• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High adsorption and separation performance of CO2 over N2 in azo-based(N=N)pillar[6]arene supramolecular organic frameworks*

    2021-11-23 07:32:26YongChaoJiang姜永超GuiXiaLi李桂霞GuiFengYu于桂鳳JuanWang王娟ShuLaiHuang黃樹來andGuoLiangXu徐國亮
    Chinese Physics B 2021年11期
    關(guān)鍵詞:王娟徐國

    Yong-Chao Jiang(姜永超) Gui-Xia Li(李桂霞) Gui-Feng Yu(于桂鳳) Juan Wang(王娟)Shu-Lai Huang(黃樹來) and Guo-Liang Xu(徐國亮)

    1College of Science and Information,Qingdao Agricultural University,Qingdao 266109,China

    2School of Physics,Henan Normal University,Xinxiang 453007,China

    Keywords: supramolecular organic framework, functionalization, modelling and simulation, carbon capture and storage

    1. Introduction

    The rapid climate change caused by global warming has been a serious issue due to the extensive CO2emission into the atmosphere by anthropogenic activities such as industrial production, power plants emission, and vehicle emissions.[1]The development of efficient strategies is more challenging,and becomes an urgent task to mitigate the global warming and to continue to use fossil fuels. Under such a background,carbon capture and storage(CCS)technologies play a critical process to tackle this urgent globally environmental problem by capture and separation of CO2.[2]In order to obtain high efficiency of CCS,it is highly desirable that the suitable materials serving as effective adsorbent is utilized for CO2capture and separation.[3]Supramolecular organic frameworks with intrinsic porosity, based on the assembly of calixarenes,[4]bisurea,[5]cucurbiturils,[6]and more recently pillarenes,[7,8]have emerged as a excellent solid adsorbent materials for CO2adsorption and separation. Among them, pillar[n]arene has been exploited as an excellent candidate for CO2capture and separation because of high thermal stability, favourable pore characteristics and good gas sorption properties.

    As a desired gas adsorption material, pillar[n]arene has been experiencing comprehensive and substantial studies on its structures,properties,and syntheses. Ogoshiet al.adopted per-hydroxylated pillar[6]arene to capture gas and vapour,and found 1D channels of the per-hydroxylated pillar[6]arene can adsorb various gases and organic vapours due to their pillarshaped structures with suitable pore volume of 0.098 cm3/g.[9]Tanet al.investigated pillar[6]arene for selective sorption of hydrocarbons,and found that P5-SOF has good selectively of C2H2over H2(~2969/1), C2H6(~295/1), N2(~60/1),CH4(~41/1), and C2H4(~20/1) and exhibits high selectivity for other gas mixtures under the equimolar gas mixture condition at 1.0 bar.[10]Tanet al.employed pillar[5]arene and pillar[6]arene to realize high selective CO2adsorption capacity for CO2/H2mixtures, reaching up to 3733/1 for 30/70 mixture of CO2/H2at 298 K via strong O-H···O,C-H···O, C-H···π,π···πinteractions.[11]Therefore, pillar[n]arene might be deemed to possess outstanding gas capture performance with strong gas-framework interaction. So far as we know, the effects of functionalization, the improvement mechanism on the CO2adsorption and selectivity over CO2of N2mixture gas in functionalized pillar[6]arenes materials have not been distinctly explained.

    In this work,we adopt azo group(N=N)to decorate pillar[6]arene for investigating the adsorption and separation performance of CO2/N2mixture by density functional theory(DFT) and grand canonical Monte-Carlo (GCMC). Firstly,we optimize the geometry structure of functionalized pillar[6]arenes and calculate their atomic partial charge as the basic input parameters in GCMC simulation by DFT;secondly,the functionalized pillar[6]arenes pore characteristics of the azo-based pillar[6]arenes are showed; thirdly, adsorption capacity and separation of CO2/N2mixture is calculated;finally,the isosteric heats, interaction energy, and adsorption energy are analyzed to determine the effects of azo-functionalization on the adsorption strength and characteristics. Our results highlight the potential use of the azo-based pillar[6]arenes in CCS for high adsorption capacity and high selectivity of CO2over N2.

    2. Model and methodology

    Pillar[6]arene was adopted as the initial unit to form the adsorbing material for separating CO2from CO2/N2mixture. Firstly, we assumed that the incorporation of azo group into the macrocyclic backbone of pillar[6]arene: pillar[6]arene N2, which have two decorated macrocyclic backbones; pillar[6]arene N4, which have four decorated macrocyclic backbones, as shown in Fig. 1. After building these three structures, optimizing structure and analyzing atomic charge were carried out by means of DFT. The B3LYP/6-31+g(d,p) basis was set in Gaussian 09 package with the highly computational effciiency and suffciient accuracy.[12]The self-consistent feild (SCF) was computed with a convergence threshold of 10?6a.u. on total energy. Next,their functionalized pillar[6]arene frameworks were composed by four well-ordered optimized units. Atomic partial charges(ChelpG) of functionalized pillar[6]arenes were used as important information parameters in GCMC simulations to describe the electrostatic interaction by Coulomb law.

