宋朝春,魏冉磊,樊曉蘭,李地艷,楊明耀
(四川農(nóng)業(yè)大學(xué) 畜禽遺傳資源發(fā)掘與創(chuàng)新利用四川省重點實驗室,四川 成都 611130)
?
衰老及抗衰老藥物的研究進展
宋朝春,魏冉磊,樊曉蘭,李地艷,楊明耀Δ
(四川農(nóng)業(yè)大學(xué) 畜禽遺傳資源發(fā)掘與創(chuàng)新利用四川省重點實驗室,四川 成都 611130)
衰老是生命過程的必然規(guī)律,是指機體各組織、器官功能隨年齡增長而發(fā)生退行性變化的過程。關(guān)于衰老機制的研究以尋找高效的抗衰老藥物已成為當(dāng)前衰老研究領(lǐng)域中的熱點問題。近年來在衰老及抗衰老藥物的研究方面取得了很大的進展。本綜述首先簡述了衰老研究及影響衰老的因素,然后分析了模式生物中與衰老相關(guān)的信號通路和機制,并著重討論了近年來一些潛在的抗衰老藥物,最后展望了藥物對衰老影響的未來研究。
衰老;抗衰老藥物;信號通路;研究進展
衰老是機體各組織、器官功能隨年齡增長而發(fā)生退行性變化的過程[1]。衰老可以降低機體面對環(huán)境脅迫維持動態(tài)平衡的能力,從而增加機體患病和死亡的可能性。衰老與高血壓、2型糖尿病、動脈粥樣硬化、老年癡呆等疾病密切相關(guān)。機體衰老與組織再生性細胞減少、臟腑虛損、機體內(nèi)自由基增加、機體中毒、飲食無節(jié)律等相關(guān),是體內(nèi)外許多因素(環(huán)境污染、精神緊張、遺傳等)共同作用的結(jié)果[2]。
衰老是生命過程的必然規(guī)律,是不可避免的,但是延緩衰老卻是可能的。古今中外,人們一直在尋找各種延年益壽的方法和抗衰老藥物以期能在遺傳學(xué)上所界定的壽限內(nèi)延遲衰老或提高生命質(zhì)量。雖然軀體治療衰老的方法不夠理想,但是最近研究發(fā)現(xiàn)許多治療其他疾病的天然產(chǎn)物和合成藥物具有抗衰老作用,為促進人類健康和延緩衰老提供建議和思索[3]。采用自然衰老動物或者是人為因素導(dǎo)致衰老的動物為模型是人類研究衰老過程的有效手段。結(jié)合各類實驗動物的自身特點以及生理特性,建立與臨床衰老癥狀相似的動物模型,已成為研究衰老機制以及評價抗衰老藥物的一個重要平臺[4]。近50多年來,眾多研究致力于探究衰老的特征、觸發(fā)因素、信號通路、衰老的類型以及細胞衰老過程對于多種衰老相關(guān)性疾病的調(diào)控機制[2]。本文首先簡述了衰老的特征和影響衰老的因素,然后重點介紹在衰老過程中遺傳調(diào)控的重要信號通路以及近幾年藥物對抗衰老的最近研究進展。最后就藥物對衰老影響未來的研究進行了展望。
衰老通常是指人體在其生長發(fā)育達到成熟期以后,隨著年齡的增長,在形態(tài)、結(jié)構(gòu)和生理功能方面必然出現(xiàn)的一系列全身性、多方面的退行性變化,如皮膚萎縮、骨質(zhì)丟失、動脈粥樣硬化、老年性癡呆等[5]。衰老生物學(xué)(biology of senescence,BS)或老化生物學(xué)(biology of aging,BA)是研究生物衰老現(xiàn)象、過程與規(guī)律的科學(xué)。其任務(wù)是揭示衰老現(xiàn)象的特征,在不同水平(分子、細胞、組織、器官及整體水平)上的衰老變化,探討導(dǎo)致衰老變化的原因和機制,以尋求延緩衰老的途徑和方法。根本目的在于認識衰老的本質(zhì),增強老年健康意識,延長人的壽命,提高老年人的生命質(zhì)量[6]。
隨著全球人口老齡化趨勢的加劇,各國研究者在長壽機制、表觀遺傳調(diào)節(jié)衰老和代謝與衰老等諸多方面取得了明顯的進展。2013年國際著名的“細胞”雜志總結(jié)出了基因組不穩(wěn)定、端粒損耗、表觀遺傳改變、喪失蛋白穩(wěn)定性、對營養(yǎng)感受紊亂、線粒體功能紊亂、細胞衰老、干細胞耗竭和改變細胞間通信等衰老的細胞和分子特征,為衰老研究提供了指導(dǎo)性的見解[7]。
1.1 影響衰老的因素
1.1.1 衰老相關(guān)的分子:多種與衰老相關(guān)的分子,在生物體內(nèi)起多種多樣的作用,其功能缺失就會影響衰老的進程。抑癌基因p53是一個多功能的轉(zhuǎn)錄因子,在凋亡、衰老、抗氧化等方面起重要的作用。p53缺失的細胞喪失對絲氨酸缺乏的反應(yīng),抑制谷胱甘肽的合成,而降低細胞的成活率,抑制體內(nèi)腫瘤的生長,從而延緩衰老[8]。叉頭轉(zhuǎn)錄因子(forkhead transcription factor,F(xiàn)OXO)是一類調(diào)節(jié)抗氧化、代謝、免疫等作用的多種功能分子,其中,F(xiàn)OX03A與百歲老人的長壽遺傳性密切相關(guān),F(xiàn)OXO3A可以促進與衰老相關(guān)的基因的表達,從而延長壽命[9]。過氧化物歧化酶l(superoxide dismutase1,SODl)是細胞質(zhì)內(nèi)大量存在的抗氧化酶,過表達SOD1可提高活性氧的新陳代謝,延長機體的壽命[10]。
1.1.2 心臟衰老:最近證實成年的哺乳類動物中,心臟細胞是可以再生的,但這些細胞來源于何處仍然是個謎。通過多種同位素標(biāo)記等方法,確認這些再生細胞來源于心臟中已經(jīng)存在的心肌細胞,其再生能力在老年小鼠中明顯下降[11]。使用年青小鼠與老年小鼠血液共循環(huán)的方法,確認影響心肌肥大的血液因素。發(fā)現(xiàn)生長分化因子11(growth differentiation factor,GDF11)是血液中逆轉(zhuǎn)老年小鼠心肌肥大的重要蛋白。GDF11屬于轉(zhuǎn)化生長因子-13(transforming growth factor,TGF-13)超家族的成員,通過影響FOX03A等下游信號分子起作用,該因子的表達隨著年齡增加而降低[12]。在衰老的心臟中,微小核糖核酸-34a(microRNA-34a,miRNA-34a)表達明顯增加。降低其表達可以降低衰老引起的細胞死亡,分析miRNA-34a的靶蛋白,發(fā)現(xiàn)其有調(diào)節(jié)PUTNS作用[13]。
