• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An experimental investigation of wire electrical discharge machining of hot-pressed boron carbide Ravindranadh BOBBILI*, V. MADHU, A.K. GOGIA

    2015-07-02 06:16:29DefenceMetallurgicalResearchLaboratoryHyderabad500058IndiaReceived27June2014revisedJuly2015acceptedJuly2015Availableonline30July2015
    Defence Technology 2015年4期
    關(guān)鍵詞:李平經(jīng)濟指標總經(jīng)理

    Defence Metallurgical Research Laboratory, Hyderabad 500058, IndiaReceived 27 June 2014; revised 7 July 2015; accepted 9 July 2015 Available online 30 July 2015

    An experimental investigation of wire electrical discharge machining of hot-pressed boron carbide Ravindranadh BOBBILI*, V. MADHU, A.K. GOGIA

    Defence Metallurgical Research Laboratory, Hyderabad 500058, India
    Received 27 June 2014; revised 7 July 2015; accepted 9 July 2015 Available online 30 July 2015

    Abstract

    The present work discusses the experimental study on wire-cut electric discharge machining of hot-pressed boron carbide. The effects of machining parameters, such as pulse on time (TON), peak current (IP),flushing pressure (FP) and spark voltage on material removal rate (MRR) and surface roughness (Ra)of the material, have been evaluated. These parameters are found to have an effect on the surface integrity of boron carbide machined samples. Wear rate of brass wire increases with rise in input energy in machining of hot-pressed boron carbide. The surfaces of machined samples were examined using scanning electron microscopy (SEM). The influence of machining parameters on mechanism of MRR and Rawas described. It was demonstrated that higher TON and peak current deteriorate the surface finish of boron carbide samples and result in the formation of large craters, debris and micro cracks. The generation of spherical particles was noticed and it was attributed to surface tension of molten material. Macro-ridges were also observed on the surface due to protrusion of molten material at higher discharge energy levels. Copyright?2015, China Ordnance Society. Production and hosting by Elsevier B.V. All rights reserved.

    Keywords:Hot-pressed boron carbide; MRR; Ra; Wire electrical discharge machining

    E-mail address: ravindranadhb@gmail.com (R. BOBBILI).

    Peer review under responsibility of China Ordnance Society.

    http://dx.doi.org/10.1016/j.dt.2015.07.001

    2214-9147/Copyright?2015, China Ordnance Society. Production and hosting by Elsevier B.V. All rights reserved.

    1. Introduction

    Wire electrical discharge machining (WEDM) of hotpressed boron carbide is considered in this work. Hotpressed boron carbide possesses superior hardness, high Young's modulus and low density. Due to the excellent properties, it is a promising material as personnel body armour. This material is used to fabricatea variety of armourpanels to provide ballistic protection against different threats. This material cannot be processed by conventional metal cutting techniques like turning and milling due to its high hardness and strength levels [1,2]. Wire electrical discharge machining a type of unconventional machining process, is employed to accomplish the objective. WEDM plays significant role in cutting the electrically conductive materials to produce intricate profiles and complex shapes. The material removal takes place due to melting and evaporation of workpiece because of the heat produced by discharges. The wire traverse is regulated by numerically controlled system to accomplish the desired accuracy of components.

    The most significant performance measures of WEDM are material removal rate (MRR) and surface roughness (Ra) of workpiece. Spark gap voltage, discharge current, pulse ontime, pulse off-time and dielectric flushing conditions are the machining parameters that influence the performance measures. Tosun et al. [1] investigated the effect of WEDM machining parameters on performance characteristics, i.e MRR, kerf width and Ra. An optimum combination of process parameters was derived for large MRR and small Raby using analysis of variance (ANOVA). Poros et al. [2] made an attempt to develop a model to correlate the thermal properties of material and the efficiency of machining. Buckingham pi theorem was employed to establish the relationship between the variables used in the study. Tzeng et al. [3] studied the influences of cutting speed, depth of cut and feed rate onsurface roughness using the Taguchi technique and grey relational analysis. In this study, an orthogonal array was applied to plan the experiments for optimizing the cutting operations with multiple response measures. Chiang et al. [4] carried out grey relational analysis to optimize the wire-EDM process with multiresponse characteristics such as MRR and Ra. The optimum process parameters were selected from the response graph obtained by grey relational grade. Kumar et al. [5] employed a grey relational methodology to optimize the input parameters of EDM, i.e., duty factor, pulse on-time and peak current to maximize MRR. The optimum process parameters were validated by confirmation experiments. Wang et al. [6] explored the possibility of removing a recast layer using etching by means of EDM. An L9 orthogonal array was selected to design the experiments for attaining the optimum process parameters. Somasekhar et al. [7] presented the modelling and optimization of micro-EDM using back propagation and genetic algorithms. The neural network model has been established and simulated using MATLAB. Lin et al. [8] attempted to improve the multiple response characteristics using Taguchi technique with grey relational analysis by optimizing the process parameters of EDM. Patel et al. [9] developed a surface roughness prediction model for electric discharge machining of Al2O3/SiC/TiC ceramic composite. This model optimized the machining variables to obtain high surface quality. Lin et al. [10] studied the effects of EDM parameters on material removal rate, electrode wear rate and surface roughness for ceramics (Al2O3+ 30% VolTiC). Machining parameters have been optimized for each performance measure by using Taguchi method.