    CO2and N2molecules were regarded as rigid linear molecules, and the three-site molecule was used for CO2and N2molecules.The LJ potential parameters for both CO2and N2molecules were obtained from the TraPPE model,which were reported by Potoff and Siepmann.[13]Dreiding force field[14]was applied to acquire atomic Lennard-Jones 12-6 potential (ULJ) parameters. This force field has been successfully appropriated for a wealth of adsorbed materials,such as CNnsheets,[15]metal organic frameworks(MOFs),[16]and boron nitride nanotube.[17]GCMC simulations were employed to calculate the uptake of single-component CO2and N2,and the selectivity of CO2over N2in their binary mixture with different ratio in functionalized pillar[6]arene. Lennard-Jones 12-6 potential was used to describe the van der Waals interaction,which is calculated as follows:

    where the charge on particlesiandjareqiandqj, respectively,in units ofe. The dielectric constant at vacuum condition is represented byε0with the value of 8.85×10?12F/m.For the GCMC simulations,100000 cycles were used in which the first 50000 cycles were used for initialization,and the last 50000 cycles were performed for taking ensemble averages.All these GCMC simulations were implemented in the RASPA simulation code.[18]

    Fig.1. Initial configurations of the azo-based pillar[6]arenes.

    3. Results and discussion

    3.1. Pore topology and morphology

    Pore structure of frameworks is a decisive factor for gas adsorption and separation. We use Poreblazer v3.0[19]to evaluate the available pore volume (VP), pore limiting diameter(DL), maximum pore diameter(DM), and accessible surface area. The porosity (Φ) is estimated byVP/VTotal, whereVTotalis the total volume of the frameworks. Table 1 lists the pore structure of the three functionalized pillar[6]arene evaluated,which were reported by Sarkisov[20]and Duren[21]methods. After decorating, the density increase to 1.184 g·cm?3from the original 0.979 g·cm?3, and moreNatoms are introduced into frameworks leading to the greater density. TheVpof the azo-based pillar[6]arene fluctuate from 0.32 cm3/g to 0.43 cm3/g, which are lower than those of the unmodified pillar[6]arene. The accessible surface areas of the azo-based pillar[6]arene decrease from 1073.36 m2·g?1to 880.54 m2·g?1with the increasing of the azo group number,and these values are larger than those of traditional adsorbent zeolite 13X (591 m2·g?1),[22]a part of metal?organic materials (200-300 m2·g?1),[23]similar to some 2D covalent organic frameworks (688-1197 m2·g?1),[24]but lower than those of metal organic frameworks with high porosity(~6000 m2·g?1).[25]The porosity of three azo-based pillar[6]arenes is kept about 30%.In contrast with pillar[6]arene,azo-functionalization has little effect onDLandDM.

    Table 1. Physical characteristics of the azo-based pillar[6]arenes(gas probe molecule=He with diameter of 2.58 ?A).

    Fig.2. The pore size distributions of the azo-based pillar[6]arenes.

    To gain a deeper insight into the pore morphological structures, the pore size distributions (PSDs) are showed in Fig. 2. All PSDs present similar continuous distribution, and all pore sizes are smaller than 7 ?A, which are the typical ultramicropore structures(<7.00 ?A)in accordance with the IUPAC classification.[26]The main pore distributions concentrate on 5-6 ?A.The PSDs findings demonstrate the unmodified pillar[6]arene exist some pore,which is smaller than 2 ?A.Based on the previous work, pores with sizes of 5-7 ?A or even below (also referred to as ultramicropores) should be presented because they have a larger adsorption potential for CO2as compared to larger supermicropores (7-20 ?A) or mesopores(>2 nm)[1]at the low-pressure. Therefore, three azo-based pillar[6]arenes provide favorable environment for CO2adsorption and separation.

    3.2. Single-component adsorption of CO2/N2

    Single-component adsorption capacity is the primary standard to evaluate the adsorbent performance. The absolute adsorption isotherms of the single-component CO2adsorption in three azo-based pillar[6]arenes at 298 K are presented in Fig. 3(a). The absolute CO2adsorption capacities in the azo-based pillar[6]arenes are signifciantly higher than that of the unmodifeid pillar[6]arenes. At 1 bar, the adsorption capacity of three azo-based pillar[6]arenes is 0.66 mmol/g for pillar[6]arene, 0.75 mmol/g for pillar[6]arene N2, and 1.36 mmol/g for pillar[6]arene N4, respectively. The results show that azo-functionalization can improve the adsorption capacity of pillar[6]arene. In particular, pillar[6]arene N4 presents larger adsorption capacity, which is larger than those of typical supramolecular organic framework T-SOF-1 (~1.07 mmol/g),[27]TPP (0.94 mmol/g),[4]DMP5-SOF(0.05 mmol/g),[28]SMOF-SIFSIX-1a (1.05 mmol/g)[29]and B2 (~0.67 mmol/g),[4]and MgAl(Cl) (~0.136),[28]but smaller than nanoporous carbons(2.14-9.62 mmol/g),[30]and similar to azo based COF-TpAzo (1.59 mmol/g) at the same conditions. The increased CO2uptake performances are attributed to the introduction of azo groups, which add strong adsorption sites, change pore topology, and strengthen interactions with CO2and N2molecules. Introducing azo groups leads to the increasing of the number of N atoms in the frameworks.That is,an azo group(N=N)with large electronegativity increases interactions with CO2molecules of strong electric quadrupole moment.

