• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Multi-layer protective armour for underwater shock wave mitigationA hmed HAWASS, Hosam MOSTAFA, Ahmed ELBEIH*

    2015-07-02 06:16:28MilitaryTechnicalCollegeKobryElkobbahCairoEgyptReceivedNovember2014revised10February2015acceptedApril2015Availableonline11July2015
    Defence Technology 2015年4期

    Military Technical College, Kobry Elkobbah, Cairo, EgyptReceived 8 November 2014; revised 10 February 2015; accepted 1 April 2015 Available online 11 July 2015

    Multi-layer protective armour for underwater shock wave mitigation
    A hmed HAWASS, Hosam MOSTAFA, Ahmed ELBEIH*

    Military Technical College, Kobry Elkobbah, Cairo, Egypt
    Received 8 November 2014; revised 10 February 2015; accepted 1 April 2015 Available online 11 July 2015

    Abstract

    The effect of underwater shock wave on different target plates has been studied. An underwater shock wave generator (shock tube) was used to study the interactions between water and different constructed targets which act as shock wave mitigation. Target plates, composed of sandwich of two aluminum sheets with rubber and foam in between, were prepared and studied. For comparison, the target plates composed of triple aluminum sheets were tested. The study includes the testing of the selected plates in water under the effect of different peak pressures and the analysis of the results.

    The strain gauge data and displacement sensors results showed that the multi-layer plates have higher level of underwater shock wave mitigation than the triple aluminum plates with strain and deflection of nearly 50%.

    Copyright?2015, China Ordnance Society. Production and hosting by Elsevier B.V. All rights reserved.

    Keywords:Shock simulator; Mitigation; Aluminum; Foam; Rubber

    E-mail addresses: elbeih.czech@gmail.com, elbeih.a@gmail.com (A. ELBEIH).

    Peer review under responsibility of China Ordnance Society.

    http://dx.doi.org/10.1016/j.dt.2015.04.006

    2214-9147/Copyright?2015, China Ordnance Society. Production and hosting by Elsevier B.V. All rights reserved.

    1. Historical background and introduction

    In the modern battles, there is an aim to build a new naval body structures composed of light and strong composite materials [1]. This naval vessel must be able to withstand the damage produced by underwater explosion (UNDEX) Understanding that the interaction between the composite material and the applied load simulate the underwater explosion is an interesting study. Low rates of the stress applied to the composite material were deeply studied in many studies unlike the higher loading caused by the underwater explosion [1].

    Since 1968, the different terrorist attack cases have been occurred [2]. To protect the naval vessel from these threats, the structure has to be supported by shock wave mitigation methods. Regarding to the good mechanical characteristics of the composite materials, they have varieties of applications, including military and defense applications. The understanding of blast response and resistance of these materials is very important to design a new material and decrease the effect of this attack. Many academic researchers have studied the response of different plates in the form of sandwich structure under the effect of different applied blast stresses [3-5]. Many studies have investigated the homogenous composite materials subjecting to different loads [6-10]. The addition of polymeric materials to different structures was studied to enhance the blast wave resistance [11]. The polymeric materials were used to decrease the weight of naval vessels and increase the protection level of their bodies.

    The dynamic response of metallic lattice sandwich plates under impulsive loading applied by ballistic pendulum system was studied [12]. Liu et al. studied the effect of blast loading on metallic sandwich-walled hollow cylinders with graded aluminum foam cores [13]. Sandwich tubes under internal explosive loading were investigated experimentally and the deformation of sandwich tubes occurred sequentially from the inner tube to the outer one was discussed [14]. Short duration of pressure pulses resulting from underwater explosions was represented by Riccardo et al. [15]. The energy dissipation and deformation occurred to sandwich structures subjected to underwater blast loading was investigated [16].

    Several typical phenomena can be observed by explosion of charge under water. These phenomena are the shock wave, gas bubble, cavitation, etc. Park [17] indicated that the explosive charge is converted to gaseous products at high temperature of 3000°C and produce shock wave pressure of approximate 500 MPa. The main product of the explosion conversion is gas at high temperature and pressure [18,19]. The reaction advance from the c-j plane to complete explosion reaction was presented in Ref. [20]. The resulted gaseous products form spherical gas bubbles producing initial shock wave followed by a further series of bubble oscillations until arriving to the surface or any target. After underwater explosive conversion, the generated shock wave propagates spherically at a speed which is faster than sound speed at first and then decreases to the similar value [21]. The formed gases provide rapid rise for the pulsed waves which are difficult for controlling and require a suitable safety arrangement. Underwater shock generator can be easily controlled and safer during test. Many researches studied and proved that the underwater shock wave generator can produce a pressure wave profile similar to the shock wave profile resulting from free underwater explosion tests [22-26].