    The purpose of the present study is to examine the effects of machining parameters on material removal rate (MRR) and surface roughness (Ra) of hot-pressed boron carbide. The material removal rate (MRR) can be considered as the degree of production whereas surface roughness (Ra) represents the measure of surface quality. Based on the literature survey, several pilot experiments have been performed to select the process parameters influencing on performance characteristics. The chosen machining variables are pulse on-time, pulse offtime, peak current and spark voltage. The Taguchi technique is a dominant experimental planning tool that uses an efficient and orderly approach for obtaining the optimum process variables. An appropriate design of experiments (DOE) is selected to perform more precise and accurate experiments. In the present research, an L16 Taguchi standard orthogonal array was selected for the design of experiments [11]. Confirmation experiments were then conducted based on the Taguchi analysis. The surfaces of machined samples were examined using scanning electron microscopy (SEM). The influences of machining parameters on mechanism of MRR and Rawere described.

    2. Experimental details

    2.1. Material and methods

    The experiments were performed using a CNC ULTRACUT WEDM (maker: Electronica Machine Tools Ltd). The wire cut electric discharge machine consists of a machine tool, a CNC pulse generator and a dielectric fluid supply unit. The tool consists of a main worktable, an auxiliary table and a wire drive mechanism [12]. CuZn37 brass wire with 0.25 mm in diameter was employed in the present trials. Wire travels through the workpiece from upper and lower wire guides. In wire-cut EDM process the spark is generated between continuous travelling wire and workpiece. Hot-pressed boron carbide blocks (100 mm×100 mm×5 mm thickness) were used. The strength of the material is 410 GPa, its hardness is 31 GPa, and the Young's modulus is 460 GPa. Machining performance was evaluated by MRR and SR.

    The MRR was determined by equation

    where Vcis the cutting rate; b is width of the cut; and h is the depth of the job (mm).

    The surface roughness, usually expressed as Ravalue in microns, was obtained by Taylor Hobson Surtronic 25 roughness checker.

    Table 1Input process parameters and their levels.

    2.2. Taguchi method: planning of experiments

    To study the effects of machining parameters on the performance characteristics (MRR and Ra) under the optimal machining parameters, a specifically designed experimental procedure is required [13-16]. Based on the preliminary investigations, the input parameters chosen were pulse on-time (TON), peak current (IP) and spark voltage (SV). The working range of input parameters and the levels taken are shown in Table 1.

    In this study, the Taguchi method, a powerful tool for parameter design of performance characteristics, was used to optimize the machining parameters for maximum metal removal rate, maximum gap current and minimum surface roughness in WEDM [1]. Two major tools used in this method are (i) S/N (signal/noise) ratio to measure the quality and (ii) orthogonal array to accommodate many factors affecting simultaneously to evaluate the machining performances. According to Taguchi quality design concept, an L16 orthogonal array table with 16 rows was chosen for the experiments (Table 2). The experimental observations are further transformed into a signal-to-noise (S/N) ratio by using ANOVA.

    The analysis of variance (ANOVA) of S/N data (Tables 3(a) and 3(b)) is carried out to identify the significant variables and quantify their effects on the response characteristics. In the present study, all designs, plots and analysis were carried out using Minitab statistical software. There are several S/N ratiosavailable depending on the type of characteristics. The characteristic of which higher value represents better machining performance, such as MRR, is called‘higher is better, HB’. Inversely, the characteristic of which lower value represents better machining performance, such as surface roughness, is called‘lower is better, LB”. Therefore,“HB”for the MRR and “LB’’for the Rawere selected for obtaining the optimum machining performance characteristics [17-23]. The confirmation test [19] is an essential step for validating the conclusions drawn from DOE with experimental results. The response characteristics of significant variables are shown in Table 4.

    Table 2Experimental design using L16 orthogonal array.

    Table 3(a). Analysis of variance for MRR.

    Table 3(b). Analysis of Variance for Surface roughness.

    Table 4Results of the confirmation experiments.

    3. Results and discussion

    Fig. 1 shows the effect of peak current on MRR for various values of TON of 0.65 μs, 0.7 μs, 0.75 μs and 0.8 μs. It can be seen from Fig. 2 that the MRR value tends to increase with the higher TON and peak current levels. MRR is directly proportional to the power supplied during TON. It is observed that the TON and peak current have strong effects on MRR. It is suggested to apply TON of 0.8μs and peak current of 18 A, respectively, for achieving maximum MRR. At low input power, a small amount of thermal energy is produced, and a significant portion of thermal energy is absorbed by the surroundings. This keeps available energy less. But the rise in input power generates an intense discharge, which impacts the surface of the workpiece and causes more molten material to be driven out of the crater. Flushing pressure (FP) has a significant influence on MRR. Higher MRR can be achieved by supplying dielectric fluid at low velocity in the spark gap. This enhances an improvement in efficiency and thus increases MRR. Higher FP hinders the creation of ionized bridges across the gap, which would reduce spark energy and diminish MRR.