    Figure 3(b) shows the absolute adsorption isotherms of N2in the azo-based pillar[6]arenes at 298 K. Pillar[6]arene N2 with two decorated macrocyclic backbones has a slight impact on adsorption capacity of N2. The adsorption capacity of N2has improvement in pillar[6]arene N4 frameworks. At 1 bar,the pillar[6]arene N4 presents the highest adsorption capacity(0.053 mmol/g),which is far less than most of traditional adsorbent materials, such as, 13X zeolites,[31]similar to azo based COF-TpAzo (~0.051 mmol/g), and larger than a family of azo-bridged covalent organic polymers(azo-COPs)(0.03-0.05 mmol/g)at the same conditions.For the temperature effect, the gas adsorption capacity decreases along with the increase of temperature as a result of the exothermic nature of the adsorption process. For instance, at the pressures above 1 bar,the total CO2uptakes in azo-based pillar[6]arenes are within the range of 0.66-1.36 and 1.12-1.66 mmol/g at 298 and 273 K, respectively (see Figs. 3(a)and 3(c)).

    Overall, the adsorption of CO2/N2in the azo-based pillar[6]arenes exhibits type-I Langmuir adsorption behavior,which is a typical characteristic of microporous adsorption.[32]The azo groups signifciantly enhance the adsorption capacities of CO2. In particular, the results show that the pillar[6]arene N4 processes the better adsorption capacity of CO2and weaker adsorption capacity of N2, which compare with congeneric supramolecular frameworks.

    Fig.3. (a)Absolute adsorption isotherms of CO2 at 298 K.(b)N2 in the azobased pillar[6]arenes at 298 K.(c)Absolute adsorption isotherms of CO2 at 273 K.

    3.3. Selectivity of CO2 over N2 with equal molar fraction

    The selectivity of CO2over N2is the important criterion to screen superior adsorbent materials to separate CO2from the CO2/N2mixtures. The selectivity of CO2over N2is defined as

    whereSis the selectivity of CO2over N2,xCO2andxN2are the molar fractions of CO2and N2in their adsorbed phase, andyCO2andyN2are the corresponding molar fractions of CO2and N2in their bulk gas phases. The selectivity of CO2over N2with equal molar fraction in the azo-based pillar[6]arenes at 298 K are showed in Fig.4(a).

    The selectivity of CO2over N2declines initially,and then flattens out to a constant value with the increase in pressure.At 298 K and 1 bar, the selectivity of CO2over N2decreases in the sequence of pillar[6]arene N4(~116)>pillar[6]arene N2(~32)> pillar[6]arene (~27). Pillar[6]arene N4 exhibits the best selectivity, which is better than that of azo-UiO-66(~100),[33]azo-COP-X(X=1-3)(~65-130),[34]and traditional Zr-BFDC (~60),[35]and ZIF-8 (~4).[36]The results show that pillar[6]arene N4 have a distinct advantage over other adsorption materials. This is ascribed that the introducing azo groups (N=N) can provide the stronger attractive interactions between CO2and theframework thanthatof N2.CO2has stronger quadrupole moment (4.30×1026esu·cm2)and polarizability (2.91×1025cm3), while N2have weaker q ua d rupole mo m e nt (1.52×1026e su·c m2)an d p o l a rizab ili t y(1.74×1025cm3).[37]So, CO2has the stronger electrostatic interaction with frameworks than that of N2. In addition, the pore sizes focus on ultramicropores(<7 A?),which is the optimum size for separate CO2/N2mixtures.CO2has preferential adsorption behavior to flil the optimal adsorption sites,whereafter, N2has no void space to adsorb into frameworks due to smaller pore sizes.

    The separation of CO2from N2is an essential step in power plant (“post-combustion”) flue-gas purifciation. Flue gases typicallycontain 3%-15%CO2and morethan70%N2.[38]In ordertobe closertothe practicalproductionand life,CO2/N2mixture gases with 15:85 ratio are taken into account. Figure 4(b) shows the selectivities of CO2over N2in non-equimolar CO2/N2mixtures with ratios of 15:85. Overall,the selectivities of CO2over N2in non-equimolar CO2/N2mixtures show a similar trend to that in equimolar CO2/N2mixtures. And the sequence of selectivity in the azo-based pillar[6]arenes is pillar[6]arene N4(~132)>pillar[6]arene N2(~36)>pillar[6]arene (~28), which shows its sequence is not affected by molar fraction of CO2/N2mixture. Compared with azo decorated structures, pillar[6]arene N4 has superior selectivity of CO2than that of nanoporous azo-linked polymers(~25-38)[39]and some azo-COPs(~95-130)[40]at the same conditions. Moreover, the selectivity of CO2over N2in pillar[6]arene N4 is higher than that of traditional materials, such as, JLU-Liu46-47 (~50),[41]edge-functionalized nanoporous carbons(~3-130)at 298 K,[30]and ordered carbon nanotube arrays(3-65)at 303 K.[42]As a whole,the azobased pillar[6]arenes can provide a high single-component adsorption capacity and selectivity of CO2/N2,and thus exhibit a promising potential for CCS technology.

    Fig.4. Selectivity of CO2 over N2 in the azo-based pillar[6]arenes at 298 K with the different mixture ratios of CO2/N2,(a)50:50,(b)15:85.

    3.4. Mechanism of CO2/N2 adsorption and separation

    To deepen our understanding of intrinsic mechanisms of CO2/N2adsorption and separation in the azo-based pillar[6]arenes, isosteric heats (Qst), interaction analyses, the most stable adsorption confgiuration and the corresponding maximum adsorption energy are presented.