1.1.3 線粒體:線粒體與衰老、長壽具有密切的關(guān)系。對小鼠和線蟲遺傳學(xué)分析發(fā)現(xiàn):線粒體核糖體蛋白(mitochondrial ribosomal proteins5,MRPs5)是代謝和長壽的調(diào)節(jié)分子。它在線粒體和細胞核之間的非平衡態(tài),引起線粒體非折疊蛋白反應(yīng)而延長壽命[14]。利用果蠅肌肉線粒體損傷模型,研究線粒體低毒興奮效應(yīng)(mitochondrial hormesis,mitohormesis)延長壽命的機制,發(fā)現(xiàn)中度的溫度應(yīng)激反應(yīng)能明顯地延長壽命。該機制與胰島素信號通路以及僅限于肌肉的線粒體非折疊蛋白反應(yīng)有關(guān)[15]。利用多種小鼠突變模型,證實了母體線粒體DNA突變明顯影響子代的壽命,子代小鼠的衰老過程加快,隨機性損傷腦功能[16]。低溫引起線蟲壽命的延長認為是降低了化學(xué)反應(yīng),研究發(fā)現(xiàn)發(fā)現(xiàn)把溫度感受瞬時受體電位離子通道(transient receptor potential ion channels-1,TRPs-1)缺失,低溫引起壽命延長的效應(yīng)消失,原因是TRPA-1激活鈣離子內(nèi)流,激活鈣依賴的蛋白激酶C(proteinkinase C,PKC),然后引起降解加速因子-16(decay acceleratingfactor-16,DAF-16)(FOX03A的同源物)表達是低溫延長壽命的機制[17]。
1.1.4 端粒:端??s短導(dǎo)致人體的復(fù)制性衰老,端粒長度的維持機制與端粒酶及其相關(guān)結(jié)合蛋白的關(guān)系歷來是研究的熱點。老年人較青年人來說,其細胞端粒長度明顯縮短,人體大多數(shù)組織平均每年端粒長度減少的變化范圍為20~60 bp,當(dāng)端粒縮短到一定界限,細胞停止分裂,細胞老化而死亡[18]。di Fagagna等[19]研究發(fā)現(xiàn),端粒縮短引起DNA損傷反應(yīng),從而導(dǎo)致基因組不平衡而啟動細胞衰老的過程;由此提出端粒的長度決定著細胞的壽命,被稱為衰老的“端粒學(xué)說”或“細胞有限分裂學(xué)說”[20]。很早以前,Harley等[21]的人類端粒與衰老的研究中就發(fā)現(xiàn),體細胞端粒DNA會隨細胞分裂次數(shù)增加而不斷縮短。近年Atzmon等[22]的研究也發(fā)現(xiàn)端粒長度與細胞分裂次數(shù),以及與壽命極限有著密切關(guān)系。Unryn等[23]測定正常人體的外周血細胞中端粒長度隨年齡變化情況(端粒長度在30~49歲時每年減少51.3 bp,40~80歲每年減少19.8 bp),提示隨著細胞不斷分裂,端粒長度逐漸縮短。由此可見,每一次的細胞分裂,染色體都會丟失一部分端粒DNA序列,當(dāng)其縮短到一個臨界長度,即末端限制性片段的長度時(Hayflick界限),細胞不再分裂,逐漸衰老直至死亡[24]。由于端粒還可能限制細胞的分裂次數(shù),因此也有人將端粒的長度稱為“生命時鐘”[25]。端粒保護蛋白1(telomeric protection protein 1,TPP1)招募端粒酶到端粒上,延長DNA片斷。通過突變體分析,發(fā)現(xiàn)TPP1上的TEL片斷是招募端粒酶所必須的[26]。研究表明TPP1的磷酸化與端粒酶結(jié)合的周期依賴性相關(guān),該蛋白S111位的磷酸化起關(guān)鍵作用;把該位點突變后端粒酶在復(fù)合體中的活性明顯降低,引起端??s短[27]。
1.1.5 環(huán)境:環(huán)境參數(shù)包括飲食[28]、氧化應(yīng)激和炎癥可以顯著地影響壽命[29-30]。飲食限制(營養(yǎng)攝入限制在動物的攝入大約65%)是最著名并且保守的延長壽命的措施[31]。在許多生物中,限食讓大部分生理過程維持在一個明顯年輕的狀態(tài),延緩與年齡有關(guān)的疾病的發(fā)生或進程[30,32]。雖然限食延長壽命的機制不明確,但有研究指出限食是作為一種干預(yù)措施,其中之一是通過干擾線粒體電子傳遞鏈從而延長壽命[33-34]。抑制TOR通路可以抑制蛋白質(zhì)翻譯過程或激活細胞自噬作用,從而延長機體的壽命[28]。在酵母,線蟲,果蠅和人類的研究表明,限食可以作用于相應(yīng)模式生物的胰島素通路,從而延長壽命[35]。機體在壓力環(huán)境下的抵抗能力被稱作壓力應(yīng)激能力。壓力狀態(tài)下的應(yīng)激能力與壽命之間存在很強的相關(guān)性。研究發(fā)現(xiàn),許多長壽型突變體線蟲都伴隨著壓力應(yīng)激能力的提高[36]。氧化應(yīng)激一直被認為是衰老的主要驅(qū)動力,在果蠅中的許多研究表明氧化損傷在衰老中有重要作用[37-38]。衰老與炎癥是緊密聯(lián)系的事件,已經(jīng)有人建議把慢性炎癥作為衰老的生物標(biāo)志物[39]。研究發(fā)現(xiàn)下丘腦是小鼠整體炎癥的主要部位,明顯激活核因子抑制因子激酶-p(inhibitor of nuclear factor κ-B kinase,IKK-p)、核轉(zhuǎn)錄因子(nuclear transcription factor κB,NF-κB)等炎癥關(guān)鍵分子,抑制促性腺素釋放素(gon-adotropin-releasing hormone,GnRH)的產(chǎn)生[40]。神經(jīng)系統(tǒng)的慢性炎癥是多種神經(jīng)退行性疾病常見的現(xiàn)象。研究發(fā)現(xiàn)星型膠質(zhì)細胞多巴胺2受體(dopamine receptor D2,DRD2)通過晶狀體蛋白介導(dǎo)固有免疫,缺失DRD2的小鼠明顯活化位于黑色皮質(zhì)中的星型膠質(zhì)細胞。該結(jié)果有助于解釋中老年人群中DRD2表達降低,容易發(fā)生神經(jīng)退行性疾病的原因[41]。
目前,通過遺傳篩選和自然突變的方法,人們已經(jīng)鑒定出數(shù)百個影響衰老或長壽的基因和相關(guān)信號傳導(dǎo)通路,它們包括:胰島素信號通路(insulin/IGF-1 signaling pathway,IIS),雷帕霉素標(biāo)靶(target of rapamycin,TOR)信號通路,腺苷酸活化蛋白激酶(adenosine monophosphate - activated protein kinase,AMPK)信號通路,熱激因子(heat-shock factors,HSFs),促分裂原激活蛋白激酶(mitogen activated protein kinases,MAPKs),沉默信息調(diào)控因子2樣蛋白(silent information regulator 2 homolog 1,sirtuins)和線粒體相關(guān)信號通路等,這些信號傳導(dǎo)通路在衰老的過程中發(fā)揮作用(見圖1)。