    Deshpande et al. designed an underwater shock wave generator filled with water to study the effect of different pressure pulses on several plates under water, reducing the time and cost of underwater explosions test [27]. Guan et al. studied another novel technique based on transmission tube and explosion method [28]. Using steel projectile as a source of impact energy, a laboratory underwater shock wave generator was designed to produce underwater shock pressure. The underwater shock wave generator can be controlled by changing the mass and the velocity of the impact projectile [29]. Another apparatus made from water-filled fiber composite tube and 1.5 kg striker was used to test different fiber plates [30].

    The aim of this research is to investigate the mitigation of shock wave occurred at multilayer sheets made of light material such as rubber and polyethylene foam subjected to an underwater pressure wave.

    2. Material specification

    Multi-layer sandwich panels were fabricated. The outer sides of the panels were aluminum plates and the core was composed of two sheets of foam and one sheet of rubber, as shown in Fig. 1. Each aluminum 204 alloy has a composition of (93Al, 4.15Cu, 0.1 Cr, 0.5 Mn, 0.5 Si, 0.25 Zn, 1.5 Mg wt %), and the 8 mm thick and 0.98 kg weight multi-layer panel has a 330×330 mm face area. For comparison, an examined aluminum jackets made from three aluminum plates was prepared, which has the same face area mentioned above, and is 4.5 mm in thickness and 1.13 kg in weight. The constructions of the different plates are shown in Fig. 1 and the further details are provided in Table 1.

    The material properties of aluminum 204 are listed in Table 2. The characteristics of EPDM rubber (based on ethylenepropylene diene monomer) are listed in Table 3. The rubber hardness test was carried out by using Shore A which is used for soft elastomers and its value varies between 10 and 90.

    Fig. 1. Construction of the examined target.

    Table 1Specification of target sheets.

    Table 2Material properties of aluminum 204.

    Table 3Specification of EPDM rubber sheet.

    Cross-linked low density polyethylene (LDPE) foam, named VOLARA type A, produced by Sckisui Voltek,LLL, was selected as a shock wave mitigation material for the desired object of this research. LDPE have wide application in naval industry as it have many desirable properties including water resistance, chemical resistance, energy absorbance, buoyancy and cushioning. The specification of the foam used in the test is listed in Table 4. All test results of LDPE foamare related to standard test methods for flexible material ASTM D3575.

    Table 4Specification of LDPE foam sheet.

    3. Experimental testing

    An underwater shock generator in the form of cylindrical tube was used to produce a small scale laboratory blast wave. In this research, the underwater shock generator consists of shock tube made of mild steel with 5 mm in thickness. It is 1 m in length and 20.7 cm in diameter, and placed over a steel plate. A hammer with a pendulum arm is fixed at the end of the shock tube in a vertical position to generate the impact energy needed for the creation of underwater shock wave. Moving of the hammer at different angles causes the increase of the impact energy. A 25 mm thick steel piston is placed inside the shock tube at the end part facing to the hammer. The examined target is fixed at the front part of shock tube. The positions of strain gauge and sensor are shown in Figs. 2 and 3.

    The hammer has a mass of 21.3 kg. The impact of the hammer on the end part of the tube causes the piston to produce pressure in the water. The target is exposed to an impulse of a planer wave which propagates along the length of the tube as a result of the impact pressure imparted by the hammer. The generated pressure pulse is measured by the pressure sensor which is placed on the top of the underwater shock tube.

    Kistler type 211B series pressure sensors (range: 700 kPa, sensitivity: 8 mV/kPa), produced by Inter Technology Co., Canada, was used to measure an exponentially decaying pressure history. The pressure sensor recorded the first signal which is the first shock pressure and the second signal which is a reflected pressure.

    Fig. 2. The underwater shock generator.

    Fig. 3. Construction of underwater shock generator.

    Fig. 4. Sensors used for underwater testing.

    The examined targets were subjected to similar pulsed pressure wave during different applied tests while the resulted reflected pressure depends on the material properties of the examined target. N11-FA-5-120-11 strain gauge, produced byShow a Measuring Instruments Co., Japan, was used to measure the strain generated by the pressure wave. S13FLP12A displacement sensor, produced by Alther bv, Netherlands, was used to record the displacement of the examined target. The three sensors used in the experiments are shown in Fig. 4.

    Table 5Effect of the impact angles of hammer on the pressure wave characteristics.

    4. Results and discussion

    The results are divided into two main category: the measuring result of the pressure due to hammer impact and the measuring result of the targets' resistance to the underwater pressure wave, which are characterized by three main parameters, strain measurements, displacement measurements and visual examinations. Target visual examination containsthe depth of the resulted deformation produced as a result of different pressure waves after the different shots. Two examined groups were tested. The first group contains three different shots (peak pressure lies between 70 and 700 kPa) which permit the use of strain gauges, pressure anddisplacement sensors, and the second group contains one shot (peak pressure is more than 700 kPa) which imparts material damage and only allows strain gauge measurements. The angle between the impact hammer and the moving piston can be adjusted according to impact velocity and energy required. The adjustment can be produced by changing the distance between the hammer head and the piston. The detailed output characteristics are presented in Table 5.

    Fig. 5. Pressure profile of shock tube.