    TheQstis the critical parameter to illustrate the interaction strength between CO2/N2and frameworks.Qstis calculated by the Clausius-Clapeyron formula

    Fig.5. Isosteric heat of CO2 and N2 on the azo-based pillar[6]arenes at 298 K.

    To estimate intrinsic of the interaction between CO2/N2and frameworks in detail, Coulomb and van der Waals interactions of gas-framework in azo-based pillar[6]arenes are calculated in Fig. 6. The van der Waals interactions of CO2/N2-framework are relatively larger than the corresponding Coulomb interactions. The pillar[6]arene N4 shows the maximal van der Waals and Coulomb interactions, which is larger than pillar[6]arene N2 and pillar[6]arene for CO2/N2.For the CO2,the van der Waals interaction of CO2-framework in the pillar[6]arene is maximum (~16.11 kJ·mol?1), which accounts for 74.79% contributions of the total interactions.The results show that the van der Waals interaction plays a leading role forthe CO2adsorption capacity. The vander Waals interaction of CO2increase to~17.70kJ·mol?1for pillar[6]arene N2 andfor~18.55 kJ·mol?1pillar[6]areneN4 due to the N=N groups. The van der Waals and Coulomb interactions of N2are less than these of CO2. The Coulomb interaction between N2and framework is very small (~0.89-0.38 kJ·mol?1), which is attributed to the weak electric quadrupole moment of N2. The results reveal the nature mechanism of the difference between CO2and N2adsorption capacities.

    Fig. 6. Coulomb and van der Waals interactions of gas-framework in the azo-based pillar[6]arenes at 298 K. (a) and (c) Van der Waals interactions,(b)and(d)Coulomb interactions.

    Fig. 7. Stable adsorption configurations CO2 (a)-(c), and N2 (d)-(f) at different sites.

    To understand the interaction between CO2/N2and each part in the azo-based pillar[6]arene surface,the adsorption energy(Eads)is explored by DFT simulation.Eadsis obtained by the following equation:[44]Eads=Egas+surf?Egas?Esurf,(7)

    whereEgasis the energy of the gas molecule,Esurfis the energy of fragment in the azo-based pillar[6]arenes,andEgas+surfis the total energy of the gas molecule adsorbed on the fragment of azo-based pillar[6]arens. Based on the definition, a larger negative value represents the more stable adsorption.The macrocyclic backbone are cut off from the initial and azobased pillar[6]arenes to illustrate the effect of O and N atom on CO2/N2molecules. The most stable adsorption configuration of CO2in the fragment of initial pillar[6]arene is shown in Fig. 7(a), CO2is adsorbed on the top of O atom, and the corresponding adsorption energy is?0.166 eV. For the azobased pillar[6]arene,the most stable adsorption configuration of CO2in the fragment of azo-based pillar[6]arene is that CO2is adsorbed on the top of N atom in the N=N group, and the corresponding adsorption energy is?0.306 eV in Fig. 7(c).In addition, the CO2adsorbed on the top of O atom in the azo-based pillar[6]arene is calculated, and the adsorption energy is?0.265 eV in Fig.7(b). Comparing with initial framework, azo-functionalization increase the interaction between CO2and O atom in the frameworks,and the N atoms in N=N group provide most stable adsorption configuration of CO2.For N2molecule, the most stable adsorption configuration of N2in the fragment of initial pillar[6]arene is that CO2is adsorbed on the top of O atom, and the corresponding adsorption energy is?0.153 eV in Fig. 7(d). This value is smaller than that of the azo-based pillar[6]arene (?0.225 eV). CO2is adsorbed on the top of N atom in the N=N group, that is,the most stable adsorption configuration of N2in the fragment of azo-based pillar[6]arene,and the corresponding adsorption energy is?0.253 eV in Fig. 7(e). In short, the introduction of N=N groups has a more positive influence on CO2/N2for surface adsorption enhancement by inductive effect/direct interaction,especially for CO2.

    4. Conclusion

    The effects of azo-functionalization on the adsorption and separation of CO2/N2in pillar[6]arenes have been investigated by DFT and GCMC simulations. Azo-based pillar[6]arene provide a favorable environment for the separation of CO2/N2by suitable pore sizes. The azo-based pillar[6]arene enhance the adsorption and separation capacity of CO2/N2. Adsorption capacity of CO2/N2is more significantly enhanced by azo-functionalization,and the more N=N group leads to the more adsorption capacity. The isosteric heat and adsorption energy show that azo-functionalization can effectively increase the interaction between CO2/N2and pillar[6]arene. The interaction analysis shows that azofunctionalization enhance the van der Waals and Coulomb interaction, and van der Waals interaction of gas is higher than the Coulomb interaction. This work highlights the effects of azo-functionalization on the adsorption and separation of CO2/N2in pillar[6]arenes, and provides an effective strategy for designing and screening adsorbent materials for carbon capture and separation.

