT series ofNWlength.From Eq.(3),it is known that the squared magnitude of the αth order FrFT of a signal intimately related to its Wigner distribution.Thus,the above obtainedNFr1-D FrFT series must contain spatialfrequency characteristics of the textured image. Furthermore,to reduce the size of features,the frequencies with maximum and medium amplitudes of each FrFT series are selected as the feature parameters.

    Now the length of the feature vector for each pixel isNDr×NFr,whereNDrandNFrare related to the orientation and space/spatial-frequency distribution of the texture,respectively.Then,the mean and the standard deviation of the featured image are used to compose of the feature vector of the class represented by the input image,i.e.

    wherei=1,2,…,NDr×NFr,andμiandσiare the mean and standard deviation of the class;WandHthe widthand height of the image;I-Feathe featured image. The feature vectorVis constructed as

    Fig.1 summarizes the proposed FrFT-based texture description method.Firstly,NDr1-D windows are applied to the input image to get the 1-D directional series of each pixel with Eqs.(4)and(5).Then, each 1-D directional series is transformed intoNFrfractional Fourier domains,and the frequencies with maximum and medium amplitudes are chosen as the feature parameters.Next,the mean and the standard deviation of the featured image are calculated with Eqs.(6)and(7),based on which the feature vector of the input image can be constructed with Eq.(8).

    Fig.1 Main stages of the proposed method

    There are two benefits which can be achieved with the above FrFT-based method.Firstly,|(Fαf)|2is real leading to an easy process to characterize textures. Secondly,the Wigner transform of a 1-D signal is a 2-D distribution,but theαth order FrFT of such a 1-D signal is still one dimensional,resulting in a less memory size required for the FrFT-based method.

    4 Experimental Results and Analysis

    To demonstrate the performance of the above texture descriptor,it is applied to texture classification. Here,the nearest neighbor classifier with the standardized Euclidean distance computed by Eq.(9)is employed to classify the input texture image.

    whereVaandVbare two feature vectors;Pthe length of the feature vector andCithe standard deviation of theith class.

    The tested 16 texture images,each of which is with the size 128×128,are shown in Fig.2.Each input texture image is divided into 49 overlapped sub-images with size of 32×32.21 of them are as the training samples,while the other 28 are test samples.

    Firstly,to select suitable transform orders,we letNFr=1,and the transform order,α,varies from 0.1 to 0.9 with step 0.1.FixNW=8 andNDr=4,(the orientations of the 1-D windows are 0,π/4,π/2 and 3π/4,respectively).Table 1 lists the classification rates with different values ofα.

    Then,setNW=8,NDr=4,andNFr=2 to evaluate the effects ofNFr.The classification rates are listed in Table 2 in which the first three groups are selected from the best threeαin Table 1,while the fourth one corresponds to the best and the worstαin Table 1.The last group is the combination of the twoαwith the two worst classification rates.

    Table 1 Classification rates withNDr=4,NW=8,NFr=1

    Table 2 Classification rates withNDr=4,NW=8,NFr=2

    The comparison result between Table 2 and Table 1 shows that the performance ofNFr=2 is better thanNFr=1.However,one should note that the memory size as well as the computational load required forNFr=2 are greater thanNFr=1.It is worth mentioning thatthe setting ofα={0.2,0.9}gives the algorithm the best classification rate forNFr=2.From the view of the phase plane,the 0.2th order FrFT possesses more characteristics from the time domain,whereas the 0.9th order FrFT has more characteristics from the frequency domain.This provided us with this insight:when selecting the transformation domains,one may make some of them approach the time domain,while others approach the frequency domain.

    Finally,we perform a comparison to the Gaborbased method that is a very popular method for texture analysis.The parameter settings areNDr=4,NW=8,andα={0.2,0.9}.The results in Ref.[16]gives 22 misclassified patches with the quadratic distance,i.e.(as shown in Fig.2),95.1%classification rate,while our proposed method gives 14 misclassified patches,i.e.96.88%classification rate.The results show that the FrFT-based method is better than the Gabor filters based method.