圖1 與衰老相關(guān)的信號通路Fig.1 Signaling pathways associated with aging
2.1 胰島素信號通路 胰島素信號通路是已知調(diào)控生物體發(fā)育和衰老研究最多最重要的信號通路,在不同物種中具有高度的保守性[42-43]該信號通路包括胰島素樣受體(insulin-like growth factors,IGFs)/DAF-2[44],磷脂酰3羥基酶(phosphatidylinositol 3 kinase,PI3K)[45]以及蛋白激酶血清和糖皮質(zhì)激素調(diào)節(jié)蛋白酶(serum and glucocorticoid induced kinase,SGK)和3-磷酸肌醇依賴性蛋白激酶1(3-phosphoinositide-dependent protein kinase1,PDK1)等激酶[36-46]這些激酶之間的級聯(lián)反應(yīng),最終導(dǎo)致重要轉(zhuǎn)錄因子FOXO/DAF-16磷酸化[47],磷酸化的FOXO/DAF-16不能進核,從而阻止了抵抗應(yīng)激和DNA損傷修復(fù)等抗衰老基因的轉(zhuǎn)錄啟動[48-49]。不僅如此,受壓力誘導(dǎo)所激活的JNK-1信號通路也可以直接磷酸化DAF-16 在線蟲中,DAF-16主要在腸道和神經(jīng)細胞中發(fā)揮對線蟲衰老的調(diào)控作用[50]。此外,線蟲在空間擁擠和食物匱乏的情況下,也會激活DAF-2進入一種靜態(tài)滯育狀態(tài)-dauer期,而在食物充足的情況下,線蟲又會從dauer期直接發(fā)育為成蟲,此時,DAF-2又發(fā)揮其對壽命的調(diào)控作用[51]。在研究果蠅腦組織和腹部脂肪中的FOXO時,Hwangbo等[52]發(fā)現(xiàn)胰島素信號通路對整個果蠅的衰老調(diào)控呈現(xiàn)出細胞非自主性的特點。Holzenberger等[53]在小鼠的研究中發(fā)現(xiàn),IGF1R在成年小鼠的腦組織和脂肪組織中發(fā)揮壽命調(diào)控作用。在針對不同人群的研究中,研究者也發(fā)現(xiàn)了許多與長壽相關(guān)的胰島素信號通路基因的多態(tài)性改變,例如:胰島素樣生長因子(insulin-like growth factors1,IGF1)和FOXO3基因多態(tài)性,其中FOXO3A與人類的長壽關(guān)系密切[54]。胰島素/1GF-1信號通路在酵母、線蟲、果蠅、哺乳動物以及人類這些相似的特性,包括基因的組成以及對壽命和衰老的調(diào)節(jié)等。說明胰島素ZIGF-1信號通路調(diào)節(jié)系統(tǒng)在生物進化中早期存在,并且從酵母到哺乳動物和人,調(diào)節(jié)衰老的基本機制可能是進化保守的。因此,胰島素/IGF-1信號通路可以作為一新的靶標(biāo)來進行藥物研究和開發(fā),以預(yù)防和治療衰老相關(guān)性疾病。為衰老的機理研究以及預(yù)防和治療衰老相關(guān)性疾病并延緩衰老提供了廣闊的前景。
2.2 雷帕霉素信號通路 雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)是一個結(jié)構(gòu)和功能高度保守的絲氨酸/蘇氨酸激酶,是蛋白合成的關(guān)鍵調(diào)節(jié)器,并在細胞生長、增值、分化和凋亡等多種生物功能中發(fā)揮作用[55]。TOR是另一條高度保守的壽命調(diào)控信號通路,同時也是生物體感知營養(yǎng)和環(huán)境變化的關(guān)鍵途徑。抑制TOR信號通路,可以增強生物體對抗環(huán)境壓力的能力,延長從酵母到小鼠等許多物種的壽命[56]。已經(jīng)證實,TOR信號通路在卡路里限制飲食所導(dǎo)致的壽命延長和細胞自噬反應(yīng)過程中發(fā)揮作用并且,至少在線蟲中的研究證明,TOR信號通路對壽命的調(diào)控獨立于胰島素信號通路,不依賴DAF-16/FOXO[57]。當(dāng)營養(yǎng)充足時,TOR蛋白可以激活S6激酶(S6K1),抑制蛋白質(zhì)翻譯抑制因子4E-BP1,從而促進蛋白質(zhì)翻譯過程;而營養(yǎng)缺乏時,蛋白質(zhì)的翻譯過程也隨之受到抑制。此外,營養(yǎng)缺乏也可以通過抑制TOR蛋白,激活細胞的自噬反應(yīng) TOR信號通路的抑制對細胞自噬反應(yīng)的激活作用可能是間接的,受到基因表達調(diào)控的影響,在線蟲中需要轉(zhuǎn)錄因子PHA-4/FOXA的參與[58]。TOR的小分子抑制劑雷帕霉素(rapamycin,RAPA)和限食作用類似,可以起到延長壽命和有益健康的作用[59]。
2.3 Sirtuin與衰老 從細菌到人類各種生物中,Sir2蛋白在進化上都相當(dāng)保守,這些不同生物體中的Sir2蛋白被稱作“sirtuin”[60]。依賴煙酰胺腺嘌呤二核苷酸(NAD)的組蛋白去乙?;窼irtuins,是感知細胞代謝狀態(tài)的重要效應(yīng)因子Sirtuins的底物包括組蛋白p53和FOXO,過表達Sirtuins可以延長酵母、線蟲和果蠅的壽命[61]。近年來有關(guān)Sirtuins影響衰老的分子機制還有待深入研究,在酵母中,Sir2并不能影響野生型酵母菌株的生命周期,但對于長生存突變,去除Sir2卻能延長生存時間[62]。SIR-2.1延長線蟲壽命是通過激活DAF-16實現(xiàn)的,在哺乳動物中,SIRT1通過去乙酰化作用直接作用于FOXO蛋白,從而促進抗壓力基因的轉(zhuǎn)錄[63]。由于NAD和NADH是代謝反應(yīng)的重要調(diào)節(jié)因子,所以Sirtuins蛋白在飲食限制影響壽命的過程中發(fā)揮了重要的調(diào)控作用[64-65]。在DNA損傷發(fā)生后,SIRT6對維持基因組的穩(wěn)定性發(fā)揮了重要的作用[66]過量表達Sirtuins,可以部分減緩由于進食高脂肪含量食物引起的壽命縮短[67]。因此,sirtuin是一類特殊的蛋白質(zhì),影響著蛋白質(zhì)乙?;c代謝,并在聯(lián)系NAD、代謝和衰老相互關(guān)系間發(fā)揮重要作用。對sirtuin為靶向藥物繼續(xù)研究,用以治療老年疾病,甚至那些病態(tài)衰老將有一定作用。
