• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Heat treatment optimization for tensile properties of 8011 Al/15% SiCp metal matrix composite using response surface methodology V. VEMBU*, G. GANESAN

    2015-07-02 06:16:37DepartmentofManufacturingEngineeringAnnamalaiUniversityAnnamalaiNagar608002TamilnaduIndiaReceived10December2014revised23January2015acceptedMarch2015AvailableonlineMay2015
    Defence Technology 2015年4期

    Department of Manufacturing Engineering, Annamalai University, Annamalai Nagar, 608 002, Tamilnadu, IndiaReceived 10 December 2014; revised 23 January 2015; accepted 4 March 2015 Available online 6 May 2015

    Heat treatment optimization for tensile properties of 8011 Al/15% SiCp metal matrix composite using response surface methodology V. VEMBU*, G. GANESAN

    Department of Manufacturing Engineering, Annamalai University, Annamalai Nagar, 608 002, Tamilnadu, India
    Received 10 December 2014; revised 23 January 2015; accepted 4 March 2015 Available online 6 May 2015

    Abstract

    In this study, a mathematical model was developed to optimize the heat treatment process for maximum tensile strength and ductility of aluminum (8011) silicon carbide particulate composites. The process parameters are solutionizing time, aging temperature, and aging time. The experiments were performed on an universal testing machine according to centre rotatable design matrix. A mathematical model was developed with the main and interactive effects of the parameters considered. The analysis of variance technique was used to check the adequacy of the developed model. The optimum parameters were obtained for maximum tensile strength. Fractographic examination shows the cracks and dimples on the fractured surfaces of heat-treated specimen.

    Copyright?2015, China Ordnance Society. Production and hosting by Elsevier B.V. All rights reserved.

    Keywords:Heat treatment; Tensile property; Optimization; Metal matrix composites; Response surface methodology; ANOVA

    E-mail address: vembu_vs@rediffmail.com (V. VEMBU).

    Peer review under responsibility of China Ordnance Society.

    http://dx.doi.org/10.1016/j.dt.2015.03.004

    2214-9147/Copyright?2015, China Ordnance Society. Production and hosting by Elsevier B.V. All rights reserved.

    1. Introduction

    Metal matrix composites synthesized by incorporating the hard ceramic particles like silicon carbide (SiC) into the aluminum alloys achieve good mechanical properties. These composites are light weight and show good hardness property which qualifies them as structural materials especially for wear resistant and weight critical application. This motivates the researchers to investigate the aging behavior of this category of metal matrix composites [1]. The age hardening characteristics of an alloy can be generally tailored by introducing the reinforcement. Many changes may be due to manufacturing process, reaction between reinforcement and matrix, size, morphology and volume fraction reinforcement [2]. Many studies have been carried out to develop the improved aluminum-based composites with the aim of achieving better mechanical properties. In general, many techniques have been developed to fabricate the SiC particle reinforced aluminum alloy composite, including casting, powder metallurgy, pressure infiltration and spray deposition methods. Among all the fabrication methods, the stir casting technique is attractive due to its uniform distribution of reinforcement,flexibility and mass production [3]. These composites play a vital role in the engineering applications like aerospace, military, and civil manufacturing industry. Skibo et al. [4] studied the age hardening behavior of a 30 wt% SiCp/ Al composite and found that the aging response was very rapid, in that order only 1 h aging at 120°C, peak tensile strength of 45% and peak hardness of 69% were attained, compared to Al alloy. Das et al. [5] discussed no difference in the aging response of as-cast without reinforcement of Al(6061) and 10 and 20 wt% of SiC reinforced 6061 Al composites in their studies of strength and elongation of these materials as a function of aging time at 175°C. With extensive data available on the heat treatment of 8011 Al alloys with conventional alloying elements, no much has beendocumented on the age hardening characteristics of this alloy, particularly with silicon carbide reinforcement. Hence, the need for research on this area is justified. The aim of the present research is to study the aging hardening characteristics of 15% SiCp/8011 Al particulate composites.

    Table 1Process parameters and their levels.