    Increase in TON from 0.65 to 0.8 μs resulted in the formation of larger craters on the machined surface. This is reason for the increase in Rawith input power and TON. It is recommended to use TON of 0.65μs and IP of 12 A, respectively, for obtaining minimum Ra. The thermal power generates the high temperatures and causes the melting and vaporization of the material. Figs. 3 and 4 demonstrate Rain function of the parameters of TON and peak current. The data indicates that Radecreases by decreasing TON and peak current values. The influence of spark voltage on response characteristics is shown in Fig. 5, for TON of 0.85 μs, TON of 32 μsec and peak current of 16 A. The influence of spark voltage on surface roughness (Ra) is illustrated in Fig. 6. The plot exhibits a trend of increase from 1.26 to 2.35 μm. MRR is found to increase with spark voltage up to certain range and then it decreases at higher spark voltage due to widening of discharge gap. Fig. 3 depicts the effect of spark voltage on Ra. The Raenhances with the raise in TON. With longer period of spark duration, the number of discharges increases, resulting in the wider craters. Hence, the surface finish will be rougher. When spark gap voltage is increased, the discharge gap gets widened, resulting in better surface accuracy due to stable machining. The influence of wire tension is not very significant.

    The surfaces of machined samples were examined using scanning electron microscope (SEM). It is observed from SEM micrographs (Figs. 7 and 8) that the machined surfaces contain spherical modules, craters, pochmarks and microcracks. TheTON (0.8 μs) and peak current (18 A) were observed as the most significant parameters affecting the surface properties. The increase in TON resulted in the formation of craters on the surface. These craters were developed due to a succession of sparks. Small portion of the melted material generated by the electric discharge was removed by the dielectric fluid (Fig. 11). The generation of spherical particles was noticed and it was attributed to the surface tension of molten material. Macro-ridges were also observed on the surface due to the protrusion of molten material (Fig. 10). Fig. 4 demonstrates that fewer numbers of craters were formed at peak current (12 A) and TON (0.65 μs). Due to low peak current and TON,the machined surface is bombarded with fewer energy sparks. The crack formation is mainly attributed to the fast heating and cooling of the machined surface by dielectric fluid. The uneven heating and cooling caused the development of stresses, which leads to crack formation (Fig. 9). At a large current, a stronger discharge generates more heat energy. By virtue of the size of workpiece, some amount of heat is absorbed by it. The remaining portion of energy is accumulated at the wire, resulting in higher wear rate. This leads to frequent wire breakages. The wire breakage occurs due to the reduction of tensile strength of the brass wire through thermal softening. It is observed that the third levels of TON, peak current and spark voltage provide a maximum value of MRR. It demonstrates that the first levels of TON, peak current and spark voltage result in the minimum value of surface roughness.

    Fig. 1. Effect of peak current on Material removal rate.

    Fig. 2. Effect of pulse on time on Material removal rate.

    Fig. 4. Effect of pulse on time on surface roughness.

    Fig. 5. Effect of voltage on material removal rate.

    Fig. 3. Effect of peak current on surface roughness.

    Fig. 6. Effect of voltage on surface roughness.

    Fig. 7. SEM micrographs observed at TON = 0.8 μs and peak current = 18 A.

    Fig. 8. SEM micrographs observed at TON = 0.8 μs and peak current = 18 A.

    Fig. 10. SEM micrographs observed at higher TON = 0.8 μs and peak current = 18 A.

    Fig. 9. SEM micrographs observed at TON = 0.7 μs and peak current = 16 A.

    4. Conclusions

    The significance of machining variables of WEDM on MRR and Raof hot-pressed boron carbide has been studied. The effects of machining variables on the mechanism of MRR and surface roughness have been assessed by using scanning electron microscope. The conclusions are as follows:

    1) It was demonstrated that higher TON and peak current deteriorated the surface finishes of boron carbide samples and resulted in the formation of large craters, debris and micro cracks.

    2) The high discharge energy caused more frequent melting explosion, leading to the formation of a deep crater on the machined surface.

    3) The residuals of spherical nodules in free or compound form were observed near the heat affected zone. These spherical nodules were formed due to discharge heat and rapid quenching.

    4) Wear rate of brass wire increases with increase in input energy, leading to wire breakage.

    References

    [1] Tosun N, Cogun C, Tosun G. A study on kerf and material removal rate in wire electrical discharge machining based on Taguchi method. J Mater Process Technol 2004;152:316-22.

    [2] Poros D, Zaborski S. Semi-empirical model of efficiency of wire electrical discharge machining of hard-to-machine materials. J Material Process Technol 2009;209:1247-53.

    [3] Tzeng C, Lin Y, Yang Y, Jeng MC. Optimization of turning operations with multiple performance characteristics using the taguchi method and grey relational analysis. J Material Process Technol 2009;209:2753-9.

    [4] Chiang K, Chang F. Optimization of the WEDM process of particle reinforced material with multiple performance characteristics using grey relational grade. J Material Process Technol 2006;180:96-101.