2.4 AMP-Activated Protein Kinase(AMPK)與衰老 AMPK存在與所有真核生物中,是催化亞基、調(diào)節(jié)因子和亞基異源三聚體的復(fù)雜組成。AMP激酶(AMP-activated protein kinase,AMPK)是感知生物體內(nèi)營養(yǎng)和能量的傳感器,AMPK的激活取決于細胞內(nèi)AMP/ATP的比值變化[68]在衰老的過程中,AMPK活性的改變可能與線粒體功能的退化有關(guān)[69-70]。過表達AMPK可以延長線蟲的壽命,在胰島素信號通路基因突變使線蟲壽命延長的過程中,AMPK也發(fā)揮了不可或缺的重要作用[71]。降糖藥二甲雙胍可以激活A(yù)MPK,從而延長小鼠的壽命[72]。此外,饑餓也可以激活A(yù)MPK,從而直接增強DAF-16/FOXO的活性,延長線蟲的壽命[73]。
盡管還沒有藥政管理部門批準(zhǔn)過抗衰老藥物,但通過藥物延緩衰老一直來引起很多人的興趣。最近發(fā)現(xiàn)許類多化合物都可以延長模式生物的壽命,如沉默信息調(diào)節(jié)因子1(silent information regulator 1,SIRTl)激活劑,雙胍類藥物,雷帕霉素,抗氧化類藥物,消炎類藥物等。現(xiàn)列舉一些重要的抗衰老化合物及其作用機理。
3.1 天然抗衰老藥物 白藜蘆醇是一種廣泛存在于植物和紅葡萄酒中的植物多酚,這種多酚可以啟動長壽基因Sir2,抑制腫瘤基因p53,阻斷細胞凋亡、延緩衰老和延長壽命[74-75]。雷帕霉素是一種新型大環(huán)內(nèi)酯類免疫抑制劑。雷帕霉素通過不同的細胞因子受體阻斷信號傳導(dǎo),阻斷T淋巴細胞及其他細胞由G1期至S期的進程,從而發(fā)揮免疫抑制效應(yīng)。雷帕霉素可以延長老鼠的壽命,即使在小鼠出生后第600天才開始提供雷帕霉素,都可以讓小鼠生命延長[76]。最近發(fā)現(xiàn)黃芪多糖(黃芪)可調(diào)節(jié)衰老通路,黃芪不僅減少多聚谷氨酰胺(polyglutamine,PolyQ)蛋白聚集,同時也減輕了相關(guān)的神經(jīng)毒性,延長野生型和PolyQ蛋白線蟲的成蟲壽命[77]。葉黃素是在大多數(shù)水果和蔬菜中的主要類胡蘿卜素之一。0.1 mg/mL葉黃素的飲食可以通過上調(diào)內(nèi)源性抗氧化酶延長果蠅的平均壽命[78]。β-胡蘿卜素是類胡蘿卜素之一,是一種抗氧化劑,具有防止衰老和預(yù)防衰老引起的多種退化性疾病作用[79]。硫辛酸是一種二硫化合物,作為線粒體中丙酮酸脫氫酶和α-酮戊二酸脫氫酶的輔酶,通過有效地改善三羧酸循環(huán)酶、呼吸鏈酶復(fù)合物的活性,降低線粒體DNA的氧化損傷以及線粒體膜脂酯過氧化水平。從而改善老年機體的線粒體功能障礙。進而發(fā)揮延緩衰老的作用[80]。多酚又稱茶鞣或單寧,是形成茶葉色香味的主要成份之一,通過提高自由基的清除能力、激活細胞內(nèi)的抗氧化防御系統(tǒng),從而延緩衰老[81]。熊果酸(ursolic acid,UA)是一種存在于許多植物中的天然三萜類化合物,其生物活性主要應(yīng)用于抗腫瘤、護肝、心血管、糖尿病、抗炎、抗病毒等多個領(lǐng)域,不良反應(yīng)小。近期研究證明UA是一種較強的抗氧化劑,能強有力地抑制細胞中活性氧簇(reactive oxygen species,ROS)產(chǎn)生,還對H2O:誘導(dǎo)的DNA損傷具有保護效應(yīng)。從而起到延緩衰老的作用[82-83]。α-酮戊二酸(α-ketoglutarate,α-KG)是三羧酸循環(huán)中的一個中心分子,可以刺激肌肉中蛋白質(zhì)合成并抑制蛋白質(zhì)降解,是氮清除劑和谷氨酰胺的來源,研究發(fā)現(xiàn)α-KG可以延長成年線蟲的壽命,延緩與年齡有關(guān)的疾病,通過抑制三磷酸腺苷(adenosine triphosphate,ATP)合成酶和TOR信號通路[84]。
3.2 合成抗衰老藥物 阿司匹林是一種歷史悠久的解熱、鎮(zhèn)痛和抗炎藥。阿司匹林可以延長線蟲的平均壽命,增加健康壽命和壓力阻力[3]。二甲雙胍是廣泛的規(guī)定治療2型糖尿病和代謝綜合征的藥物,二甲雙弧可以通過調(diào)節(jié)葉酸代謝和蛋氨酸代謝從而延長線蟲的壽命,壽命是否增加與大腸桿菌對二甲雙胍的敏感性和葡萄糖濃度相關(guān),同時研究也發(fā)現(xiàn)二甲雙胍可以作用于電子傳遞鏈,激活A(yù)MPK蛋白激酶,從而延長老鼠的壽命[84],但不能延長果蠅的壽命[85]。塞來昔布是非類固醇抗發(fā)炎藥物,廣泛用于治療疼痛和炎癥,塞來昔布可直接作用于胰島素信號通路中的3磷酸肌醇依賴性蛋白激酶1(3-phosphoinositide-dependent protein kinase-1,PDPK1),從而增加壽命線蟲[86]。異丙肌苷是一種免疫促進劑。它是2-羥丙基二胺和4-乙酰胺基苯甲酸生成的鹽與肌苷按分子比3:1形成的復(fù)合物。該藥能抑制病毒的增殖,臨床用于治療病毒感染或病毒感染相關(guān)的疾病。研究表明異丙肌苷也能增強老年人的免疫能力,從而延緩衰老[87]。吡拉西坦,是一種益智藥,可能是通過增強血液流動起到防護大腦皮層缺氧作用,延緩腦衰老[88]。司來吉蘭是一種選擇性不可逆的單胺氧化酶B抑制劑。能夠選擇性和不可逆的抑制多巴胺降解從而提高腦內(nèi)和中樞神經(jīng)系統(tǒng)多巴胺水平。目前不僅作為帕金森病早期的一線治療藥物,而且作為帕金森病晚期的輔助治療藥物被廣泛應(yīng)用。司來吉蘭同時顯著的增量調(diào)節(jié)抗氧化酶活性,抑制黑質(zhì)中的羥自由基的形成,具有良好的抗衰老作用[89]。拉莫三嗪是一種常用的抗痙攣的藥物,用果蠅作為模式生物研究拉莫三嗪的死亡率、壽命、代謝速率和運動的影響之間的相互作用,發(fā)現(xiàn),拉莫三嗪降低死亡率和增加壽命,是一種有益的抗衰老藥物[90]。研究發(fā)現(xiàn),成年線蟲的淀粉樣蛋白結(jié)合染料硫磺素-T能明顯延長壽命、延緩衰老,還能抑制突變體蛋白的穩(wěn)定性和人類β-淀粉樣蛋白相關(guān)的毒性。這些有益的效果依賴于蛋白質(zhì)穩(wěn)態(tài)網(wǎng)絡(luò)器HSFs,脅迫抗性和長壽的轉(zhuǎn)錄因子,分子伴侶,自噬和蛋白酶體功能。結(jié)果表明,藥物維持的蛋白質(zhì)穩(wěn)態(tài)網(wǎng)絡(luò)對老化的速率產(chǎn)生深遠的影響,推動了治療衰老和老年性疾病的新的措施的發(fā)展[91]。