    Fig.2 16 textures in Ref.[16]

    5 Conclusions

    Stimulated by the evidence from the psychophysical studies that visual perception is achieved by the accurate analysis of spatial frequency contents in local areas,many time-frequency tools are used for texture analysis.In this paper,considering the close relationship between the FrFT and the Wigner distribution,a new texture description method is proposed.It enjoys an easy process to characterize textures,less memory size,and less disturbed by the cross-terms.The method has been tested on 16 benchmark textures.From the simulation results,we can conclude that when selecting the transformation domains,one may make some of them approach the time domain,while others approach the frequency domain.Furthermore,the simulation results also show that the classification rate based on the quadratic distance can reach 96.88%which is better than that of the popular texture analysis method,i.e.,Gabor filtering based method.

    [1]Namias V.The fractional order Fourier transform and its applications to quantum mechanics.Journal of the Institute of Mathematics and Its Applications,1980,25(3):241-265.

    [2]McBride A C,Kerr F H.On Namias's fractional Fourier transforms.IMA Journal of Applied Mathematics,1987,39:159-175.

    [3]Ozaktas H M,Zalevsky Z,Kutay M A.The fractional Fourier transform:with applications in optics and signal processing.Wiley,2001.

    [4]Yetik I S,Kutay M A,Ozaktas H M.Optimization of orders in multichannel fractional Fourier filtering circuits and its application to the synthesis of mutual-intensity distributions.Applied Optics,2002,41(20):4078-4084.

    [5]Oonincx P J.Joint time—frequency offset detection using the fractional Fourier transform.Signal Processing,2008,88(12):2936-2942.

    [6]Qazi S,Georgakis A,Stergioulas L K,et al.Interference suppression in the Wigner distribution using fractional Fourier transformation and signal synthesis.IEEE transactions on Signal Processing,2007,55(6):3150-3154.

    [7]Vijaya C,Bhat J S.Signal compression using discrete fractional Fourier transform and set partitioning in hierarchical tree.Signal Processing,2006,86(8):1976-1983.

    [8]Sagiv C,Sochen N A,Zeevi Y Y.Integrated active contours for texture segmentation.IEEE Transactions on Image Processing,2006,15(6):1633-1646.

    [9]Jain A K,F(xiàn)arrokhnia F.Unsupervised texture segmentation using Gabor filters.Pattern Recognition,1991,24(12):1167-1186.

    [10]Laine A,F(xiàn)an J.Texture classification by wavelet packet signatures.IEEE Transactions on Pattern Analysis and Machine Intelligence,1993,15(11):1186-1191.

    [11]Zhu Y M,Goutte R,Amiel M.On the use of twodimensional Wigner-Ville distribution for texture segmentation.Signal Processing,1993,30(3):329-353.

    [12]Reed T,Wechsler H.Segmentation of textured images and Gestalt organization using spatial/spatial frequency representation.IEEE Transactions on Pattern Analysis and Machine Intelligence,1990,12(1):325-331.

    [13]Gabarda S,Cristóbal G.Discrimination of isotrigon textures using the Rényi entropy of Allan variances.Journal of the Optical Society of America-A,2008,25(9):2309-2319.

    [14]Campbell F W,Robson J G.Application of Fourier analysis to the visibility of gratings.The Journal of Physiology,1968,197(3):551-566.

    [15]Maffei L,F(xiàn)iorintini A.The visual cortex as a spatial frequency analyser.Vision Research,1973,13(7):1255-1267.

    [16]Azencott R,Wang J P,Younes L.Texture classification using windowed Fourier filters.IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(2):148-153.

    TP391.4

    :1005-9113(2015)05-0125-04

    10.11916/j.issn.1005-9113.2015.05.019

    2014-09-12.

    Sponsored by the National Natural Science Foundation of China(Grant No.61003128).

    ?Corresponding author.E-mail:tiankai@hrbeu.edu.cn.