    河北農(nóng)資公司董事長、總經(jīng)理李平表示,從總體上看,集團公司各項經(jīng)濟指標均向好發(fā)展,在當前困難而復(fù)雜的市場環(huán)境中,成績的取得來之不易。他還提出了三點工作要求:

    [5] Kumar A, Maheswari S, Shrma S, Beri N. A study of multiobjective parametric optimization of silicon abrasive mixed electrical discharge machining of tool steel. Mater Manuf Process 2010;25:1041-7.

    [6] Wang CC, Chow HM, Yang LD, Lu CT. Recast layer removal after electrical discharge machining via taguchi analysis: a feasibility study. J Mater Process Technol 2009;209:4134-40.

    [7] Somashekhar KP, Ramachandran N, Mathew J. Optimization of material removal rate in micro-EDM using artificial neural network and genetic algorithms. Mater Manuf Process 2010;25:467-75.

    [8] Lin JL, Lin CL. The use of the orthogonal array with grey relational analysis to optimize the electrical discharge machining process with multiple performance characteristics. Int J Mach Tools Manufac 2002;42:237-44.

    [9] Patel KM, Pandey PM, Rao PV. Determination of an optimum parametric combination using a surface roughness prediction model for EDM of Al2O3/SiC/TiC ceramic composite. Mater Manuf Process 2009;24:675-82.

    [10] Lin Y, Wang A, Wang D, Chen C. Machining performance and optimizing machining parameters of Al2O3-TiC ceramics using EDM based on the taguchi method. Mater Manuf Process 2009;24:667-74.

    [12] Electronica Machine Tools Ltd., Technology manual for Wire cut EDM -Elektra Sprintcut 734, 1-2.

    [13] Chua MC, Rahman M, Wong YS, Loh HT. Determination of optimal cutting conditions using design of experiments and optimization techniques. Int J Mach Tools Manufac 1993;33:297-305.

    [14] Lee SH. Optimization of cutting parameters for burr minimization in face milling operations. Int J Prod Res 2003;41:497-511.

    [15] Mahapatra SS, Patnaik A. Optimization of wire electrical discharge machining (WEDM) process parameters using Taguchi method. J Adv Manuf Technol 2006;34:911-25.

    [16] Kilickap E, Huseyinoglu M. Selection of optimum drilling parameters on burr height using response surface methodology and genetic algorithm in drillingof AISI304stainlesssteel.Mater Manuf Process2010;25:1068-76.

    [17] Palanikumar K. Modeling and analysis of delamination factor and surface roughness in drilling GFRP composites. Mater Manuf Process 2010;25:1059-67.

    [18] Lin H, Chou CP. Optimization of the GTA welding process using combination of the taguchi method and a neural-genetic approach. Mater Manuf Process 2010;25:631-6.

    [19] Bobbili R, Madhu V, Gogia AK. Multi response optimization of wire-EDM process parameters of ballistic grade aluminium alloy. Eng Sci Technol Int J 2015:1-7.

    [20] Bobbili R, Madhu V, Gogia AK. Modelling and analysis of material removal rate and surface roughness in wire-cut EDM of armour materials. Eng Sci Technol Int J 2015:1-5.

    [21] Bobbili R, Madhu V, Gogia AK. Effect of wire-EDM machining parameters on surface roughness and material removal rate of high strength armor steel. Mat Manufact 2013;28:364-8.

    [22] Bobbili R, Paman A, Madhu V, Gogia AK. The effect of impact velocity and target thickness on ballistic performance of layered plates using Taguchi method. Mat Des 2014;53:719-26.

    [23] Zhang JZ, Chen JC. Surface roughness optimization in a drilling operation using the taguchi design method. Mater Manuf Process 2009;24:459-67.

    * Corresponding author. Tel.: +91 040 24586355; fax: +91 040 24342252.