3.3 其他抗衰老藥物[92]除了上述的抗衰老物質(zhì)外,還有許多具有不同化學(xué)結(jié)構(gòu)的天然物質(zhì)能通過各種機制發(fā)揮抗衰老作用,而且很多用于治療各種疾病的合成藥物也具有抗衰老作用。見表1。
表1 其他抗衰老藥物
在衰老與抗衰老的研究中,目前更多的研究集中在藥物對衰老的影響,并且著重探究其作用機理。越來越多的化合物被研究證實可以延長模式生物的壽命,并且發(fā)現(xiàn)了許多延長壽命的信號通路及分子機制。
許多化學(xué)物質(zhì)具有抗衰老作用??顾ダ纤幬锏难芯拷⒃趯顾ダ蠙C制不斷認識的基礎(chǔ)上。只有真正認識了衰老才能找到延緩衰老的特別方法??顾ダ纤幬镅芯繉樗幬镅邪l(fā)打開一條新的通路,現(xiàn)在對抗衰老藥物的研究還不夠深入,大多局限于抗衰老保健品。但是這些保健品品種繁多,稂莠不齊??顾ダ纤幬镙^少,特別是具有抗衰老作用的復(fù)合制劑幾乎沒有。最近新發(fā)現(xiàn)治療其他疾病的合成藥物也具有預(yù)防或延緩衰老作用,因此這些藥物的抗衰老作用有待于我們更深入地進行研究。而且藥物抗衰老只是抗衰老方法的一種,應(yīng)該在采取綜合性保健措施的基礎(chǔ)上合理選用抗衰老藥物,以進一步增強老年人的體質(zhì),延長人類的平均預(yù)期壽命。
隨著老年醫(yī)學(xué)的發(fā)展,人們對衰老的研究越來越深入。而現(xiàn)代醫(yī)學(xué)和分子生物學(xué)不斷進步,研究手段的不斷更新也給衰老研究帶來了新的機遇和發(fā)展,但由于衰老是由多種因素引起的一個復(fù)雜的生物學(xué)過程,有多種機制參與,目前仍未完全闡明衰老機理,還有待于更深入的研究。
[1] Turnheim K.When drug therapy gets old:pharmacokinetics and pharmacodynamics in the elderly[J].Exp Gerontology,2003,38(8):843-853.
[2] Lopez-Otin C,Blasco MA,Partridge L,et al.The hallmarks of aging[J].Cell,2013,153(6):1194-1217.
[3] Ayyadevara S,Bharill P,Dandapat A,et al.Aspirin inhibits oxidant stress,reduces age-associated functional declines,and extends lifespan of caenorhabditis elegans[J].Antioxid Redox Signal,2013,18(5):481-490.
[4] Le Bourg E.Using Drosophila melanogaster to study the positive effects of mild stress on aging[J].Exp Gerontol,2011,46(5):345-348.
[5] Turnheim K.When drug therapy gets old:pharmacokinetics and pharmacodynamics in the elderly[J].Exp Gerontol,2003,38(8):843-853.
[6] Edward JM,Steven NA.Handbook of the Biology of Aging(Seventh Edition)[M].Elsevier,2012-11.
[7] López-Otín C,Blasco MA,Partridge L,et al.The hallmarks of aging[J].Cell,2013,153(6):1194-1217.
[8] Maddocks OD,Berkers CR,Mason SM,et al.Serine starvation induces stress and p53-dependent metabolic remodelling in cancer cells[J].Nature,2013,493(7433):542-546.
[9] Eisenstein M.Centenarians:Great expectations[J].Nature,2012,492:6-8.
[10] Reddi AR,Culotta VC.SOD1 integrates signals from oxygen and glucose to repress respiration[J].Cell,2013,152(1-2):224-235.
[11] Senyo SE,Steinhauser ML,Pizzimenti CL,et al.Mammalian heart renewal by pre-existing cardiomyocytes[J].Nature,2013,493(7432):433-436.
[12] Loffredo FS,Steinhauser ML,Jay SM,et al.Growth differentiation factor 11 is a circulating factor that reverses age-related cardiac hypertrophy[J].Cell,2013,153(4):828-839.
[13] Gurtan AM,Sharp PA.The role of miRNAs in regulating gene expression networks[J].J Molecular Biol,2013,425(19):3582-3600.
[14] Houtkooper RH,Mouchiroud L,Ryu D,et al.Mitonuclear protein imbalance as a conserved longevity mechanism[J].Nature,2013,497(7450):451-457.
[15] Owusu-Ansah E,Song W,Perrimon N.Muscle mitohormesis promotes longevity via systemic repression of insulin signaling[J].Cell,2013,155(3):699-712.
[16] Ross JM,Stewart JB,Hagstr?m E,et al.Germline mitochondrial DNA mutations aggravate ageing and can impair brain development[J].Nature,2013,501(7467):412-415.