    Fig. 6. Measuring result of strain gauge.

    Fig. 7. Measuring results of displacement sensors.

    4.1. Measuring results of pressure sensor

    A typical pressure profile obtained by the pressure sensor for different shots at different impact angles is shown in Fig. 5. For impact energy of 3.12 J (10°impact angle of the hammer), the incident shock pressure was nearly 5.6×104Pa, and the reflected pressure wave has higher value than the incident one (6.2×104Pa), as shown in Fig. 5(a). This result might be due to the combination of the incident and reflected waves to form a high value of shock pressure.

    In case of impact energies of 12.4 J and 27.6 J, the incident pressures have maximum values of 2.5×105Pa and 5.5×105Pa, respectively, as shown in Fig. 5(b) and (c). The results show that the incident shock pressure increases as the impact energy of the hammer increases.

    Fig. 8. Deformation of aluminum plate caused by underwater shock wave.

    4.2. Fluid response (strain measurement)

    As a result of the impact energy of the hammer, underwater pressure wave is formed and travels through the water from the end part of the shock tube to the front part until reaching the sheet of the target. Local cavitation and bubbles are formed on the boundary between water and target. The incident pressure wave impacts on the target and is reflected back into the water. The corresponding measurements of the compressive core strain histories are presented in Fig. 6.

    The two test target plates had similar trend but different strain values were obtained for each particular impact energy. The multi-layer plate showed a great reduction in strain values at all the shot examined. The strain deformation of the multilayer target is nearly half the deformation value of the aluminum target in the case of 10°impact angle of the hammer. These results give indication that the rubber and foam sheets have the ability to absorb the incident shock wave energy and make the multi-layer plate more reliable against the underwater shock wave.

    4.3. Deflection of center point

    The displacement of sandwich plate was determined by the displacement sensors which present the displacement-time history for the triple-layer aluminum plate and multilayer sandwich materials. The results show that the deflections occurred in the multilayer sandwich material was less than the values recorded in the case of using the triple aluminum plates for particular shock pressure values. Reduction in the measured deflections is presented and explained in Fig. 7.

    4.4. Visual examination

    After four shots by the impact hammer, the degree of deformation of the triple-layer aluminum plate are 2.06 mm for the first aluminum plate face, 1.2 mm for the middle plate and 1.4 mm for the outer plate. In the case of multi-layer plate, no deformation occurred for the aluminum plate which firstly subjected to the underwater shock wave, and the degree of deformation of the outer aluminum plate is 2.24 mm. These results show that there is a significant absorption of the incident shock pressure and no reflection occurs. These results indicate that it is better to use polymerized material as internal layers of targets to obtain better mitigation in shock wave. Photos of the target sheets are shown in Fig. 8.

    5. Conclusions

    Underwater shock wave generator had been used successfully to investigate and compare the interaction between shock wave and aluminum target made of triple aluminum plates and multilayer plate with rubber and polyethylene foam. Pressure sensors were used to record the pressure wave produced by impact of a hammer. The measurements of strain gauge and displacement sensors proved that the multilayer plate has better mitigate shock wave compared to the aluminum target. Also the mass of multilayer plate is less than that of aluminum target. From this study, it is recommended to continue studying the possibility of replacing the ordinary plates of naval vehicle by multilayer plates.

    References

    [1] Shukla A, LeBlanc J. Dynamic response and damage evolution in composite materials subjected to underwater explosive loading an experimental and computational study. J Compos Struct 2010;92.

    [2] National Research Council. Protecting building from bomb damage: transfer of blast-effects mitigation technologies from military to civilian applications. Washington : DC: National Academy; 1995.

    [3] Wiezerbicki T, Nurick GN. Large deformation of thin plates under localized impulsive loading. Int J Impact Eng 1996;18(7):899-918.

    [4] Zhu L. Transient deformation modes of square plates subjected to explosive loadings. Int J Solids Struct 1996;33(3):301-14.

    [5] Fleck NA, Deshpande VS. The resistance of clamped sandwich beams to shock loading. J Appl Mech 2004;71(3):386-401.

    [6] Nurick GN, Gelman ME, Marshall NS. Tearing of blast loaded plates with clamped boundary conditions. Int J Impact Eng 1996;18(7):803.

    [7] Galiev U. Experimental observations and discussion of counterintuitive behavior of plates and shallow shells subjected to blast loading. Int J Impact Eng 1996;18(7):783-802.

    [8] Hammond L, Grzebieta R. Structural response of submerged air-backed plates by experimental and numerical analyses. Shock Vib 2000;7(6):333-41.

    [9] Teng TL, Liang CC, Liao CC. Nonlinear forced vibration analysis of the rectangular plates by the Fourier series method. Comput Mech 1999;23(1):1-7.

    [10] Ramajeyathilagam K, Vendhan CP. Deformation and rupture of thin rectangular plates subjected to underwater shock. Int J Impact Eng 2004;30(6):699-719.