    猜你喜歡
    王娟徐國
    Electric field and force characteristic of dust aerosol particles on the surface of high-voltage transmission line
    The formation of adolescent performing culture in the chorus
    First principles study on geometric and electronic properties of two-dimensional Nb2CTx MXenes
    Fast-sweeping Langmuir probes:what happens to the I-V trace when sweeping frequency is higher than the ion plasma frequency?
    Electrostatic force of dust deposition originating from contact between particles and photovoltaic glass?
    貧血鑒別診斷中血液檢驗(yàn)的效果及作用分析
    健康之家(2021年19期)2021-05-23 09:10:44
    Automated electron temperature fitting of Langmuir probe I-V trace in plasmas with multiple Maxwellian EEDFs
    追本溯源提升素養(yǎng)
    Study on parameters optimization in resistance spot welding of stainless steel with rectangular electrodes*
    China Welding(2015年3期)2015-10-31 10:57:38
    讀《牡丹亭》
    午夜激情福利司机影院| 免费高清在线观看视频在线观看| 国产成人91sexporn| 国产精品精品国产色婷婷| 久久国内精品自在自线图片| 乱码一卡2卡4卡精品| 亚洲国产精品999| 九九在线视频观看精品| 国产在线视频一区二区| 国产精品欧美亚洲77777| 国产老妇伦熟女老妇高清| av又黄又爽大尺度在线免费看| 18禁裸乳无遮挡动漫免费视频| 国产免费视频播放在线视频| 欧美成人午夜免费资源| 少妇高潮的动态图| 最黄视频免费看| 亚洲精品国产成人久久av| 国产精品嫩草影院av在线观看| 国产精品国产三级国产专区5o| 久久国产亚洲av麻豆专区| 人妻制服诱惑在线中文字幕| 18+在线观看网站| h日本视频在线播放| 中文字幕av成人在线电影| 亚洲熟女精品中文字幕| 久久久久久伊人网av| 亚洲内射少妇av| 久久ye,这里只有精品| 99热网站在线观看| 青青草视频在线视频观看| 久久久久国产精品人妻一区二区| 亚洲av中文字字幕乱码综合| 国产黄色免费在线视频| 欧美一区二区亚洲| 免费看日本二区| 中文资源天堂在线| 国产精品成人在线| 嫩草影院新地址| 啦啦啦啦在线视频资源| 99国产精品免费福利视频| 蜜臀久久99精品久久宅男| 一级a做视频免费观看| 色婷婷久久久亚洲欧美| 日韩欧美一区视频在线观看 | 伊人久久精品亚洲午夜| 日韩精品有码人妻一区| 最后的刺客免费高清国语| 高清毛片免费看| 精品酒店卫生间| 国产一区二区三区av在线| 久久久久人妻精品一区果冻| 18禁动态无遮挡网站| 欧美激情国产日韩精品一区| 在线观看一区二区三区| av在线播放精品| 免费看日本二区| 国产在线视频一区二区| 亚洲av男天堂| 国产老妇伦熟女老妇高清| 男人添女人高潮全过程视频| 男女边摸边吃奶| 男女边吃奶边做爰视频| 亚洲精品中文字幕在线视频 | 波野结衣二区三区在线| 免费不卡的大黄色大毛片视频在线观看| av国产久精品久网站免费入址| 欧美成人精品欧美一级黄| 成年av动漫网址| 欧美激情国产日韩精品一区| 成人毛片a级毛片在线播放| 草草在线视频免费看| 久久韩国三级中文字幕| 亚洲不卡免费看| 欧美最新免费一区二区三区| 色吧在线观看| av女优亚洲男人天堂| 99久久精品一区二区三区| 欧美精品人与动牲交sv欧美| 深爱激情五月婷婷| 熟妇人妻不卡中文字幕| av.