[17] Xiao R,Zhang B,Dong Y,et al.A Genetic Program Promotes C.elegans Longevity at Cold Temperatures via a Thermosensitive TRP Channel[J].Cell,2013,152(4):806-817.
[18] Takubo K,Aida J,Izumiyama-Shimomura N,et al.Changes of telomere length with aging[J].Geriatri Gerontolo Int,2010,10(suppl 1):197-206.
[19] di Fagagna FdA,Reaper PM,Clay-Farrace L,et al.A DNA damage checkpoint response in telomere-initiated senescence[J].Nature,2003,426(6963):194-198.
[20] Greider CW,Blackburn EH.The telomere terminal transferase of Tetrahymena is a ribonucleoprotein enzyme with two kinds of primer specificity[J].Cell,1987,51(6):887-898.
[21] Harley CB.Human ageing and telomeres[J].Ciba Found Symp,1997,211:129-139.
[22] Atzmon G,Cho M,Cawthon R,et al.Evolution in health and medicine Sackler colloquium:Genetic variation in human telomerase is associated with telomere length in Ashkenazi centenarians[J].P Natl Acad Sci USA,2010,107(suppl 1):1710-1717.
[23] Unryn BM,Cook LS,Riabowol KT.Paternal age is positively linked to telomere length of children[J].Aging Cell,2005,4(2):97-101.
[24] Hayflick L,Moorhead PS.The serial cultivation of human diploid cell strains[J].Exp cell Res,1961,25:585-621.
[25] Song Z,Wang J,Guachalla LM,et al.Alterations of the systemic environment are the primary cause of impaired B and T lymphopoiesis in telomere-dysfunctional mice[J].Blood,2010,115(8):1481-1489.
[26] Nandakumar J,Bell CF,Weidenfeld I,et al.The TEL patch of telomere protein TPP1 mediates telomerase recruitment and processivity[J].Nature,2012,492(7428):285-289.
[27] Zhang Y,Chen L-Y,Han X,et al.Phosphorylation of TPP1 regulates cell cycle-dependent telomerase recruitment[J].P Natl Acad Sci,2013,110(14):5457-5462.
[28] Katewa SD,Kapahi P.Dietary restriction and aging,2009[J].Aging Cell,2010,9(2):105-112.
[29] Libert S,Chao Y,Zwiener J,et al.Realized immune response is enhanced in long-lived puc and chico mutants but is unaffected by dietary restriction[J].MolImmunol,2008,45(3):810-817.
[30] Skorupa DA,Dervisefendic A,Zwiener J,et al.Dietary composition specifies consumption,obesity,and lifespan in Drosophila melanogaster[J].Aging Cell,2008,7(4):478-490.
[31] Clancy DJ,Gems D,Hafen E,et al.Dietary restriction in long-lived dwarf flies[J].Science,2002,296(5566):319.
[32] Mair W,McLeod CJ,Wang L,et al.Dietary restriction enhances germline stem cell maintenance[J].Aging Cell,2010,9(5):916-918.
[33] Copeland JM,Cho J,Lo Jr T,et al.Extension of Drosophila life span by RNAi of the mitochondrial respiratory chain[J].Curr Biol,2009,19(19):1591-1598.
[34] Zid BM,Rogers AN,Katewa SD,et al.4E-BP Extends Lifespan upon Dietary Restriction by Enhancing Mitochondrial Activity in Drosophila[J].Cell,2009,139(1):149-160.
[35] Fontana L,Partridge L,Longo VD.Extending healthy life span-from yeast to humans[J].Science,2010,328(5976):321-326.
[36] Hertweck M,G?bel C,Baumeister R.C.elegans SGK-1 Is the Critical Component in the Akt/PKB Kinase Complex to Control Stress Response and Life Span[J].Dev Cell,2004,6(4):577-588.
[37] Wang MC,Bohmann D,Jasper H.JNK Signaling Confers Tolerance to Oxidative Stress and Extends Lifespan in Drosophila[J].Dev Cell,2003,5(5):811-816.
[38] Curtis C,Landis GN,Folk D,et al.Transcriptional profiling of MnSOD-mediated lifespan extension in Drosophila reveals a species-general network of aging and metabolic genes[J].Genome Biol,2007,8(12):262.
[39] Singh T,Newman AB.Inflammatory markers in population studies of aging[J].Ageing Res Rev,2011,10(3):319-329.
[40] Zhang G,Li J,Purkayastha S,et al.Hypothalamic programming of systemic ageing involving IKK-[bgr],NF-[kgr]B and GnRH[J].Nature,2013,497(7448):211-216.
[41] Shao W,Zhang S-z,Tang M,et al.Suppression of neuroinflammation by astrocytic dopamine D2 receptors via alpha B-crystallin[J].Nature,2013,494(7435):90.
[42] Antebi A.Genetics of aging in Caenorhabditis elegans[J].PLoS Genetics,2007,3(9):1565-1571.
[43] Kenyon C.The plasticity of aging:insights from long-lived mutants[J].Cell,2005,120(4):449-460.
[44] Kimura KD,Tissenbaum HA,Liu Y,et al.daf-2,an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans[J].Science,1997,277(5328):942-946.
[45] Baker DJ,Wijshake T,Tchkonia T,et al.Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders[J].Nature,2011,479 (7372):232-236.
[46] Paradis S,Ailion M,Toker A,et al.A PDK1 homolog is necessary and sufficient to transduce AGE-1 PI3 kinase signals that regulate diapause in Caenorhabditis elegans[J].Genes Dev,1999,13(11):1438-1452.
[47] Lin K,Dorman JB,Rodan A,et al.daf-16:An HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans[J].Science,1997,278(5341):1319-1322.
[48] Lamitina ST,Strange K.Transcriptional targets of DAF-16 insulin signaling pathway protect C.elegans from extreme hypertonic stress[J].Am J Physiol Cell Physiol,2005,288(2):467-474.
[49] Jia K,Chen D,Riddle DL.The TOR pathway interacts with the insulin signaling pathway to regulate C.elegans larval development,metabolism and life span[J].Development,2004,131(16):3897-3906.
[50] Libina N,Berman JR,Kenyon C.Tissue-Specific Activities of C.elegans DAF-16 in the Regulation of Lifespan[J].Cell,2003,115(4):489-502.
[51] Dillin A,Crawford DK,Kenyon C.Timing requirements for insulin/IGF-1 signaling in C.elegans[J].Science,2002,298(5594):830-834.
[52] Hwangbo DS,Gersham B,Tu M-P,et al.Drosophila dFOXO controls lifespan and regulates insulin signalling in brain and fat body[J].Nature,2004,429(6991):562-566.
[53] Holzenberger M,Dupont J,Ducos B,et al.IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice[J].Nature,2003,421(6919):182-187.