    [11] Fatt MS Hoo, Ouyang X, Dinan RJ. Blast response of walls retrofitted with elastomer coatings. Struct Mater 2004;15:129-38.

    [12] Cui X, Zhao L, Wang Z, Zhao H, Fang D. Dynamic response of metallic lattice sandwich structures to impulsive loading. Int J Impact Eng 2012;43:1-5.

    [13] Liu X, Tian X, Jian T, Zhou D, Liang B. Blast resistance of sandwichwalled hollow cylinders with graded metallic foam cores. J Compos Struct 2012;94:2485-93.

    [14] Shen J, Lu G, Zhao L, Qingming Zhang. Short sandwich tubes subjected to internal explosive loading. J Eng Struct 2013;55:56-65.

    [15] Riccardo P, Serge A. Dynamic response of sandwich shells to underwater blasts. Cent Eur J Eng 2012;2(4):509-22.

    [16] Avachat S, Zhou M. Effect of face sheet thickness on dynamic response of composite sandwich plates to underwater impulsive loading. J Exp Mech 2012;52:83-93.

    [17] Park Wan J. Underwater explosion testing of catamaran-like structure vs. simulation and feasibility of using scaling law. Ocean Systems Engineering, KAIST; 2012 [Master's thesis].

    [18] Misovec AP, David W. Explosion phenomena. Taylor Naval Ship Research and Development Center; 1976.

    [19] Cole RH. Underwater explosions. Princeton, New Jersey: Princeton University Press; 1948.

    [20] Salvge engineer's handbook, vol. 1, S0300-A8-HBK-010.

    [21] Reid WD. The response of surface ships to underwater Explosions. Department of Defense; 1994.

    [22] Zakrajsek1 AJ, Miklaszewski1 EJ, Guildenbecher1 DR. Experimental analysis of blast mitigation associate with water sheets. Son School of Mechanical Engineering, Purdue University, West Lafayette IN 47905.

    [23] Freiwald DA. Approximate blast wave theory and experimental data for shock trajectories in linear explosive driven shock tubes. J Appl Phys 1972;43(5):2224-6.

    [24] Alley D. Explosive blast loading experiments for TBI scenarios: characterization and mitigation. West Lafayette, IN: Purdue University; 2009 [Thesis].

    [25] Lee S. Dynamic failure of blast-resistant structures subjected to impulsive loading. Evanston, IL, USA: Northwestern University; 2005 [Ph.D. thesis].

    [26] Espinosa D, Lee S, Moldovan N. A novel fluid structure interaction experiment to investigate deformation of structural elements subjected to impulsive loading. Exp Mech 2006;46(6):805-24.

    [27] Schiffer A, Tagarielli L. The one-dimensional response of a water-filled double hull to underwater blast: experiments and simulations. Int J Impact Eng 2014;63:177-87.

    [28] Guan W, Aktas A, Potluri P, Cantwell J, Langdon G, Nurick N. The blast resistance of stitched sandwich panels. Int J Impact Eng 2014;65:137-45.

    [29] Deshpande S, Heaver A, Fleck A. An underwater shock simulator. In: Proceeding of the royal society; 2006.

    [30] Perotti E, Deiterding R, Inaba K, Shepherd J, Ortiz M. Elastic response of water-filled fiber composite tubes under shock wave loading. Int J Solids Struct 2013;50:473-86.

    * Corresponding author.