    亚洲成人久久性| 亚洲欧美日韩东京热| 亚洲人成网站高清观看| 蜜桃久久精品国产亚洲av| 国产麻豆成人av免费视频| 欧美日韩乱码在线| 午夜亚洲福利在线播放| 国产三级黄色录像| 日本 av在线| 日本与韩国留学比较| 麻豆久久精品国产亚洲av| 此物有八面人人有两片| 我的老师免费观看完整版| 亚洲中文字幕一区二区三区有码在线看 | 脱女人内裤的视频| 中出人妻视频一区二区| 97超级碰碰碰精品色视频在线观看| 国内精品久久久久久久电影| 亚洲aⅴ乱码一区二区在线播放| 亚洲国产欧洲综合997久久,| 天天添夜夜摸| 国产精品精品国产色婷婷| 国产黄a三级三级三级人| 搡老妇女老女人老熟妇| 欧美日韩精品网址| 在线a可以看的网站| 少妇熟女aⅴ在线视频| 亚洲电影在线观看av| 18禁观看日本| 人人妻人人澡欧美一区二区| 中文字幕人妻丝袜一区二区| 午夜福利免费观看在线| 亚洲七黄色美女视频| 亚洲黑人精品在线| 麻豆国产av国片精品| 日本免费a在线| 一二三四社区在线视频社区8| 成年女人看的毛片在线观看| 成人永久免费在线观看视频| 国产毛片a区久久久久| 亚洲va日本ⅴa欧美va伊人久久| xxx96com| 国产av一区在线观看免费| 精品久久久久久成人av| 九色国产91popny在线| 91麻豆av在线| 久久久久久久久中文| 国产精品综合久久久久久久免费| 九色成人免费人妻av| 久久久国产成人免费| 国内精品久久久久精免费| 国产精品久久久久久久电影 | 成年女人永久免费观看视频| 亚洲欧美激情综合另类| 亚洲va日本ⅴa欧美va伊人久久| 亚洲国产精品sss在线观看| 一个人免费在线观看电影 | 国产精品,欧美在线| 日本 欧美在线| 亚洲国产精品久久男人天堂| 一级黄色大片毛片| 亚洲av美国av| 午夜激情欧美在线| 一个人看视频在线观看www免费 | 免费看十八禁软件| 国产又黄又爽又无遮挡在线| 午夜福利在线观看免费完整高清在 | 又紧又爽又黄一区二区| 18禁国产床啪视频网站| 亚洲成av人片免费观看| 精品国产乱子伦一区二区三区| 久久精品91蜜桃| 久久久久久久久久黄片| 一进一出抽搐动态| 日韩国内少妇激情av| 美女大奶头视频| 91在线精品国自产拍蜜月 | 国产精品一区二区三区四区免费观看 | 国产高清视频在线观看网站| 无人区码免费观看不卡| 日本熟妇午夜| 最新中文字幕久久久久 | 老司机深夜福利视频在线观看| 亚洲美女黄片视频| 51午夜福利影视在线观看| 精品久久蜜臀av无| 亚洲人成网站在线播放欧美日韩| 床上黄色一级片| 99热6这里只有精品| 国产亚洲精品综合一区在线观看| 亚洲成人中文字幕在线播放| 久久久久国内视频| 99久久精品一区二区三区| 国产精品久久久久久亚洲av鲁大| 最近最新中文字幕大全免费视频| 九色国产91popny在线| 色哟哟哟哟哟哟| 19禁男女啪啪无遮挡网站| 国产麻豆成人av免费视频| 欧美日本视频| avwww免费| 中国美女看黄片| 国产精品一区二区免费欧美| 国产男靠女视频免费网站| 制服丝袜大香蕉在线| 欧美一级毛片孕妇| 精品国产亚洲在线| 叶爱在线成人免费视频播放| 成人三级做爰电影| 欧美三级亚洲精品| 99国产综合亚洲精品| 国产单亲对白刺激| 成年女人看的毛片在线观看| 久久香蕉国产精品| 18美女黄网站色大片免费观看| 欧美黑人巨大hd| av在线蜜桃| 特级一级黄色大片| 婷婷亚洲欧美| 国内少妇人妻偷人精品xxx网站 | 黄频高清免费视频| 麻豆av在线久日| a在线观看视频网站| 国产亚洲欧美98| 欧美另类亚洲清纯唯美| 