[54] Suh Y,Atzmon G,Cho M-O,et al.Functionally significant insulin-like growth factor I receptor mutations in centenarians[J].Proc Nati Acad Sci,2008,105(9):3438-3442.
[55] Hwang SK.Invited Mini Review:The functions of mTOR in ischemic diseases[J].BMB Repot,2011,44(8):506-511.
[56] Kapahi P,Zid BM,Harper T,et al.Regulation of Lifespan in Drosophila by Modulation of Genes in the TOR Signaling Pathway[J].Curr Biol,2004,14(10):885-890.
[57] Vellai T,Takacs-Vellai K,Zhang Y,et al.Influence of TOR kinase on lifespan in C.elegans[J].Nature,2003,426(6967):620.
[58] Hansen M,Chandra A,Mitic LL,et al.A role for autophagy in the extension of lifespan by dietary restriction in C.elegans[J].PLoS Genetics,2008,4(2):24.
[59] Kenyon CJ.The genetics of ageing[J].Nature,2010,464:504-512.
[60] Brachmann CB,Sherman JM,Devine SE,et al.The SIR2 gene family,conserved from bacteria to humans,functions in silencing,cell cycle progression,and chromosome stability[J].Genes Dev,1995,9(23):2888-2902.
[61] Houtkooper RH,Pirinen E,Auwerx J.Sirtuins as regulators of metabolism and healthspan[J].Nat Rev Mol Cell Biol,2012,13(4):225-238.
[62] Fabrizio P,Gattazzo C,Battistella L,et al.Sir2 blocks extreme life-span extension[J].Cell,2005,123(4):655-667.
[63] Berdichevsky A,Viswanathan M,Horvitz HR,et al.C.elegans SIR-2.1 Interacts with 14-3-3 Proteins to Activate DAF-16 and Extend Life Span[J].Cell,2006,125(6):1165-1177.
[64] Rogina B,Helfand SL.Sir2 mediates longevity in the fly through a pathway related to calorie restriction[J].Proc Nati Acad Sci USA,2004,101(45):15998-16003.
[65] Li Y,Xu W,McBurney MW,et al.SirT1 inhibition reduces IGF-I/IRS-2/Ras/ERK1/2 signaling and protects neurons[J].Cell Metab,2008,8(1):38-48.
[66] Mao Z,Hine C,Tian X,et al.SIRT6 promotes DNA repair under stress by activating PARP1[J].Science,2011,332(6036):1443-1446.
[67] Pearson KJ,Baur JA,Lewis KN,et al.Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span[J].Cell Metab,2008,8(2):157-168.
[68] Kahn BB,Alquier T,Carling D,et al.AMP-activated protein kinase:ancient energy gauge provides clues to modern understanding of metabolism[J].Cell Metab,2005,1(1):15-25.
[69] Reznick RM,Zong H,Li J,et al.Aging-associated reductions in AMP-activated protein kinase activity and mitochondrial biogenesis[J].Cell Metab,2007,5(2):151-156.
[70] J?ger S,Handschin C,Pierre JS,et al.AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1α[J].Proc Natl Acad Sci USA,2007,104(29):12017-12022.
[71] Apfeld J,O’Connor G,McDonagh T,et al.The AMP-activated protein kinase AAK-2 links energy levels and insulin-like signals to lifespan in C.elegans[J].Gene Dev,2004,18(24):3004-3009.
[72] Martin-Montalvo A,Mercken EM,Mitchell SJ,et al.Metformin improves healthspan and lifespan in mice[J].Nat Commun,2013,4(1):2192.
[73] Greer EL,Dowlatshahi D,Banko MR,et al.An AMPK-FOXO Pathway Mediates Longevity Induced by a Novel Method of Dietary Restriction in C.elegans[J].Curr Biol,2007,17(19):1646-1656.
[74] Alarcón de la Lastra C,Villegas I.Resveratrol as an anti-inflammatory and anti-aging agent:Mechanisms and clinical implications[J].Mol Nutr Food Res,2005,49(5):405-430.
[75] Baur JA,Sinclair DA.Therapeutic potential of resveratrol:the in vivo evidence[J].Nat Rev Drug Discov,2006,5(6):493-506.
[76] Harrison DE,Strong R,Sharp ZD,et al.Rapamycin fed late in life extends lifespan in genetically heterogeneous mice[J].Nature,2009,460(7253):392-395.
[77] Zhang H, Pan N, Xiong S,et al.Inhibition of polyglutamine-mediated proteotoxicity by Astragalus membranaceus polysaccharide through the DAF-16/FOXO transcription factor in Caenorhabditis elegans[J].Biochem J,2012,441(1):417-424.
[78] Berendschot TT,Goldbohm RA,Kl?pping WA,et al.Influence of lutein supplementation on macular pigment,assessed with two objective techniques[J].Invest Ophthalmol Vis Sci,2000,41(11):3322-3326.
[79] Engler MM,Engler MB,Malloy MJ,et al.Antioxidant vitamins C and E improve endothelial function in children with hyperlipidemia endothelial assessment of risk from lipids in youth (EARLY) Trial[J].Circulation,2003,108(9):1059-1063.
[80] Moini H,Packer L,Saris N-EL.Antioxidant and prooxidant activities of α-lipoic acid and dihydrolipoic acid[J].Toxicol Appl Pharmacol,2002,182(1):84-90.
[81] Mukhtar H,Ahmad N.Tea polyphenols:prevention of cancer and optimizing health[J].Am J Clini Nutr,2000,71(6 suppl):1698-1702.
[82] Ramos AA,Pereira-Wilson C,Collins AR.Protective effects of ursolic acid and luteolin against oxidative DNA damage include enhancement of DNA repair in Caco-2 cells[J].Mutat Res,2010,692(1-2):6-11.
[83] Ali MS,Ibrahim SA,Jalil S,et al.Ursolic acid:a potent inhibitor of superoxides produced in the cellular system[J].Phytother Res,2007,21(6):558-561.
[84] Lucanic,Randall M Chin,Xudong Fu,Melody Y Pai,et al.The metabolite a-ketoglutarate extends lifespan by inhibiting ATP synthase and TOR[J].Nature,2014, 510(7505):397-401.
[85] Slack C,Foley A,Partridge L.Activation of AMPK by the putative dietary restriction mimetic metformin is insufficient to extend lifespan in Drosophila[J].PLoS One,2012,7(10):47699.
[86] Ching TT,Chiang WC,Chen CS,et al.Celecoxib extends C.elegans lifespan via inhibition of insulin-like signaling but not cyclooxygenase-2 activity[J].Aging Cell,2011,10(3):506-519.
[87] Tsang KY,Pan JF,Swanger D,et al.In vitro restoration of immune responses in aging humans by isoprinosine[J].Int Immunopharmacol,1985,7(2):199-206.