    真人一进一出gif抽搐免费| 欧美最黄视频在线播放免费| 成熟少妇高潮喷水视频| 成人鲁丝片一二三区免费| 18美女黄网站色大片免费观看| 男插女下体视频免费在线播放| 一个人观看的视频www高清免费观看| 男插女下体视频免费在线播放| 成人av在线播放网站| 非洲黑人性xxxx精品又粗又长| 亚洲av不卡在线观看| 九色国产91popny在线| 看片在线看免费视频| av专区在线播放| 一本精品99久久精品77| 国产成人啪精品午夜网站| 中文字幕精品亚洲无线码一区| 久9热在线精品视频| 久久性视频一级片| 色精品久久人妻99蜜桃| 成年人黄色毛片网站| 青草久久国产| 性色avwww在线观看| 国产高清有码在线观看视频| 亚洲av电影在线进入| 中文字幕熟女人妻在线| 90打野战视频偷拍视频| 69av精品久久久久久| 在线看三级毛片| 日韩大尺度精品在线看网址| 国产爱豆传媒在线观看| 一个人免费在线观看的高清视频| 99热这里只有是精品在线观看 | 国产成人福利小说| 国产中年淑女户外野战色| 免费观看精品视频网站| 日韩免费av在线播放| 欧美精品国产亚洲| 久久久国产成人免费| 淫妇啪啪啪对白视频| 全区人妻精品视频| 少妇的逼好多水| 在线观看午夜福利视频| 91麻豆av在线| 成人欧美大片| 国产欧美日韩精品一区二区| 精品国内亚洲2022精品成人| 可以在线观看毛片的网站| 真人做人爱边吃奶动态| 欧美日韩国产亚洲二区| 亚洲va日本ⅴa欧美va伊人久久| 女同久久另类99精品国产91| 久久精品国产清高在天天线| 性色av乱码一区二区三区2| a在线观看视频网站| 欧美成人一区二区免费高清观看| 欧美xxxx黑人xx丫x性爽| 人妻久久中文字幕网| 成人永久免费在线观看视频| 精品久久久久久,| 美女xxoo啪啪120秒动态图 | 一a级毛片在线观看| 69人妻影院| 国产精品伦人一区二区| 免费看光身美女| 精品久久久久久久久亚洲 | 婷婷丁香在线五月| 欧美日韩综合久久久久久 | 成年女人永久免费观看视频| 熟女人妻精品中文字幕| 搡老熟女国产l中国老女人| 婷婷精品国产亚洲av在线| a级毛片a级免费在线| 亚洲成人久久爱视频| 成人欧美大片| 老熟妇仑乱视频hdxx| 亚洲欧美日韩无卡精品| 国产午夜精品久久久久久一区二区三区 | 亚洲 欧美 日韩 在线 免费| 亚洲 国产 在线| 他把我摸到了高潮在线观看| 18禁在线播放成人免费| 久久性视频一级片| 欧美日韩亚洲国产一区二区在线观看| 亚洲欧美日韩高清在线视频| av福利片在线观看| 午夜免费成人在线视频| 九九久久精品国产亚洲av麻豆| 少妇的逼好多水| 免费观看人在逋| 麻豆成人午夜福利视频| 亚洲精品乱码久久久v下载方式| 国产激情偷乱视频一区二区| 国产老妇女一区| 婷婷精品国产亚洲av在线| 亚洲18禁久久av| 欧美黑人欧美精品刺激| 国产精品久久久久久人妻精品电影| 欧美xxxx黑人xx丫x性爽| 精品人妻熟女av久视频| 最近最新中文字幕大全电影3| 99国产精品一区二区三区| 悠悠久久av| 亚洲美女视频黄频| 亚洲性夜色夜夜综合| 天天躁日日操中文字幕| 色综合亚洲欧美另类图片| 波多野结衣高清无吗| 国内揄拍国产精品人妻在线| 亚洲精品色激情综合| 色吧在线观看| 午夜亚洲福利在线播放| 欧美成狂野欧美在线观看| 亚洲第一欧美日韩一区二区三区| 蜜桃久久精品国产亚洲av| 精品一区二区三区av网在线观看| 欧美绝顶高潮抽搐喷水| 看十八女毛片水多多多| 又粗又爽又猛毛片免费看| 香蕉av资源在线| 久久国产乱子伦精品免费另类| 亚洲av.av天堂| 欧美成人性av电影在线观看| 久久久久性生活片| 国产精品一区二区免费欧美| 免费观看精品视频网站| 18+在线观看网站| 国产探花极品一区二区| 成人av一区二区三区在线看| 色在线成人网| 国产国拍精品亚洲av在线观看| 一区二区三区四区激情视频 | 51国产日韩欧美| 国产成人欧美在线观看| 级片在线观看| 在线观看舔阴道视频| 欧美区成人在线视频| 亚洲乱码一区二区免费版| 日本a在线网址| 久久精品国产亚洲av天美| 久久精品91蜜桃| 亚洲av日韩精品久久久久久密| 99热这里只有是精品在线观看 | 国产欧美日韩一区二区精品| 亚洲最大成人中文| 有码 亚洲区| 桃色一区二区三区在线观看| 夜夜看夜夜爽夜夜摸| 国产三级黄色录像| 欧美国产日韩亚洲一区| 神马国产精品三级电影在线观看| 