久久人妻av系列| 一级毛片高清免费大全| 在线十欧美十亚洲十日本专区| 黄色日韩在线| 日本免费一区二区三区高清不卡| 色老头精品视频在线观看| 97碰自拍视频| 国产精品,欧美在线| 亚洲av第一区精品v没综合| 别揉我奶头~嗯~啊~动态视频| 亚洲第一欧美日韩一区二区三区| 99精品在免费线老司机午夜| 亚洲 欧美 日韩 在线 免费| 亚洲片人在线观看| 国产一区二区激情短视频| 国产亚洲精品久久久com| 国产成人欧美在线观看| 真实男女啪啪啪动态图| 亚洲午夜精品一区,二区,三区| 精品人妻1区二区| 九九热线精品视视频播放| 夜夜夜夜夜久久久久| 一个人看视频在线观看www免费 | 国内揄拍国产精品人妻在线| 久久久国产精品麻豆| 久久性视频一级片| 蜜桃久久精品国产亚洲av| av福利片在线观看| 国产91精品成人一区二区三区| 两个人视频免费观看高清| 婷婷丁香在线五月| 婷婷亚洲欧美| 美女午夜性视频免费| 性色av乱码一区二区三区2| 国产精品美女特级片免费视频播放器 | 大型黄色视频在线免费观看| 天天添夜夜摸| www国产在线视频色| 欧美绝顶高潮抽搐喷水| 好男人电影高清在线观看| 19禁男女啪啪无遮挡网站| 最近在线观看免费完整版| 99久久成人亚洲精品观看| 色哟哟哟哟哟哟| or卡值多少钱| 99热6这里只有精品| 久久久久久久久中文| 两个人的视频大全免费| 亚洲黑人精品在线| netflix在线观看网站| 久久这里只有精品中国| 亚洲成人久久爱视频| 日韩国内少妇激情av| 久久久久久久久久黄片| 成人三级做爰电影| 日韩精品青青久久久久久| 最近最新中文字幕大全免费视频| 国产伦精品一区二区三区四那| 97人妻精品一区二区三区麻豆| a在线观看视频网站| 99久久99久久久精品蜜桃| 日本 av在线| 可以在线观看的亚洲视频| www日本在线高清视频| 美女黄网站色视频| 色综合欧美亚洲国产小说| 亚洲 欧美 日韩 在线 免费| 久久久久久久精品吃奶| 免费一级毛片在线播放高清视频| 一进一出好大好爽视频| 亚洲精品456在线播放app | 国产亚洲欧美98| 日本成人三级电影网站| 淫秽高清视频在线观看| 日本三级黄在线观看| 一区二区三区高清视频在线| 色精品久久人妻99蜜桃| 久久精品亚洲精品国产色婷小说| АⅤ资源中文在线天堂| 日本三级黄在线观看| 伊人久久大香线蕉亚洲五| 久久久久久久精品吃奶| 好看av亚洲va欧美ⅴa在| 国产欧美日韩一区二区三| 亚洲欧美激情综合另类| 成人av一区二区三区在线看| 十八禁人妻一区二区| 亚洲国产日韩欧美精品在线观看 | 给我免费播放毛片高清在线观看| 久久久久国产精品人妻aⅴ院| 国产成年人精品一区二区| 老司机午夜福利在线观看视频| 国产99白浆流出| 91在线精品国自产拍蜜月 | 亚洲av成人不卡在线观看播放网| 午夜免费激情av| 国产精品亚洲美女久久久| 国产高清视频在线观看网站| 国产高清videossex| 国产精品久久久久久亚洲av鲁大| 成人无遮挡网站| 欧美日韩国产亚洲二区| 久久久久久国产a免费观看| 欧美国产日韩亚洲一区| 日本五十路高清| 亚洲五月婷婷丁香| 免费av不卡在线播放| 欧美性猛交╳xxx乱大交人| 真实男女啪啪啪动态图| 久久这里只有精品中国| 欧美一级毛片孕妇| 亚洲精品一区av在线观看| 国产亚洲精品久久久com| 在线十欧美十亚洲十日本专区| 亚洲熟妇中文字幕五十中出| 久久午夜综合久久蜜桃| 男女做爰动态图高潮gif福利片| 久久午夜亚洲精品久久| 激情在线观看视频在线高清| 日本免费a在线| 精品国内亚洲2022精品成人| 