在线天堂| 各种免费的搞黄视频| 夜夜骑夜夜射夜夜干| 免费黄频网站在线观看国产| 全区人妻精品视频| 日韩三级伦理在线观看| 久久久久网色| 国产成人一区二区在线| 少妇人妻久久综合中文| 水蜜桃什么品种好| 全区人妻精品视频| 国产亚洲最大av| 久久精品国产亚洲网站| 人人妻人人澡人人爽人人夜夜| 国产精品av视频在线免费观看| 嫩草影院入口| 成人一区二区视频在线观看| 国产午夜精品久久久久久一区二区三区| av国产精品久久久久影院| 久久久久性生活片| 麻豆成人av视频| 久久国产乱子免费精品| 日韩免费高清中文字幕av| 国产色婷婷99| 日本与韩国留学比较| 人人妻人人添人人爽欧美一区卜 | 亚洲精品视频女| 舔av片在线| 狂野欧美白嫩少妇大欣赏| 尾随美女入室| 日韩精品有码人妻一区| 美女cb高潮喷水在线观看| 成年女人在线观看亚洲视频| 精品久久久久久久久亚洲| 午夜福利视频精品| 男人添女人高潮全过程视频| 婷婷色麻豆天堂久久| 欧美性感艳星| 亚洲国产成人一精品久久久| 免费观看在线日韩| 一边亲一边摸免费视频| 成人二区视频| 欧美最新免费一区二区三区| 国国产精品蜜臀av免费| 嘟嘟电影网在线观看| 欧美激情极品国产一区二区三区 | 亚洲av中文字字幕乱码综合| 免费人妻精品一区二区三区视频| 国产成人a∨麻豆精品| 新久久久久国产一级毛片| 成人毛片60女人毛片免费| 欧美国产精品一级二级三级 | 国产精品99久久久久久久久| 久久久久久伊人网av| 国产淫片久久久久久久久| 国产又色又爽无遮挡免| 少妇人妻 视频| 午夜福利影视在线免费观看| 美女中出高潮动态图| 男女啪啪激烈高潮av片| 久久国产亚洲av麻豆专区| 丝袜喷水一区| 日日啪夜夜撸| 国模一区二区三区四区视频| 亚洲人成网站在线观看播放| 亚洲av成人精品一二三区| 国产在视频线精品| 91精品一卡2卡3卡4卡| 少妇人妻一区二区三区视频| 18禁裸乳无遮挡免费网站照片| 日韩一区二区视频免费看| 只有这里有精品99| 午夜老司机福利剧场| 大又大粗又爽又黄少妇毛片口| 亚洲一区二区三区欧美精品| 六月丁香七月| av专区在线播放| 一区二区三区精品91| 亚洲成人手机| 久久久欧美国产精品| 一区在线观看完整版| 一级毛片我不卡| 人妻 亚洲 视频| 欧美精品一区二区免费开放| 久久国内精品自在自线图片| 欧美日本视频| 97超视频在线观看视频| 国产精品伦人一区二区| 亚洲av日韩在线播放| 深爱激情五月婷婷| 丝袜喷水一区| 深夜a级毛片| 国产精品久久久久久av不卡| 国产精品国产av在线观看| 精华霜和精华液先用哪个| 一本久久精品| 日韩成人伦理影院| 精品一区二区免费观看| 热re99久久精品国产66热6| 一个人看的www免费观看视频| 大码成人一级视频| 特大巨黑吊av在线直播| av.在线天堂| 欧美性感艳星| 男人添女人高潮全过程视频| 国产精品秋霞免费鲁丝片| 国产 精品1| 内射极品少妇av片p| 少妇人妻久久综合中文| 亚洲av综合色区一区| 欧美区成人在线视频| 欧美国产精品一级二级三级 | 老司机影院毛片| 一边亲一边摸免费视频| 国产91av在线免费观看| 只有这里有精品99| 老司机影院成人| 日韩国内少妇激情av| av又黄又爽大尺度在线免费看| 人妻系列 视频| 网址你懂的国产日韩在线| 成人国产av品久久久| 高清不卡的av网站| 国产精品人妻久久久久久| 菩萨蛮人人尽说江南好唐韦庄| av女优亚洲男人天堂| www.av在线官网国产| 久久久久久久久大av| 最近2019中文字幕mv第一页| 亚洲av二区三区四区| 九色成人免费人妻av| 深夜a级毛片| 国内精品宾馆在线| 国产黄片美女视频| 18禁在线播放成人免费| 免费少妇av软件| 国产一区二区三区av在线| 国产精品久久久久成人av| 国产精品不卡视频一区二区| 亚洲内射少妇av| 国产爽快片一区二区三区| 纵有疾风起免费观看全集完整版| 日日摸夜夜添夜夜爱| 99久久精品一区二区三区| 亚洲美女视频黄频| 久久精品久久久久久久性| 国产精品久久久久久久电影| 国产av国产精品国产| 在线观看免费视频网站a站| 搡女人真爽免费视频火全软件| 国产精品一区www在线观看| 国产黄片美女视频| 国产黄片视频在线免费观看| 观看av在线不卡| 人妻少妇偷人精品九色| 国产精品一区二区在线观看99| 国产男女内射视频| 涩涩av久久男人的天堂| 汤姆久久久久久久影院中文字幕| 简卡轻食公司| 精品国产露脸久久av麻豆| 天堂8中文在线网| 亚洲av成人精品一区久久| 亚洲美女黄色视频免费看| 在线 av 中文字幕| 久久国产精品大桥未久av | 欧美3d第一页| 日韩人妻高清精品专区| 国内精品宾馆在线| 国产熟女欧美一区二区| 视频中文字幕在线观看| 91精品一卡2卡3卡4卡| 爱豆传媒免费全集在线观看| 尤物成人国产欧美一区二区三区| 观看av在线不卡| 水蜜桃什么品种好| 老司机影院毛片| 视频中文字幕在线观看| kizo精华| 免费久久久久久久精品成人欧美视频 | 国产精品国产av在线观看| 国产精品一及| 99热这里只有精品一区| 日本午夜av视频| 人妻少妇偷人精品九色| 人妻夜夜爽99麻豆av| 国产免费视频播放在线视频| 成人高潮视频无遮挡免费网站| av一本久久久久| 中文在线观看免费www的网站| 