日本a在线网址| 亚洲天堂国产精品一区在线| 亚洲乱码一区二区免费版| 欧美黑人巨大hd| 免费观看精品视频网站| av欧美777| 亚洲五月婷婷丁香| 特级一级黄色大片| 久久久久久久久大av| 成人性生交大片免费视频hd| 国产午夜精品论理片| 婷婷六月久久综合丁香| 国产真实乱freesex| 特级一级黄色大片| 亚洲熟妇中文字幕五十中出| 国产精品久久久久久久久免 | 91在线精品国自产拍蜜月| 日本在线视频免费播放| 久久热精品热| 99riav亚洲国产免费| 宅男免费午夜| 亚洲国产日韩欧美精品在线观看| 1000部很黄的大片| 国产成年人精品一区二区| 十八禁人妻一区二区| 欧美最黄视频在线播放免费| av在线观看视频网站免费| 亚洲av美国av| 一区二区三区四区激情视频 | 最近最新免费中文字幕在线| 日本撒尿小便嘘嘘汇集6| 午夜精品一区二区三区免费看| av在线蜜桃| 欧美日本亚洲视频在线播放| 亚洲av熟女| 国产久久久一区二区三区| 网址你懂的国产日韩在线| 热99在线观看视频| 最后的刺客免费高清国语| 亚洲天堂国产精品一区在线| 国产极品精品免费视频能看的| 亚洲自偷自拍三级| 久99久视频精品免费| 在线观看舔阴道视频| 成人毛片a级毛片在线播放| 国产精品一及| 色精品久久人妻99蜜桃| 国产欧美日韩一区二区精品| 国产美女午夜福利| 中文字幕人妻熟人妻熟丝袜美| 又黄又爽又免费观看的视频| 我的女老师完整版在线观看| 国产单亲对白刺激| 久久久久久九九精品二区国产| 性色av乱码一区二区三区2| 亚洲人成网站高清观看| 男女下面进入的视频免费午夜| 久久九九热精品免费| 熟妇人妻久久中文字幕3abv| 麻豆国产97在线/欧美| 一卡2卡三卡四卡精品乱码亚洲| 亚洲中文字幕日韩| 一区二区三区四区激情视频 | 在线观看美女被高潮喷水网站 | 久久精品夜夜夜夜夜久久蜜豆| 日韩亚洲欧美综合| 国语自产精品视频在线第100页| 欧美一区二区国产精品久久精品| 国产 一区 欧美 日韩| 亚洲精品在线观看二区| 国产亚洲av嫩草精品影院| 欧美激情国产日韩精品一区| 色综合站精品国产| 亚洲人成网站高清观看| 久久精品国产亚洲av香蕉五月| 午夜激情欧美在线| 亚洲中文字幕一区二区三区有码在线看| 极品教师在线免费播放| 国产av麻豆久久久久久久| 18禁黄网站禁片免费观看直播| 国产欧美日韩一区二区精品| 亚洲人成网站在线播放欧美日韩| 日日干狠狠操夜夜爽| 国产探花在线观看一区二区| 久久中文看片网| 欧美丝袜亚洲另类 | 88av欧美| 亚洲不卡免费看| 成人国产一区最新在线观看| 一本一本综合久久| 欧美日韩综合久久久久久 | 99riav亚洲国产免费| 国产成+人综合+亚洲专区| 久久久久久久久久黄片| 亚洲精品乱码久久久v下载方式| 国产精品久久久久久亚洲av鲁大| 日韩亚洲欧美综合| 久久香蕉精品热| 一夜夜www| 亚洲三级黄色毛片| 国产私拍福利视频在线观看| 国产精品久久电影中文字幕| 97人妻精品一区二区三区麻豆| 亚洲欧美日韩高清专用| 小说图片视频综合网站| 免费搜索国产男女视频| 亚洲,欧美,日韩| 99在线人妻在线中文字幕| 久久精品国产亚洲av天美| 国产男靠女视频免费网站| 久久午夜亚洲精品久久| 国产毛片a区久久久久| 久久精品影院6| 日本在线视频免费播放| 男人舔女人下体高潮全视频| 久久草成人影院| 久久热精品热| 国产欧美日韩一区二区精品| 动漫黄色视频在线观看| aaaaa片日本免费| 午夜两性在线视频| 老鸭窝网址在线观看| 91九色精品人成在线观看| 亚洲自偷自拍三级| 观看免费一级毛片| 欧美午夜高清在线| 亚洲人成网站在线播| 成人国产一区最新在线观看| 简卡轻食公司| 欧美日韩黄片免| 欧美激情在线99| 午夜免费男女啪啪视频观看 | 久久国产乱子伦精品免费另类| 简卡轻食公司| 亚洲成人久久性| 在线观看午夜福利视频| 免费av不卡在线播放| 听说在线观看完整版免费高清| 国产探花在线观看一区二区| 精品午夜福利在线看| 别揉我奶头 嗯啊视频| av中文乱码字幕在线| 最近在线观看免费完整版| 麻豆成人av在线观看| 嫩草影院新地址| 中文字幕高清在线视频| 精品久久国产蜜桃| 看免费av毛片| 88av欧美| 久久久久久久亚洲中文字幕 | 国产av麻豆久久久久久久| 国产91精品成人一区二区三区| 色综合欧美亚洲国产小说| 自拍偷自拍亚洲精品老妇| 国产精品美女特级片免费视频播放器| 