    猜你喜歡
    李平經(jīng)濟指標總經(jīng)理
    四季的美
    第三個小板凳
    用心做好產(chǎn)品 專訪Primare總經(jīng)理Slemen Algra先生
    THE OSCILLATION OF THE POISSON SEMIGROUP ASSOCIATED TO PARABOLIC HERMITE OPERATOR?
    向更前奔跑 向更廣尋找——訪Materialise公司中國區(qū)總經(jīng)理Kim Francois女士
    你會選哪個經(jīng)銷商
    本周重要經(jīng)濟指標
    本周重要經(jīng)濟指標
    李平藝術(shù)作品欣賞
    DMG娛樂營銷總經(jīng)理徐衛(wèi)兵赴CIPRA演講
    国国产精品蜜臀av免费| 国产成人福利小说| 最后的刺客免费高清国语| 亚洲一区高清亚洲精品| 午夜视频国产福利| 成年女人看的毛片在线观看| 成年女人看的毛片在线观看| 精品人妻视频免费看| 九色成人免费人妻av| 国产免费视频播放在线视频 | 亚洲精品日本国产第一区| 亚洲av一区综合| 国产成人免费观看mmmm| 少妇丰满av| av国产免费在线观看| 亚洲国产精品sss在线观看| 深夜a级毛片| 日韩精品有码人妻一区| 久久这里只有精品中国| 免费av毛片视频| 五月玫瑰六月丁香| 99久久中文字幕三级久久日本| 国产 亚洲一区二区三区 | 久久热精品热| 日韩精品青青久久久久久| 最新中文字幕久久久久| 一级毛片久久久久久久久女| 美女高潮的动态| 欧美高清成人免费视频www| 我的老师免费观看完整版| 久久久久久久久大av| 日韩av在线大香蕉| 嘟嘟电影网在线观看| 成人综合一区亚洲| 亚洲丝袜综合中文字幕| 久久精品国产自在天天线| 自拍偷自拍亚洲精品老妇| 亚洲精品日韩av片在线观看| 97超视频在线观看视频| 搡老乐熟女国产| 日日摸夜夜添夜夜爱| 男人和女人高潮做爰伦理| 天堂俺去俺来也www色官网 | 高清视频免费观看一区二区 | 在现免费观看毛片| 啦啦啦啦在线视频资源| 99热这里只有是精品50| 国产伦理片在线播放av一区| 国产av码专区亚洲av| 国产黄色免费在线视频| 亚洲伊人久久精品综合| 国产亚洲最大av| 听说在线观看完整版免费高清| 日本免费a在线| 国产高清国产精品国产三级 | 日本一本二区三区精品| 亚洲在线观看片| 国产伦精品一区二区三区四那| 在线播放无遮挡| 亚洲国产日韩欧美精品在线观看| 80岁老熟妇乱子伦牲交| 免费看光身美女| 国产免费福利视频在线观看| 亚洲精品,欧美精品| 国内揄拍国产精品人妻在线| 国内精品美女久久久久久| 夜夜看夜夜爽夜夜摸| 少妇高潮的动态图| 欧美三级亚洲精品| 日产精品乱码卡一卡2卡三| 国产精品av视频在线免费观看| 国产精品日韩av在线免费观看| 国产av国产精品国产| 国产老妇伦熟女老妇高清| 嘟嘟电影网在线观看| 精品久久久噜噜| 久久鲁丝午夜福利片| 欧美日韩一区二区视频在线观看视频在线 | 免费看a级黄色片| 日韩av不卡免费在线播放| 91午夜精品亚洲一区二区三区| 国产一区二区三区av在线| 亚洲欧美精品专区久久| 亚洲成人中文字幕在线播放| 亚洲av.av天堂| 丰满乱子伦码专区| 视频中文字幕在线观看| 国模一区二区三区四区视频| 简卡轻食公司| 欧美3d第一页| 日本一本二区三区精品| 欧美97在线视频| 啦啦啦中文免费视频观看日本| 免费高清在线观看视频在线观看| 街头女战士在线观看网站| 国产一区二区在线观看日韩| 亚洲精品久久久久久婷婷小说| 国产高潮美女av| 免费无遮挡裸体视频| 国产熟女欧美一区二区| 亚洲欧美精品自产自拍| 国产黄色免费在线视频| 97人妻精品一区二区三区麻豆| 日日撸夜夜添| 欧美一区二区亚洲| 在线观看免费高清a一片| 亚洲精品日本国产第一区| 中文字幕免费在线视频6| 亚洲三级黄色毛片| 成人毛片a级毛片在线播放| 五月玫瑰六月丁香| 国产精品日韩av在线免费观看| 极品少妇高潮喷水抽搐| 韩国高清视频一区二区三区| 中文字幕制服av| 国产成人a区在线观看| 久久亚洲国产成人精品v| 亚洲在线自拍视频| 欧美激情国产日韩精品一区| 91久久精品电影网| 亚洲av男天堂| 噜噜噜噜噜久久久久久91| 国产av国产精品国产| 最近中文字幕高清免费大全6| 在线观看美女被高潮喷水网站| 久久6这里有精品| 男人爽女人下面视频在线观看| 精品99又大又爽又粗少妇毛片| 日韩一区二区视频免费看| 网址你懂的国产日韩在线| 汤姆久久久久久久影院中文字幕 | av在线天堂中文字幕| 