    2. Experimental procedure

    8011 aluminium alloy and 15%SiC particles were used as the metal matrix and the reinforcer, respectively. The composites were manufactured through stir casting under argon atmosphere. The melt was cast into a permanent die, and an ingot with 35 mm in diameter and 70 mm in height was prepared after the feeder head was removed. The cylindrical rod was machined into a 30 mm diameter specimen, and then it was hot-extruded into a 16 mm diameter rod in four stages. The forming process was performed at 500°C. During the extrusion process the punch speed was 0.01 m/s and the graphite lubricant was used. The extruded rod was heat-treated in a solution for 3 h at 530°C followed by cold water quenching to room temperature. The rod was artificially aged in the range from 130°C-210°C for 1-9 h. The tensile test specimens were arranged as per the ASTM-E8M standard. The length and diameter of the gage were 45 mm and 9 mm, respectively. Tensile tests were conducted using a universal testing machine. The hardness measurements were performed by using a microhardness tester with a constant load of 500 kgf. The hardness values were averaged over three measurements taken at different places on the cross-section. The deviation of hardness with aging time for different aging situations was investigated. The sample specimens were prepared for micro structural examinations as per the standard procedure of grinding and polishing by etching in Keller's reagent. Optical microscopy was used to estimate the distribution of SiC particles. The fracture surface of the composite was also examined by using SEM.

    Table 2Mechanical properties of the 8011 Al/15% SiCp composite.

    3. Response surface methodology

    Response surface methodology (RSM) is an approach to determine the relationship between various process parameters with the various machining criteria and explore the effect of these process parameters on the coupled responses, i.e., tensile strength and microhardness. The equation of the second-order polynomial response surface methodology is given below

    where Yuis response; xi(1,2,…,k) is the coded level of k quantitative variables;b0is the constant term, where bi, bii, and bijare the coefficients of the linear equation. The nonlinear form of Eq. (1) was converted into a linear form through the logarithmic transformation. It was used to develop response surface regression form. To create the calculation method, a software package mini Tab was used to find out the coefficients of mathematical modeling based on the response surface regression form. The level of parameter chosen for the trial was given in Table 1. Twenty experiments are carried out according to the central composite design. The experimental design matrix and results were given in Table 2.

    4. Mathematical modelling

    The mathematical relationship obtained for analyzing the influences of the various dominant tensile parameters on the tensile strength (TS) criteria is given byR2= 99.9%

    The mathematical relationship for correlating the microhardness (Ha) and the considered process variables was obtained as follows

    R2= 97.9%

    4.1. Analysis of the developed mathematical models

    The second-order polynomial models were developed for tensile strength and microhardness. The fit summary indicates that the quadratic form is statistically significant for analysis of tensile strength and microhardness. R value is 99.85%, which indicates that the developed regression model is adequately significant at 95% confidence limit. It provides an excellent connection among the process parameters and the response tensile strength and microhardness. An analysis of variance (ANOVA) for tensile and microhardness is presented in Tables 3 and 4. The related p value for the model is less than 0.05 (i.e. level of significance α= 0.05, or 95% confidence limit), which indicates that model can be measured statically considerable. It is clear from Table that the error between experimental value and predicted value is less than 5%. The end result proves that the solutionizing time, aging temperature and aging time have effect on the tensile strength and microhardness.

    Table 3Tensile strength.

    The centre line indicates the lower and upper limits of confidence intervals at 95%. Fig. 1 indicates that except one experimental value, all the values with confidence intervals of 95%. Hence the fitted values give better results for future prediction, which was confirmed by experiments. In general, the analysis of residuals in Fig. 1 do not reveal any inadequacy of the model. Moreover all the residual values fall within the control limit as well [6].

    Table 4Microh‵ardness.

    Fig. 1. Residual values vs.fitted values for tensile strength.

    5. Results and discussion

    5.1. Effect of solutionizing time

    The effect of solutionizing time on the precipitation behavior of the 8011 Al/15% SiCp composite was subjected to solutionizing at 530°C over time period for 1-5 h. The temperature specimens was then lowered to room temperature by quenching in water. The specimens were tested by using microhardness tester. The test results are shown in Fig. 2. From Fig. 2 it is observed that the microhardness of the specimen subjected to 3 h solutionizing is superior than those subjected to 1 and 2 h solutionizing. It is also seen that 4 or 5 h solutionizing does not result in substantial development in the hardness compared to hardness achieved for 3 h solutionizing. Hence, 3 h solutionizing time is inferred as the most favorable time for 8011 Al/15% SiCp composites. Because the quantity of solute atoms is more, the local deformation of the lattice is larger, and hence the resistance to the moving disorder is greater. Therefore, it will raise the microhardness. The solutionizing at 5 h, the solute atoms is forming changeover solidsolution with iron produce spherical dissimilarity in the lattice. Therefore, the microhardness value is reduced.