1000部很黄的大片| 精品一区二区三区视频在线| 色哟哟哟哟哟哟| 久久午夜福利片| 人妻制服诱惑在线中文字幕| 亚洲七黄色美女视频| 亚洲中文日韩欧美视频| 久久久久久大精品| 小蜜桃在线观看免费完整版高清| 精品午夜福利在线看| 中文字幕人妻熟人妻熟丝袜美| 男女下面进入的视频免费午夜| 国产成人欧美在线观看| 少妇人妻一区二区三区视频| 成年免费大片在线观看| 午夜福利18| 国产精品美女特级片免费视频播放器| 精品人妻偷拍中文字幕| 别揉我奶头~嗯~啊~动态视频| 在线天堂最新版资源| 99久久无色码亚洲精品果冻| 国语自产精品视频在线第100页| а√天堂www在线а√下载| 欧美高清成人免费视频www| 床上黄色一级片| 国产aⅴ精品一区二区三区波| 在线观看一区二区三区| 欧美另类亚洲清纯唯美| 亚洲美女视频黄频| 黄色丝袜av网址大全| 久久精品夜夜夜夜夜久久蜜豆| 国产v大片淫在线免费观看| 午夜影院日韩av| 日本撒尿小便嘘嘘汇集6| 嫩草影视91久久| 国产人妻一区二区三区在| 永久网站在线| 亚洲欧美日韩高清专用| 12—13女人毛片做爰片一| 男人和女人高潮做爰伦理| 亚洲 欧美 日韩 在线 免费| 久久九九热精品免费| 成人特级黄色片久久久久久久| 搡老妇女老女人老熟妇| 成人美女网站在线观看视频| av福利片在线观看| 精品久久国产蜜桃| 男人狂女人下面高潮的视频| 国产高清视频在线播放一区| 国产精品嫩草影院av在线观看 | 午夜福利18| 成年免费大片在线观看| 搡老岳熟女国产| 中出人妻视频一区二区| 精品久久久久久久久亚洲 | 国产白丝娇喘喷水9色精品| 精品免费久久久久久久清纯| 国产毛片a区久久久久| 岛国在线免费视频观看| 成年版毛片免费区| 最后的刺客免费高清国语| 在线观看免费视频日本深夜| 午夜精品在线福利| 12—13女人毛片做爰片一| 久9热在线精品视频| 99久久久亚洲精品蜜臀av| 久久久国产成人免费| 12—13女人毛片做爰片一| 午夜精品久久久久久毛片777| av在线蜜桃| 99精品久久久久人妻精品| 99久久久亚洲精品蜜臀av| 能在线免费观看的黄片| 成人国产一区最新在线观看| 日本黄色片子视频| 午夜福利欧美成人| 精品久久久久久久久久久久久| 久久精品国产清高在天天线| 精品久久久久久久久久久久久| 亚洲精品在线观看二区| 欧美xxxx性猛交bbbb| 此物有八面人人有两片| 久久午夜亚洲精品久久| av天堂中文字幕网| 性色avwww在线观看| 亚洲中文字幕日韩| 欧美日韩福利视频一区二区| 免费看a级黄色片| 久久久久性生活片| 婷婷色综合大香蕉| 丰满人妻熟妇乱又伦精品不卡| 99久久精品热视频| 久久久精品大字幕| 丰满乱子伦码专区| 91九色精品人成在线观看| 观看美女的网站| 成人高潮视频无遮挡免费网站| 狠狠狠狠99中文字幕| 国产白丝娇喘喷水9色精品| 成人无遮挡网站| 夜夜看夜夜爽夜夜摸| 女人十人毛片免费观看3o分钟| 亚洲成av人片在线播放无| 国产不卡一卡二| 一区福利在线观看| 在现免费观看毛片| 精品不卡国产一区二区三区| 亚洲最大成人av| 黄色丝袜av网址大全| 日韩欧美精品v在线| 欧美成狂野欧美在线观看| 搡老熟女国产l中国老女人| 97超视频在线观看视频| 欧美色欧美亚洲另类二区| 1000部很黄的大片| 欧美xxxx黑人xx丫x性爽| 91狼人影院| 亚洲片人在线观看| 少妇人妻精品综合一区二区 | 精品人妻1区二区| 亚洲精品久久国产高清桃花| 在线观看66精品国产| 日本 欧美在线| 亚洲专区国产一区二区| 欧美黑人巨大hd| 亚洲专区国产一区二区| 久久天躁狠狠躁夜夜2o2o| 国产精品国产高清国产av| 久久久久久大精品| 欧美潮喷喷水| 五月玫瑰六月丁香| 99热这里只有是精品50| 国产免费av片在线观看野外av| 极品教师在线视频| 国产一区二区三区视频了| 桃红色精品国产亚洲av| 国产精品国产高清国产av| 嫩草影院精品99| 99热精品在线国产| 特大巨黑吊av在线直播| 午夜福利在线在线| 麻豆国产av国片精品| 熟女电影av网| 中亚洲国语对白在线视频| 免费无遮挡裸体视频| 长腿黑丝高跟| 国产 一区 欧美 日韩| 他把我摸到了高潮在线观看| 校园春色视频在线观看| 每晚都被弄得嗷嗷叫到高潮| 精品久久久久久久末码| 99久久九九国产精品国产免费| 老司机深夜福利视频在线观看| 国产精品久久久久久亚洲av鲁大| 午夜精品久久久久久毛片777| 