毛片女人毛片| 久久久久久久大尺度免费视频| 18+在线观看网站| 麻豆久久精品国产亚洲av| 男女国产视频网站| 久久久久久久大尺度免费视频| 精品国产一区二区三区久久久樱花 | 一级毛片aaaaaa免费看小| 久久精品人妻少妇| 久久午夜福利片| 亚洲av成人精品一区久久| 天天躁夜夜躁狠狠久久av| 欧美一区二区亚洲| 一级爰片在线观看| 汤姆久久久久久久影院中文字幕 | 91精品一卡2卡3卡4卡| 国产真实伦视频高清在线观看| 视频中文字幕在线观看| 久久精品久久久久久久性| 亚洲精品国产av蜜桃| 男人舔奶头视频| 久久人人爽人人爽人人片va| 国产老妇伦熟女老妇高清| 国产色爽女视频免费观看| 精品少妇黑人巨大在线播放| 国产一级毛片七仙女欲春2| 少妇丰满av| 淫秽高清视频在线观看| 中国国产av一级| 久久久久精品性色| 亚洲不卡免费看| 国产精品人妻久久久久久| av.在线天堂| 少妇丰满av| 国产高清有码在线观看视频| 亚洲成人久久爱视频| 乱码一卡2卡4卡精品| 国产探花极品一区二区| 亚洲激情五月婷婷啪啪| 精品久久久久久久久av| av播播在线观看一区| 最新中文字幕久久久久| 我的女老师完整版在线观看| 成人漫画全彩无遮挡| 嫩草影院新地址| 亚洲综合精品二区| 国产单亲对白刺激| 又黄又爽又刺激的免费视频.| 免费无遮挡裸体视频| 少妇人妻一区二区三区视频| 97在线视频观看| 久久久色成人| 精品久久久久久久久久久久久| 久久久久免费精品人妻一区二区| 亚洲精品aⅴ在线观看| 七月丁香在线播放| 天天躁日日操中文字幕| 欧美日韩亚洲高清精品| 99re6热这里在线精品视频| 男女边摸边吃奶| 日韩成人av中文字幕在线观看| 日日啪夜夜爽| 国产女主播在线喷水免费视频网站 | 我的女老师完整版在线观看| 成人性生交大片免费视频hd| 麻豆成人av视频| 中文天堂在线官网| 久久精品夜夜夜夜夜久久蜜豆| 午夜老司机福利剧场| 日日啪夜夜爽| 神马国产精品三级电影在线观看| 91在线精品国自产拍蜜月| 日本三级黄在线观看| 欧美最新免费一区二区三区| 99久久中文字幕三级久久日本| 精品欧美国产一区二区三| 国产成人a区在线观看| 日本与韩国留学比较| 一级二级三级毛片免费看| 超碰97精品在线观看| 国产精品一区二区三区四区免费观看| 免费看a级黄色片| 黑人高潮一二区| 久久久欧美国产精品| 永久网站在线| freevideosex欧美| 免费不卡的大黄色大毛片视频在线观看 | 国产精品一区二区三区四区免费观看| 亚洲电影在线观看av| 国产精品av视频在线免费观看| 亚洲欧美日韩无卡精品| 日韩大片免费观看网站| 免费观看的影片在线观看| 久久久a久久爽久久v久久| 亚洲精品自拍成人| 国产精品精品国产色婷婷| 蜜桃亚洲精品一区二区三区| 高清午夜精品一区二区三区| 久久6这里有精品| 最近最新中文字幕大全电影3| 国产爱豆传媒在线观看| 一区二区三区四区激情视频| 精品久久久噜噜| 亚洲精品日韩在线中文字幕| 亚洲精品久久午夜乱码| 亚洲av成人精品一区久久| 免费观看在线日韩| 淫秽高清视频在线观看| 欧美极品一区二区三区四区| 人妻夜夜爽99麻豆av| 乱人视频在线观看| 成人二区视频| 欧美日韩一区二区视频在线观看视频在线 | 精品亚洲乱码少妇综合久久| 国产男女超爽视频在线观看| 一级a做视频免费观看| 三级毛片av免费| 亚洲在久久综合| 国产成人91sexporn| 好男人在线观看高清免费视频| 国产激情偷乱视频一区二区| 亚洲精品日韩av片在线观看| 亚洲综合精品二区| 人妻一区二区av| av免费观看日本| 国产亚洲精品久久久com| 欧美高清成人免费视频www| 成人国产麻豆网| 高清欧美精品videossex| 99久久精品一区二区三区| 亚洲欧美精品专区久久| 国产精品一区www在线观看| 欧美高清成人免费视频www| 日韩欧美精品v在线| 欧美一区二区亚洲| 免费黄色在线免费观看| 午夜福利在线观看吧| 亚洲精品日韩av片在线观看| 一夜夜www| 国产精品一二三区在线看| 99久国产av精品国产电影| 色尼玛亚洲综合影院| 欧美日韩亚洲高清精品| 网址你懂的国产日韩在线| 2021天堂中文幕一二区在线观| 国产亚洲午夜精品一区二区久久 | av免费观看日本| 偷拍熟女少妇极品色| 色视频www国产| 中文在线观看免费www的网站| 三级经典国产精品| 3wmmmm亚洲av在线观看| 久久97久久精品| 亚洲国产成人一精品久久久| 黄色配什么色好看| 3wmmmm亚洲av在线观看| 91在线精品国自产拍蜜月| 男人狂女人下面高潮的视频| 看黄色毛片网站| 成人高潮视频无遮挡免费网站| 久久99精品国语久久久| 少妇丰满av| 亚洲自偷自拍三级| 精品久久久精品久久久| 婷婷色av中文字幕| 日韩一区二区视频免费看| 成人毛片60女人毛片免费| 亚洲精品乱久久久久久| 国模一区二区三区四区视频| 国产成人午夜福利电影在线观看| www.