1024香蕉在线观看| svipshipincom国产片| 国产av在哪里看| 免费观看的影片在线观看| 欧美日本视频| 男人舔女人下体高潮全视频| 禁无遮挡网站| 久久精品亚洲精品国产色婷小说| 国产欧美日韩一区二区三| 美女 人体艺术 gogo| 网址你懂的国产日韩在线| 亚洲18禁久久av| 国产视频内射| 亚洲专区国产一区二区| 女生性感内裤真人,穿戴方法视频| 国产成人av教育| 国产精品一区二区精品视频观看| 日本免费a在线| 99久久精品一区二区三区| 国产蜜桃级精品一区二区三区| 亚洲一区高清亚洲精品| 国产精品综合久久久久久久免费| 精品欧美国产一区二区三| 一个人看的www免费观看视频| 久久久精品欧美日韩精品| 淫妇啪啪啪对白视频| 最新中文字幕久久久久 | 亚洲精品一卡2卡三卡4卡5卡| 女生性感内裤真人,穿戴方法视频| 国产成人欧美在线观看| 国产三级在线视频| 日本撒尿小便嘘嘘汇集6| 日本黄大片高清| 午夜福利在线观看吧| 两性午夜刺激爽爽歪歪视频在线观看| 久久中文字幕一级| 亚洲欧美日韩高清在线视频| 1024香蕉在线观看| 国产人伦9x9x在线观看| 九九久久精品国产亚洲av麻豆 | 日韩欧美 国产精品| 亚洲精华国产精华精| 99国产精品一区二区三区| 女生性感内裤真人,穿戴方法视频| 国产又黄又爽又无遮挡在线| 91麻豆精品激情在线观看国产| 人妻久久中文字幕网| 男女午夜视频在线观看| 欧美色视频一区免费| 久久午夜综合久久蜜桃| 久久伊人香网站| 国产伦一二天堂av在线观看| 国产精品,欧美在线| 国产成人av教育| 国产亚洲精品一区二区www| 女人高潮潮喷娇喘18禁视频| 熟女人妻精品中文字幕| 日韩精品中文字幕看吧| 色综合亚洲欧美另类图片| 中亚洲国语对白在线视频| 观看免费一级毛片| 久久精品91蜜桃| 天堂√8在线中文| 亚洲第一欧美日韩一区二区三区| 亚洲自拍偷在线| 久久这里只有精品19| 国产高清视频在线播放一区| 别揉我奶头~嗯~啊~动态视频| 日本黄色视频三级网站网址| 国产亚洲精品久久久com| 日本成人三级电影网站| 国产精品 国内视频| www日本在线高清视频| 免费看美女性在线毛片视频| 好看av亚洲va欧美ⅴa在| 久久久久久久午夜电影| 人人妻人人看人人澡| 久久精品影院6| 亚洲av成人精品一区久久| 一进一出好大好爽视频| 制服人妻中文乱码| 色吧在线观看| 国产又黄又爽又无遮挡在线| 99热只有精品国产| 久久热在线av| 亚洲av免费在线观看| av黄色大香蕉| 亚洲,欧美精品.| 亚洲精品乱码久久久v下载方式 | 欧美日韩中文字幕国产精品一区二区三区| 国产在线精品亚洲第一网站| 中文字幕人妻丝袜一区二区| 精品国内亚洲2022精品成人| 国产三级黄色录像| 亚洲国产欧美网| 久久久久久久午夜电影| 99久久99久久久精品蜜桃| 亚洲av日韩精品久久久久久密| 国产激情欧美一区二区| 国产亚洲欧美在线一区二区| 国产亚洲精品综合一区在线观看| 亚洲无线在线观看| 欧美乱码精品一区二区三区| 免费观看人在逋| 国产伦一二天堂av在线观看| 日本a在线网址| 欧美日韩国产亚洲二区| а√天堂www在线а√下载| 又黄又粗又硬又大视频| 观看美女的网站| 一本综合久久免费| 国产成人精品久久二区二区91| 超碰成人久久| 99久久无色码亚洲精品果冻| 精品不卡国产一区二区三区| 俺也久久电影网| 夜夜看夜夜爽夜夜摸| 国产成人影院久久av| 九九在线视频观看精品| 亚洲色图 男人天堂 中文字幕| 亚洲人成网站在线播放欧美日韩| 99riav亚洲国产免费| 