    Fig. 2. Effect of solutionzing time on microhardness.

    5.2. Microhardness of the composites as a function of aging time

    In this paper the effects of aging temperature and time on the precipitation process were studied. The sequence of operations is solutionizing at 530°C for 3 h quenching and artificially aging at different temperatures (130°C-210°C) over time period for 1-9 h. The specimens were then tested for microhardness. The test results were presented in Fig. 3. From the results it is found that the microhardness of the specimen subjected to 5 h aging is superior than those subjected to 1-4 h aging. Moreover, it is also seen that the aging of6-9 h does not result in appreciable improvement in the hardness compared to hardness achieved for 5 h aging. Hence, the aging time of 5 h is inferred to be optimum for 8011 Al/ 15% SiCp composites [7]. So the increase in the hardness of the composite at aging stage(1 h at 130°C) is attributed to the creation of G.P zone and ?”phase. Further the increase in the hardness of the composite at peak aging stage (5 h at 170°C) is attributed to the formation of ?’phase. The decrease in the hardness starts with the formation of the stable ? phase in over-aging condition (9 h at 210°C).

    Fig. 3. Effect of aging time on microhardness.

    Fig. 4. Tensile properties of the composites.

    5.3. Tensile properties

    The tensile strength of 8011 Al/15% SiCp composite was increased from 139Mpa to 167Mpain the under-aging condition (1 h at 130°C), as shown in Fig. 4 and Table 5. This may be due to the presence of harder SiC particles, which restrict the plastic deformation of the matrix with SiC particle of 15% volume fraction. More load was transferred for plastic deformation due to constraint by SiC particle, which also resulted in a higher tensile strength of the composite [8].

    The tensile strength was increased from 167Mpa to 265 Mpa in peak aged condition (5 h at 170°C), as shown in Fig. 4 and Table 5. From this value, it is concluded that the tensile strengths of the composites are greater than that of the aluminum base alloy. Because the improvement in ductility of composites can be attributed to the coupling effect of numerous small Si particles due to growth restriction and thermal modification during the heat treatment [9].

    The tensile strength was decreased from 265 Mpa to 197Mpa in the over-aging condition (9 h at 210°C), as shown in Fig. 4 and Table 5. Whereas ageing at higher temperatures leaded to softening and the ductility also decreased with the increase in aging time and temperature [10].

    Table 5Tensile properties of composite material.

    5.4. Fracture surface

    The fracture surfaces of under-aged composites aging for 1 h at 130°C) reveal two operating fracture mechanisms: micro-void formation and SiC particle cracking, as shown in Fig. 5.

    Fig. 5. Fracture surfaces of the composites after tensile testing and aging for 1 h with volume fraction SiC particle 15%, respectively.

    The fracture surfaces of peak-aged composites (aging for 5 h at 170°C) discover the coexistence of ductile and cleavage fractures, as shown in Fig. 6. The SEM image of 8011 Al/15% SiC composite shows the shallow dimples as well as ductile shear bands, indicating the sufficient amount of ductility retained in the composite. It is concluded that the size and depth of dimples decrease with the increase in SiC particles. The many small dimples are nucleated by huge number of closely spaced particles in the SiC network in 8011 Al/15% SiC composite [11].

    Fig. 6. Fracture surfaces of the composites after tensile testing and aging for 5 h with volume fraction SiC particle 15%, respectively.

    Therefore, the decrease in tensile strength would be induced by the significant agglomeration of SiC particles and the presence of fractured particulates as well as some interfacial de-bonding in over-aging condition (9 h at 210°C), as shown in Fig. 7.

    Fig. 7. Fracture surfaces of the composites after tensile testing and aging for 9 h with volume fraction SiC particle 15%, respectively.