色视频.com| 嘟嘟电影网在线观看| 寂寞人妻少妇视频99o| 校园人妻丝袜中文字幕| 日韩电影二区| eeuss影院久久| 久久久久网色| 看免费成人av毛片| 日本猛色少妇xxxxx猛交久久| 久久精品夜色国产| 国产精品久久久久久久电影| 久久综合国产亚洲精品| 日韩电影二区| 美女国产视频在线观看| 午夜激情欧美在线| 成年女人看的毛片在线观看| 美女xxoo啪啪120秒动态图| 高清毛片免费看| 国产女主播在线喷水免费视频网站 | 亚洲国产色片| 夜夜看夜夜爽夜夜摸| 深爱激情五月婷婷| 亚洲天堂国产精品一区在线| 只有这里有精品99| 国产黄色视频一区二区在线观看| 久久久久久久久久久免费av| 一级二级三级毛片免费看| 十八禁国产超污无遮挡网站| 91av网一区二区| 99热全是精品| 日本免费在线观看一区| 一个人观看的视频www高清免费观看| 在线观看人妻少妇| 边亲边吃奶的免费视频| 久久久久久久久久人人人人人人| 成人欧美大片| 全区人妻精品视频| 亚洲国产av新网站| 一区二区三区四区激情视频| 女人被狂操c到高潮| 搞女人的毛片| 婷婷色综合大香蕉| 国产高清有码在线观看视频| 国产精品女同一区二区软件| 国产一区亚洲一区在线观看| 一边亲一边摸免费视频| 久久久久久久久大av| 97超视频在线观看视频| 在线观看美女被高潮喷水网站| 国产亚洲精品久久久com| 免费看av在线观看网站| 久久久久久久久中文| 男人舔奶头视频| 亚洲精品色激情综合| 一级毛片我不卡| 在线免费观看不下载黄p国产| 欧美潮喷喷水| 边亲边吃奶的免费视频| 男女国产视频网站| 国产69精品久久久久777片| 伦精品一区二区三区| 美女主播在线视频| 亚洲国产精品成人综合色| 特大巨黑吊av在线直播| 内射极品少妇av片p| 街头女战士在线观看网站| 欧美一区二区亚洲| 免费看av在线观看网站| 久久久久国产网址| 日韩制服骚丝袜av| 一个人观看的视频www高清免费观看| 中文字幕人妻熟人妻熟丝袜美| 国产午夜福利久久久久久| a级毛片免费高清观看在线播放| 99热全是精品| 亚洲最大成人中文| 亚洲怡红院男人天堂| 一本久久精品| 亚洲精品国产av蜜桃| 亚洲精品久久久久久婷婷小说| 2021少妇久久久久久久久久久| 久久精品国产亚洲av涩爱| 国产亚洲午夜精品一区二区久久 | 国产亚洲一区二区精品| 亚洲激情五月婷婷啪啪| 在线 av 中文字幕| 黄色一级大片看看| 欧美性猛交╳xxx乱大交人| 成人美女网站在线观看视频| 我的女老师完整版在线观看| 国产v大片淫在线免费观看| 天堂中文最新版在线下载 | 777米奇影视久久| 亚洲一区高清亚洲精品| 国产精品国产三级专区第一集| 男插女下体视频免费在线播放| 日韩,欧美,国产一区二区三区| 亚洲内射少妇av| 亚洲精品456在线播放app| av播播在线观看一区| 精品人妻熟女av久视频| 三级国产精品欧美在线观看| 美女cb高潮喷水在线观看| 久久久久久久久久人人人人人人| 91精品伊人久久大香线蕉| 久久鲁丝午夜福利片| 一个人观看的视频www高清免费观看| 十八禁网站网址无遮挡 | 免费黄网站久久成人精品| 日产精品乱码卡一卡2卡三| 一级黄片播放器| 亚洲欧美精品自产自拍| 精品久久久久久久末码| 免费大片黄手机在线观看| 精品一区在线观看国产| 熟妇人妻久久中文字幕3abv| 久久久精品欧美日韩精品| 亚洲av中文字字幕乱码综合| 七月丁香在线播放| av黄色大香蕉| 黄片wwwwww| 国产人妻一区二区三区在| 亚洲欧美精品自产自拍| 国产在视频线精品| 成人亚洲欧美一区二区av| 成人特级av手机在线观看| 干丝袜人妻中文字幕| 亚洲国产色片| 简卡轻食公司| 久久亚洲国产成人精品v| 91av网一区二区| 亚洲欧美清纯卡通| 国产一区二区三区综合在线观看 | 精品一区二区三区人妻视频| 亚洲18禁久久av| 97精品久久久久久久久久精品| 内射极品少妇av片p| 国产成人免费观看mmmm| 久久久久精品性色| 日本熟妇午夜| 99久久精品热视频| 男人和女人高潮做爰伦理| 免费看不卡的av| 国产一区二区三区av在线| 国语对白做爰xxxⅹ性视频网站| 午夜免费观看性视频| 免费观看a级毛片全部| 日本欧美国产在线视频| 欧美一级a爱片免费观看看| 一个人观看的视频www高清免费观看| 美女内射精品一级片tv| 日日摸夜夜添夜夜添av毛片| 