亚洲人成网站在线播放欧美日韩| 男人和女人高潮做爰伦理| 身体一侧抽搐| bbb黄色大片| 此物有八面人人有两片| 女人被狂操c到高潮| 国产野战对白在线观看| 国产精品亚洲av一区麻豆| 少妇人妻一区二区三区视频| 美女扒开内裤让男人捅视频| 国产欧美日韩一区二区三| 久久午夜综合久久蜜桃| 免费高清视频大片| 久久久久久久久中文| 嫩草影院精品99| 国产亚洲精品一区二区www| 在线观看美女被高潮喷水网站 | 婷婷丁香在线五月| 国产精品av视频在线免费观看| 亚洲avbb在线观看| 国产私拍福利视频在线观看| 怎么达到女性高潮| 淫秽高清视频在线观看| 超碰成人久久| 精品久久久久久久末码| 欧美日韩黄片免| 后天国语完整版免费观看| 一进一出抽搐gif免费好疼| 18禁黄网站禁片午夜丰满| 成人国产一区最新在线观看| 女人被狂操c到高潮| 五月伊人婷婷丁香| 国产人伦9x9x在线观看| 长腿黑丝高跟| 久久精品国产综合久久久| 免费观看人在逋| 欧美激情久久久久久爽电影| 日韩高清综合在线| 亚洲一区二区三区色噜噜| 操出白浆在线播放| 日本五十路高清| 狂野欧美激情性xxxx| 一a级毛片在线观看| 欧美国产日韩亚洲一区| 亚洲国产欧洲综合997久久,| 欧美高清成人免费视频www| 香蕉丝袜av| 亚洲欧美日韩东京热| 男女视频在线观看网站免费| 亚洲精品在线美女| 亚洲人与动物交配视频| 成人三级黄色视频| 日本在线视频免费播放| 日本精品一区二区三区蜜桃| 日日摸夜夜添夜夜添小说| 一个人免费在线观看的高清视频| 在线十欧美十亚洲十日本专区| 亚洲国产欧美一区二区综合| 夜夜看夜夜爽夜夜摸| av女优亚洲男人天堂 | 色尼玛亚洲综合影院| 18禁国产床啪视频网站| 国产激情偷乱视频一区二区| 久久中文字幕一级| 亚洲精品一卡2卡三卡4卡5卡| 亚洲五月婷婷丁香| 日韩精品青青久久久久久| 又爽又黄无遮挡网站| 日本 av在线| 国产高清三级在线| 国产精品爽爽va在线观看网站| 99久久成人亚洲精品观看| 亚洲激情在线av| 高潮久久久久久久久久久不卡| 哪里可以看免费的av片| 国产成+人综合+亚洲专区| 亚洲aⅴ乱码一区二区在线播放| 欧美日韩综合久久久久久 | 日韩中文字幕欧美一区二区| 国产麻豆成人av免费视频| 精品久久久久久,| 国产久久久一区二区三区| 亚洲av免费在线观看| 精品久久久久久久人妻蜜臀av| 我要搜黄色片| 精品不卡国产一区二区三区| 国产成人aa在线观看| 色在线成人网| av黄色大香蕉| 欧美日韩中文字幕国产精品一区二区三区| 在线观看66精品国产| 亚洲色图 男人天堂 中文字幕| 神马国产精品三级电影在线观看| 色综合欧美亚洲国产小说| 18禁国产床啪视频网站| 免费一级毛片在线播放高清视频| 18禁美女被吸乳视频| 亚洲专区国产一区二区| 操出白浆在线播放| 美女午夜性视频免费| 最新美女视频免费是黄的| 久久香蕉国产精品| 欧美日韩瑟瑟在线播放| 青草久久国产| 午夜影院日韩av| 国内久久婷婷六月综合欲色啪| 99精品欧美一区二区三区四区| 欧美高清成人免费视频www| 欧美zozozo另类| 午夜福利在线观看免费完整高清在 | 国产三级黄色录像| 天天一区二区日本电影三级| 国产亚洲精品久久久com| 神马国产精品三级电影在线观看| 欧美中文综合在线视频| 19禁男女啪啪无遮挡网站| 欧美绝顶高潮抽搐喷水| 国产精华一区二区三区| 婷婷精品国产亚洲av在线| 亚洲国产中文字幕在线视频| 国产成人福利小说| 日本熟妇午夜| 男人和女人高潮做爰伦理| 国产三级在线视频| 中文字幕最新亚洲高清| 