哪个播放器可以免费观看大片| 男人爽女人下面视频在线观看| 成人免费观看视频高清| av一本久久久久| 国产成人精品一,二区| 免费播放大片免费观看视频在线观看| 欧美成人精品欧美一级黄| 午夜日本视频在线| 欧美精品亚洲一区二区| 纵有疾风起免费观看全集完整版| 亚洲av免费高清在线观看| 成人亚洲精品一区在线观看 | 少妇的逼水好多| 久久久久久久久大av| 欧美 日韩 精品 国产| 在线观看av片永久免费下载| 久久久色成人| 国产免费福利视频在线观看| 免费观看的影片在线观看| 伦理电影大哥的女人| 免费大片18禁| 国产精品国产av在线观看| 日韩中文字幕视频在线看片 | 麻豆国产97在线/欧美| 丝瓜视频免费看黄片| 精品人妻视频免费看| 国产 精品1| 免费观看av网站的网址| 日本一二三区视频观看| 一级毛片黄色毛片免费观看视频| 日韩欧美精品免费久久| 人人妻人人澡人人爽人人夜夜| 色视频在线一区二区三区| 久久这里有精品视频免费| 亚州av有码| 蜜桃久久精品国产亚洲av| 国产黄频视频在线观看| 少妇熟女欧美另类| 日韩av在线免费看完整版不卡| 春色校园在线视频观看| 女性生殖器流出的白浆| 久久韩国三级中文字幕| 网址你懂的国产日韩在线| 校园人妻丝袜中文字幕| 不卡视频在线观看欧美| 偷拍熟女少妇极品色| 另类亚洲欧美激情| 日韩强制内射视频| 国产精品不卡视频一区二区| 成人漫画全彩无遮挡| h视频一区二区三区| 一本色道久久久久久精品综合| 精品99又大又爽又粗少妇毛片| 精品人妻视频免费看| 国产视频内射| 久久99蜜桃精品久久| 熟女人妻精品中文字幕| 亚洲激情五月婷婷啪啪| 熟女人妻精品中文字幕| 亚洲精品视频女| 下体分泌物呈黄色| 国产高潮美女av| 国产精品嫩草影院av在线观看| 夜夜看夜夜爽夜夜摸| 嫩草影院入口| 精品国产一区二区三区久久久樱花 | 亚洲精品中文字幕在线视频 | 七月丁香在线播放| 新久久久久国产一级毛片| 国产精品av视频在线免费观看| 亚洲精品国产av蜜桃| 国产一区二区三区av在线| 国产视频内射| 深夜a级毛片| 美女高潮的动态| 2022亚洲国产成人精品| 久久人人爽人人片av| 91午夜精品亚洲一区二区三区| 久久久久网色| 天天躁夜夜躁狠狠久久av| a 毛片基地| 国产精品一区二区性色av| 国内精品宾馆在线| 亚洲av欧美aⅴ国产| 热99国产精品久久久久久7| 人体艺术视频欧美日本| 天天躁日日操中文字幕| 99视频精品全部免费 在线| videossex国产| 国产精品一区二区在线观看99| 国产成人a∨麻豆精品| 亚洲色图av天堂| 91精品伊人久久大香线蕉| 日韩,欧美,国产一区二区三区| 久久人人爽av亚洲精品天堂 | 国产免费一区二区三区四区乱码| 人体艺术视频欧美日本| 一本一本综合久久| 两个人的视频大全免费| 人妻少妇偷人精品九色| 亚洲精品日韩在线中文字幕| 免费在线观看成人毛片| 国产黄频视频在线观看| 亚洲av不卡在线观看| 少妇被粗大猛烈的视频| 九九爱精品视频在线观看| 亚洲av成人精品一二三区| 老熟女久久久| 一级毛片 在线播放| 最近最新中文字幕大全电影3| 97超视频在线观看视频| 亚洲丝袜综合中文字幕| 国产高清国产精品国产三级 | 国模一区二区三区四区视频| 亚洲电影在线观看av| 日韩免费高清中文字幕av| 免费观看在线日韩| 乱系列少妇在线播放| 日韩av在线免费看完整版不卡| 亚洲精品第二区| 亚洲精品日韩在线中文字幕| 男人狂女人下面高潮的视频| 亚洲av成人精品一二三区| 亚洲精品一区蜜桃| 一级毛片 在线播放| 少妇精品久久久久久久| 亚洲欧洲日产国产| 久久av网站| 超碰av人人做人人爽久久| 伊人久久精品亚洲午夜| 国产免费一区二区三区四区乱码| 午夜福利在线观看免费完整高清在| 99久久精品国产国产毛片| 国产精品一区二区性色av| 国产 精品1| 久久久午夜欧美精品| 色视频www国产| 一区在线观看完整版| 久久久久久人妻| 九九久久精品国产亚洲av麻豆| 亚洲精品一区蜜桃| 中文精品一卡2卡3卡4更新| 欧美97在线视频| 九色成人免费人妻av| 亚洲欧美一区二区三区国产| 日本与韩国留学比较| 特大巨黑吊av在线直播| 国产成人免费观看mmmm| 日韩视频在线欧美| 夫妻午夜视频| 欧美+日韩+精品| 免费观看性生交大片5| 欧美激情极品国产一区二区三区 | 国产精品一区二区性色av| 熟女人妻精品中文字幕| 亚洲欧美日韩无卡精品| 九九爱精品视频在线观看| 最近最新中文字幕免费大全7| 久久久久久久亚洲中文字幕| 精品一区在线观看国产| 伦精品一区二区三区| 啦啦啦中文免费视频观看日本| 人人妻人人澡人人爽人人夜夜| 日韩免费高清中文字幕av| 国产女主播在线喷水免费视频网站| 熟女人妻精品中文字幕| 少妇人妻一区二区三区视频| 精品亚洲乱码少妇综合久久| www.