亚州av有码| 极品教师在线视频| 人妻夜夜爽99麻豆av| 亚洲av一区综合| 亚洲人成网站在线播| 永久网站在线| 国产高清有码在线观看视频| 天堂av国产一区二区熟女人妻| 日韩不卡一区二区三区视频在线| 国产精品一区www在线观看| 亚洲av二区三区四区| 亚洲欧美精品专区久久| 国产片特级美女逼逼视频| 网址你懂的国产日韩在线| 少妇的逼好多水| 国产精品久久久久久久久免| 久久热精品热| 男女国产视频网站| 一级av片app| 特级一级黄色大片| 天堂中文最新版在线下载 | 国产欧美日韩精品一区二区| 九九久久精品国产亚洲av麻豆| 最近手机中文字幕大全| 国产又色又爽无遮挡免| 免费不卡的大黄色大毛片视频在线观看 | 日韩 亚洲 欧美在线| 黄色配什么色好看| 超碰av人人做人人爽久久| 中文字幕人妻熟人妻熟丝袜美| 2021天堂中文幕一二区在线观| 水蜜桃什么品种好| 色综合色国产| 久久这里只有精品中国| 成人性生交大片免费视频hd| 免费大片黄手机在线观看| 深爱激情五月婷婷| 亚洲人成网站高清观看| 亚洲精品亚洲一区二区| 99久国产av精品国产电影| 亚洲人成网站高清观看| eeuss影院久久| 国产精品久久久久久精品电影小说 | 国产黄色免费在线视频| 高清欧美精品videossex| 人体艺术视频欧美日本| 日本免费a在线| 欧美一级a爱片免费观看看| 国产成人91sexporn| 在线 av 中文字幕| 成人综合一区亚洲| 26uuu在线亚洲综合色| 日韩一区二区三区影片| 人人妻人人澡欧美一区二区| 能在线免费观看的黄片| 日本-黄色视频高清免费观看| 男女视频在线观看网站免费| 真实男女啪啪啪动态图| 久久久午夜欧美精品| 成年人午夜在线观看视频 | 蜜臀久久99精品久久宅男| 综合色丁香网| 国产伦一二天堂av在线观看| 国产成人福利小说| 免费少妇av软件| 精品人妻视频免费看| 如何舔出高潮| av播播在线观看一区| 最近的中文字幕免费完整| 在线a可以看的网站| 国产黄色小视频在线观看| 啦啦啦韩国在线观看视频| 七月丁香在线播放| 精品99又大又爽又粗少妇毛片| 国产一区二区在线观看日韩| 99热这里只有是精品在线观看| 国产精品综合久久久久久久免费| 午夜老司机福利剧场| 国产精品1区2区在线观看.| 免费看美女性在线毛片视频| 99久久精品一区二区三区| 久久这里只有精品中国| 国产综合懂色| 亚洲成人精品中文字幕电影| 国产精品熟女久久久久浪| 国产精品一区二区三区四区免费观看| xxx大片免费视频| 国产69精品久久久久777片| 午夜日本视频在线| 大片免费播放器 马上看| 国产激情偷乱视频一区二区| 中文字幕av成人在线电影| 一本一本综合久久| 伊人久久精品亚洲午夜| a级毛片免费高清观看在线播放| 国产 一区 欧美 日韩| 热99在线观看视频| 国产中年淑女户外野战色| 日韩欧美 国产精品| 国产在视频线精品| 国产成人freesex在线| 精品午夜福利在线看| 国产高清三级在线| 亚洲av.av天堂| 水蜜桃什么品种好| 国内少妇人妻偷人精品xxx网站| 性色avwww在线观看| 国产精品99久久久久久久久| 美女xxoo啪啪120秒动态图| 尾随美女入室| 91在线精品国自产拍蜜月| 国产又色又爽无遮挡免| 国产国拍精品亚洲av在线观看| 少妇的逼水好多| 精品国产三级普通话版| 精品99又大又爽又粗少妇毛片| 99久久精品热视频| 日韩欧美一区视频在线观看 | 秋霞伦理黄片| 免费电影在线观看免费观看| 久久久久久久久久久丰满| 爱豆传媒免费全集在线观看| 亚洲国产精品国产精品| 欧美bdsm另类| 丝瓜视频免费看黄片| 国产成人91sexporn| 亚洲国产色片| 国产亚洲5aaaaa淫片| 在线 av 中文字幕| av天堂中文字幕网| 日日干狠狠操夜夜爽| 国产黄片美女视频| 久久精品久久精品一区二区三区| 久久久久国产网址| 成人特级av手机在线观看| 久久久欧美国产精品| 国产高清国产精品国产三级 | 国产亚洲91精品色在线| 日韩欧美国产在线观看| 一级片'在线观看视频| av专区在线播放| 国产精品一区二区三区四区久久| 成人欧美大片| 国产成人免费观看mmmm| 国产大屁股一区二区在线视频| 九九久久精品国产亚洲av麻豆| 蜜桃久久精品国产亚洲av| 深夜a级毛片| 久久久久久久国产电影| 亚洲精品日韩av片在线观看| 亚洲精品日本国产第一区| 伦理电影大哥的女人| 国产高清有码在线观看视频| 人人妻人人看人人澡| 亚洲内射少妇av| 99久久精品一区二区三区| 国产精品三级大全| 美女高潮的动态| 亚洲精品自拍成人| 久99久视频精品免费| av国产免费在线观看|