[88] Müller WE,Koch S,Scheuer K,et al.Effects of piracetam on membrane fluidity in the aged mouse,rat,and human brain[J].Biochem Pharmacol,1997,53(2):135-140.
[89] Borst SE,MILLARS W,Lowenthal DT.Growth hormone,exercise,and aging:the future of therapy for the frail elderly[J].J Am Geriatr Soc,1994,42(5):528-535.
[90] Avanesian A,Khodayari B,Felgner JS,et al.Lamotrigine extends lifespan but compromises health span in Drosophila melanogaster[J].Biogerontology,2010,11(1):45-52.
[91] Alavez S,Vantipalli MC,Zucker DJ,et al.Amyloid-binding compounds maintain protein homeostasis during ageing and extend lifespan[J].Nature,2011,472(7342):226-229.
[92] Lucanic M,Lithgow GJ,Alavez S.Pharmacological lifespan extension of invertebrates[J].Ageing Res Rev,2013,12(1):445-458.
[93] Harrington LA,Harley CB.Effect of vitamin E on lifespan and reproduction in Caenorhabditis elegans[J].Mech Ageing Dev,1988,43(1):71-78.
[94] Adachi C,Baldo MA,Forrest SR,et al.High-efficiency organic electrophosphorescent devices with tris(2-phenylpyridine) iridium doped into electron-transporting materials[J].Appl Phys Lett,2000,77(6):904-906.
[95] Wu Z,Smith JV,Paramasivam V,et al.Ginkgo biloba extract EGb 761 increases stress resistance and extends life span of Caenorhabditis elegans[J].Cell Mol Biol(Noisy-le-Grand,France),2002,48(6):7257-7231.
[96] Zuo Y,Peng C,Liang Y,et al.Sesamin extends the mean lifespan of fruit flies[J].Biogerontology,2013,14(2):107-119.
[97] Bahadorani S,Hilliker AJ.Cocoa confers life span extension in[J].Nutr Res,2008,28(6):377-382.
[98] Enck P,Benedetti F,Schedlowski M.New insights into the placebo and nocebo responses[J].Neuron,2008,59(2):195-206.
[99] Srivastava D,Arya U,SoundaraRajan T,et al.Reserpine can confer stress tolerance and lifespan extension in the nematode C.elegans[J].Biogerontology,2008,9(5):309-316.
[100] Weller M,Felsberg J,Hartmann C,et al.Molecular predictors of progression-free and overall survival in patients with newly diagnosed glioblastoma:a prospective translational study of the German Glioma Network[J].J Clin Oncol,2009,27(34):5743-5750.
[101] Saul N,Pietsch K,Menzel R,et al.Catechin induced longevity in C.elegans:from key regulator genes to disposable soma[J].Mech Ageing Dev,2009,130(8):477-486.
[102] Eisenberg BL,Harris J,Blanke CD,et al.Phase II trial of neoadjuvant/adjuvant imatinib mesylate(IM) for advanced primary and metastatic/recurrent operable gastrointestinal stromal tumor(GIST):early results of RTOG 0132/ACRIN 6665[J].J Surg Oncol,2009,99(1):42-47.
[103] Honda M,Sakai A,Yamashita T,et al.Hepatic ISG expression is associated with genetic variation in interleukin 28B and the outcome of IFN therapy for chronic hepatitis C[J].Gastroenterol,2010,139(2):499-509.
[104] Pavel CI,MrghitaLA,Dezmirean DS,et al.Comparison between local and commercial royal jelly-use of antioxidant activity and 10-hydroxy-2-decenoic acid as quality parameter[J].J Apicult Res,2014,53(1):116-123.
[105] Sayed AA.Ferulsinaic acid attenuation of advanced glycation end products extends the lifespan of Caenorhabditis elegans[J].J Pharm Pharmacol,2011,63(3):423-428.
[106] Collins JJ,Evason K,Kornfeld K.Pharmacology of delayed aging and extended lifespan ofCaenorhabditis elegans[J].Exp Gerontol,2006,41(10):1032-1039.
[107] Benedetti MG,Foster AL,Vantipalli MC,et al.Compounds that confer thermal stress resistance and extended lifespan[J].Exp Gerontol,2008,43(10):882-891.
[108] Petrascheck M,Ye X,Buck LB.An antidepressant that extends lifespan in adult Caenorhabditis elegans[J].Nature,2007,450(7169):553-556.
[109] Williams DS,Cash A,Hamadani L,et al.Oxaloacetate supplementation increases lifespan in Caenorhabditis elegans through an AMPK/FOXO-dependent pathway[J].Aging Cell,2009,8(6):765-768.
[110] Onken B,Driscoll M.Metformin induces a dietary restriction-like state and the oxidative stress response to extend C.elegans healthspan via AMPK,LKB1,and SKN-1[J].PloS One,2010,5(1):8758.
[111] Avanesian A,Khodayari B,Felgner JS,et al.Lamotrigine extends lifespan but compromises health span in Drosophila melanogaster[J].Biogerontol,2010,11(1):45-52.
[112] Alavez S,Vantipalli MC,Zucker DJ,et al.Amyloid-binding compounds maintain protein homeostasis during ageing and extend lifespan[J].Nature,2011,472(7342):226-229.
[113] Ching TT,Chiang WC,Chen CS,et al.Celecoxib extends C.elegans lifespan via inhibition of insulin-like signaling but not cyclooxygenase-2 activity[J].Aging Cell,2011,10(3):506-519.
(編校:王冬梅)
Advances in the study of aging and anti-aging drugs
SONG Chao-chun,WEI Ran-lei,FAN Xiao-lan,LI Di-yan,YANG Ming-yaoΔ
(Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province,Sichuan Agricultural University, Chengdu 611130, China)
Aging is an inevitable law of life process.It is a cascade of degenerative changes of tissues and organ functions with growing age.The potential anti-aging medicine based on the underlying aging mechanism has become the current hot issue in the gerontology.Research programs focusing of aging and anti-aging medicine have made great progress in recent years.This review first describes the recent advances in the aging research,followed by the factors influencing aging and then summary of the signaling pathways and their corresponding mechanisms in model organisms.After that,some potential anti-aging drugs discovered in recent years were discussed and pointed out the influence of drugs on future aging research.It will provide a reference for improving health and the quality of life in elderly people.
aging; anti-aging drugs; signaling pathway; research advances
四川省教育廳“科研創(chuàng)新團隊”項目;“四川省千人計劃”項目;國家自然科學(xué)基金(31471998)
宋朝春,男,碩士研究生,研究方向:衰老與抗衰老,E-mail:594342280@qq.com;楊明耀,通訊作者,男,教授,博士生導(dǎo)師,研究方向:衰老與抗衰老,E-mail:yangmingyao@sicau.edu.cn。
R917
A
1005-1678(2015)01-0163-08