色视频.com| 精品久久久噜噜| 精品久久国产蜜桃| 国产伦理片在线播放av一区| av卡一久久| 九九在线视频观看精品| 亚洲欧美一区二区三区国产| 免费观看a级毛片全部| 免费黄网站久久成人精品| 一本色道久久久久久精品综合| 久久精品熟女亚洲av麻豆精品| 久久久精品94久久精品| 看免费成人av毛片| 99久久精品国产国产毛片| 日韩人妻高清精品专区| 女的被弄到高潮叫床怎么办| 七月丁香在线播放| 少妇的逼水好多| av在线播放精品| 国产av码专区亚洲av| a 毛片基地| 亚洲美女黄色视频免费看| 丝瓜视频免费看黄片| 精品午夜福利在线看| 日本-黄色视频高清免费观看| 国产精品熟女久久久久浪| 午夜日本视频在线| 午夜精品国产一区二区电影| 一本色道久久久久久精品综合| 久久久精品免费免费高清| 国产精品精品国产色婷婷| 国产精品.久久久| 亚洲四区av| 日产精品乱码卡一卡2卡三| 嘟嘟电影网在线观看| 国产精品一及| 免费看不卡的av| 亚洲aⅴ乱码一区二区在线播放| 熟女电影av网| 免费在线观看成人毛片| 国产伦精品一区二区三区视频9| 久久久久久久亚洲中文字幕| 成人漫画全彩无遮挡| h日本视频在线播放| 久久久久网色| 一区在线观看完整版| 在线观看人妻少妇| 成人特级av手机在线观看| 久久久久国产网址| 国产精品嫩草影院av在线观看| 免费人妻精品一区二区三区视频| 国产乱人偷精品视频| 国产精品欧美亚洲77777| 国产在线视频一区二区| 国内精品宾馆在线| 国产精品无大码| 新久久久久国产一级毛片| 黑人猛操日本美女一级片| 伊人久久精品亚洲午夜| av不卡在线播放| 亚洲精品,欧美精品| 亚洲av在线观看美女高潮| 午夜激情久久久久久久| 不卡视频在线观看欧美| 亚洲av免费高清在线观看| 国产精品偷伦视频观看了| 亚洲美女搞黄在线观看| 国产国拍精品亚洲av在线观看| 99国产精品免费福利视频| 一本久久精品| 国产精品偷伦视频观看了| av在线app专区| 伦理电影免费视频| 夫妻性生交免费视频一级片| 国产黄色视频一区二区在线观看| 五月伊人婷婷丁香| 男人添女人高潮全过程视频| 国产av国产精品国产| 三级国产精品欧美在线观看| 热re99久久精品国产66热6| 色吧在线观看| 亚洲,欧美,日韩| 午夜老司机福利剧场| 亚洲精品日韩在线中文字幕| 亚洲国产精品国产精品| 狂野欧美激情性xxxx在线观看| 黄色日韩在线| 久久人人爽人人片av| 精品一区二区免费观看| 18+在线观看网站| 国模一区二区三区四区视频| 国产精品国产三级专区第一集| 精品亚洲乱码少妇综合久久| 激情 狠狠 欧美| 精品国产一区二区三区久久久樱花 | 少妇的逼水好多| 欧美成人a在线观看| 亚洲av欧美aⅴ国产| 亚洲精品国产av蜜桃| 有码 亚洲区| 亚洲色图av天堂| 欧美xxxx性猛交bbbb| 日本wwww免费看| a级一级毛片免费在线观看| 男男h啪啪无遮挡| av网站免费在线观看视频| 国产爽快片一区二区三区| 国产精品欧美亚洲77777| 黄色日韩在线| 国产视频内射| 日韩中文字幕视频在线看片 | 亚洲四区av| av免费观看日本| 久久国产精品男人的天堂亚洲 | 亚洲欧美精品自产自拍| 免费看av在线观看网站| 欧美精品国产亚洲| 国产成人freesex在线| 国产淫片久久久久久久久| 日韩精品有码人妻一区| 久久毛片免费看一区二区三区| 成人无遮挡网站| 亚洲真实伦在线观看| av在线老鸭窝| av在线播放精品| 国产永久视频网站| 高清毛片免费看| 激情 狠狠 欧美| 免费观看av网站的网址| 特大巨黑吊av在线直播| 亚洲国产欧美人成| 色网站视频免费| 青春草国产在线视频| 国产一区亚洲一区在线观看| 黄色配什么色好看| 人妻少妇偷人精品九色| www.色视频.com| 伦精品一区二区三区| 久久久久网色| 亚洲国产av新网站| 日韩在线高清观看一区二区三区| 免费观看的影片在线观看| 五月伊人婷婷丁香| 午夜视频国产福利| 亚洲综合精品二区| 观看av在线不卡| 午夜视频国产福利| 亚洲欧美清纯卡通| 看非洲黑人一级黄片| 另类亚洲欧美激情| 中文字幕精品免费在线观看视频 | 国产成人a区在线观看| 女人十人毛片免费观看3o分钟| 日韩av在线免费看完整版不卡| 老师上课跳d突然被开到最大视频| 色视频在线一区二区三区| 亚洲av欧美aⅴ国产| av在线app专区| 久久久久久久精品精品| 精品人妻偷拍中文字幕| 亚洲国产精品国产精品| 日韩成人av中文字幕在线观看| 国内少妇人妻偷人精品xxx网站| 精品人妻一区二区三区麻豆| 欧美性感艳星| 国产高潮美女av| 中文字幕人妻熟人妻熟丝袜美| 超碰av人人做人人爽久久| 亚洲av欧美aⅴ国产| videos熟女内射| 久久97久久精品| 汤姆久久久久久久影院中文字幕| 精品久久久噜噜| 王馨瑶露胸无遮挡在线观看| 欧美日韩视频精品一区| 赤兔流量卡办理|