国产视频一区二区在线看| 亚洲狠狠婷婷综合久久图片| 国产欧美日韩精品一区二区| 免费av毛片视频| 中文字幕人妻熟人妻熟丝袜美| 日韩欧美一区二区三区在线观看| 欧美黄色淫秽网站| 久久人人精品亚洲av| 久久精品国产99精品国产亚洲性色| 久久人人精品亚洲av| 亚洲人与动物交配视频| 国产精品国产高清国产av| 免费看美女性在线毛片视频| 赤兔流量卡办理| 色哟哟·www| 啦啦啦观看免费观看视频高清| 日韩欧美三级三区| 又爽又黄a免费视频| 久久亚洲精品不卡| 亚洲人成网站在线播| 亚洲片人在线观看| 欧美另类亚洲清纯唯美| 精品久久久久久久久亚洲 | 国产高潮美女av| 亚洲国产精品成人综合色| 小蜜桃在线观看免费完整版高清| 亚洲内射少妇av| 精品一区二区三区av网在线观看| www.色视频.com| 色av中文字幕| 少妇丰满av| 国产成人欧美在线观看| 亚洲真实伦在线观看| 美女 人体艺术 gogo| 日韩免费av在线播放| 熟女人妻精品中文字幕| 成人av一区二区三区在线看| 国产欧美日韩一区二区精品| 日本黄大片高清| 最近在线观看免费完整版| 国产精品一区二区性色av| 午夜精品在线福利| 国产一区二区三区视频了| 亚洲最大成人手机在线| 中文亚洲av片在线观看爽| 日本一二三区视频观看| 全区人妻精品视频| 午夜福利视频1000在线观看| 亚洲 欧美 日韩 在线 免费| 成年人黄色毛片网站| 色哟哟哟哟哟哟| 亚洲人成电影免费在线| 亚洲成人久久性| 亚洲成a人片在线一区二区| 国产蜜桃级精品一区二区三区| 乱码一卡2卡4卡精品| 亚洲精品色激情综合| 99热精品在线国产| 久久这里只有精品中国| 91麻豆精品激情在线观看国产| 精品久久久久久久久久久久久| 久久久久久久久久黄片| 99久久精品一区二区三区| 一个人免费在线观看的高清视频| 免费一级毛片在线播放高清视频| 色哟哟·www| 亚洲成av人片在线播放无| 天美传媒精品一区二区| h日本视频在线播放| 精品欧美国产一区二区三| 国产爱豆传媒在线观看| 国产亚洲欧美98| 一a级毛片在线观看| 国产 一区 欧美 日韩| 变态另类丝袜制服| 中文资源天堂在线| 91久久精品国产一区二区成人| 在线观看66精品国产| 麻豆成人午夜福利视频| 国产三级中文精品| 国产单亲对白刺激| 国产免费av片在线观看野外av| 脱女人内裤的视频| 女生性感内裤真人,穿戴方法视频| 国产亚洲精品av在线| 99国产精品一区二区蜜桃av| 在线天堂最新版资源| 国产美女午夜福利| 深夜a级毛片| 别揉我奶头 嗯啊视频| 久久精品国产清高在天天线| 淫妇啪啪啪对白视频| 亚洲精品粉嫩美女一区| 18+在线观看网站| 久久6这里有精品| 熟女电影av网| 亚洲国产色片| 亚洲精品在线观看二区| 欧美3d第一页| 国产不卡一卡二| 欧美高清性xxxxhd video| 国产精品av视频在线免费观看| 最近最新中文字幕大全电影3| 亚洲精品粉嫩美女一区| 9191精品国产免费久久| а√天堂www在线а√下载| 波野结衣二区三区在线| 毛片女人毛片| 成人毛片a级毛片在线播放| 老司机午夜十八禁免费视频| 丁香欧美五月| 精品久久久久久久久久久久久| 精品午夜福利在线看| 小蜜桃在线观看免费完整版高清| 制服丝袜大香蕉在线| 国产精品98久久久久久宅男小说| 毛片女人毛片| 神马国产精品三级电影在线观看| 久久精品国产99精品国产亚洲性色| 国产伦精品一区二区三区视频9| 男女那种视频在线观看| 欧美日韩中文字幕国产精品一区二区三区| 在线国产一区二区在线| 国产伦人伦偷精品视频| 成年女人看的毛片在线观看| 欧美成人免费av一区二区三区| 亚洲综合色惰| 国产色婷婷99| av在线天堂中文字幕| 伦理电影大哥的女人| a在线观看视频网站| 日韩免费av在线播放| 男人狂女人下面高潮的视频| 欧美午夜高清在线| 亚洲午夜理论影院| 亚洲激情在线av| 亚洲一区二区三区不卡视频| 麻豆成人午夜福利视频| 免费av毛片视频| 欧美绝顶高潮抽搐喷水| 18禁黄网站禁片午夜丰满| 黄片小视频在线播放| 欧美日韩瑟瑟在线播放| 中文字幕精品亚洲无线码一区| 亚洲av美国av| 国产白丝娇喘喷水9色精品| 两人在一起打扑克的视频| 黄色女人牲交| 精品国内亚洲2022精品成人| 超碰av人人做人人爽久久| 国产成人aa在线观看| av天堂中文字幕网| 真人一进一出gif抽搐免费| 人人妻人人澡欧美一区二区|