老汉色av国产亚洲站长工具| 女人被狂操c到高潮| 伊人久久大香线蕉亚洲五| 麻豆国产av国片精品| 欧美高清成人免费视频www| 国产精品香港三级国产av潘金莲| 老司机午夜福利在线观看视频| 亚洲国产精品sss在线观看| 国产精品亚洲av一区麻豆| 婷婷精品国产亚洲av在线| 好男人在线观看高清免费视频| 免费看光身美女| 女生性感内裤真人,穿戴方法视频| 两个人看的免费小视频| 91字幕亚洲| 精品熟女少妇八av免费久了| 九九在线视频观看精品| 国产精品久久视频播放| 岛国在线观看网站| 免费看美女性在线毛片视频| 精品久久久久久久人妻蜜臀av| 国产成人福利小说| 日日夜夜操网爽| 长腿黑丝高跟| 可以在线观看毛片的网站| 国产一区二区激情短视频| 欧美日韩瑟瑟在线播放| 久久久国产成人免费| 国产真人三级小视频在线观看| 精品国产乱子伦一区二区三区| 性色av乱码一区二区三区2| 午夜福利在线观看免费完整高清在 | 国产精品av久久久久免费| 在线观看免费视频日本深夜| 美女 人体艺术 gogo| 国产蜜桃级精品一区二区三区| 中文字幕av在线有码专区| 嫩草影院入口| 成人国产一区最新在线观看| 国产av一区在线观看免费| or卡值多少钱| 中文亚洲av片在线观看爽| 成年免费大片在线观看| 国产精品av视频在线免费观看| 一本精品99久久精品77| 男女床上黄色一级片免费看| 亚洲欧美激情综合另类| 无限看片的www在线观看| 搡老妇女老女人老熟妇| 成年版毛片免费区| 十八禁人妻一区二区| 亚洲中文字幕一区二区三区有码在线看 | 成人鲁丝片一二三区免费| 在线视频色国产色| 少妇的丰满在线观看| 午夜福利欧美成人| 丰满人妻熟妇乱又伦精品不卡| 免费电影在线观看免费观看| 日日摸夜夜添夜夜添小说| 免费观看人在逋| 免费看光身美女| 男女视频在线观看网站免费| 亚洲国产日韩欧美精品在线观看 | 性色av乱码一区二区三区2| 免费在线观看视频国产中文字幕亚洲| 久久精品影院6| 久久人妻av系列| 老汉色av国产亚洲站长工具| 丁香六月欧美| 最新中文字幕久久久久 | 天天躁日日操中文字幕| 国产精品98久久久久久宅男小说| 久久九九热精品免费| 99热6这里只有精品| 美女免费视频网站| 熟女少妇亚洲综合色aaa.| 亚洲国产看品久久| 美女扒开内裤让男人捅视频| 久久亚洲精品不卡| 亚洲av成人精品一区久久| 天堂动漫精品| 国产熟女xx| 99国产综合亚洲精品| www日本在线高清视频| 国产精品爽爽va在线观看网站| 亚洲在线观看片| 免费高清视频大片| 亚洲成av人片在线播放无| 19禁男女啪啪无遮挡网站| 观看免费一级毛片| 中文字幕人妻丝袜一区二区| 久久久久久久久中文| 最近最新中文字幕大全免费视频| 精品不卡国产一区二区三区| 1024手机看黄色片| 最好的美女福利视频网| www.精华液| 亚洲熟妇中文字幕五十中出| 在线观看舔阴道视频| 欧美在线一区亚洲| 精品一区二区三区视频在线观看免费| 99久久国产精品久久久| 巨乳人妻的诱惑在线观看| 亚洲天堂国产精品一区在线| 国产三级黄色录像| 亚洲va日本ⅴa欧美va伊人久久| 成人无遮挡网站| 伊人久久大香线蕉亚洲五| 真实男女啪啪啪动态图| cao死你这个sao货| 人人妻人人澡欧美一区二区| 啦啦啦韩国在线观看视频| 亚洲精华国产精华精| 欧美+亚洲+日韩+国产| 99热这里只有是精品50| 老鸭窝网址在线观看| 久久国产乱子伦精品免费另类| 日日摸夜夜添夜夜添小说| 桃红色精品国产亚洲av| 男女下面进入的视频免费午夜| 91老司机精品| 舔av片在线|