    6. Analysis of response optimization

    Based on the developed second - order response surface equations, i.e., Eq. (2), for correlating the various process variable effects with the tensile strength and hardness optimality searches can be obtained. This is carried out to determine the optimal combination of the tensile parameters and their combined effect on the desired response criteria [12]. The optimality search model for the different process variable position for maximizing the tensile strength and microhardness values is based on response surface methodology. Fig. 8 shows that solutionizing time is 3 h, aging temperature is 170°C, and aging time is 5 h. The most favorable values of tensile process parameters for different aging criteria are alsoshown in Table 6. Tensile strength and microhardness can achieve to 263 Mpa and 67.14, respectively, through the optimized parametric combination.

    Fig. 8. Optimum results for maximum ultimate tensile strength and maximum microhardness.

    Table 6Optimum values of the tensile parameters considering tensile strength & microhardness.

    7. Conclusions

    1) The second-order polynomial models were developed to predict the tensile strength using the response surface methodology.

    2) The response surface methodology was used to study the effects of the parameters and their interaction on tensile strength.

    3) The residual plots for tensile strength were generated. From the plots it is observed that the regression model is well fitted with the observed values and a high correlation exists between fitted values and observed values.

    4) Solutionizing time has more influence on the tensile strength of the composite compared to the other two parameters, viz., aging temperature and aging time.

    5) From the developed mathematical model, the optimal parametric combination, i.e., solutionizing time (3 h), aging temperature (170°C), aging time (5 h), was found out to achieve the maximum tensile strength of 265 Mpa and the microhardness of 67.17. The effective utilization of tensile for 8011-15% SiCp composites for achieving the optimal combination of enhanced tensile strength has been attempted.

    References

    [1] Ney Jose Luggi A. Characterization by thermoelectric power of a commercial aluminum -iron-silicon alloy during isothermal precipitation. Met Mater Trans 1998;29A:2669-77.

    [2] Hassen SB, Aponbide O, Aigbodion VS. Precipitation hardening characteristics of Al-Si-Fe/SiC particulate composites. J Alloy Compd 2008;466:268-72.

    [3] Sharma Ashutosh, das Sanjeev. Study of age hardening behaviour of Al-4.5wt% Cu/Zircon sand composite in different quenching media-A comparative study. J Mater Des 2009;30:3900-3.

    [4] Skibo M, Morris PL, Lloyed DJ. In: Fishman SG, editor. Dhirngra AK, editor. Cast reinforced composites, vol. 27. ASM international; 1988. p. 257-61.

    [5] Das MN, Giri NG. Design and analysis of experiments. 2nd ed. New York: Wiley; 1986.

    [6] Palanikumar K, Karunamoorthy L, Karthikeyan R. Parametric optimization to minimize the surface roughness on the maching of GFRP composites. J Mater Sci Technol 2006;22:373-80.

    [7] Seyedreihani SM. Processing of squeeze cast Al6061-30% vol SiCp composite and their characterization. Mater Des 2006;27:216-22.

    [8] Mandal A, Chakraborty M, Murty BS. Ageing behaviour of A356 alloy reinforced with in situ formed TiB2 particles. Mater Sci Eng 2008:220-6. A489.

    [9] Samuel FH, Samuel AM. Heat treatment parameters for A359/Al2O3p composite modified with 0.07 wt% strontium. Compos Sci Technol 1995;53:85-98.

    [10] Mahadevan K, Raghukandan K, Pai BC, Pillai UTS. Influence of precipitation hardening parameters on the fatigue strength of AA 6061-SiCp composites. J Mater Process Technol 2008;198:277-81.

    [11] Meyers MA, Chawla KK. Mechanical Metallurgy. John willey and sons, New York USA.

    [12] Llorca J. Fatigue of particle and whisker reinforced metal matrix composites. Programme Mater Sci 2002;47:283-353.

    * Corresponding author. Tel.: +91 9629935044; fax: +91 44239734.

    亚洲专区中文字幕在线| 国产一区二区三区综合在线观看| 此物有八面人人有两片| 无遮挡黄片免费观看| 此物有八面人人有两片| 欧美老熟妇乱子伦牲交| 99国产综合亚洲精品| 最近最新免费中文字幕在线| 亚洲精品中文字幕一二三四区| 国产精品,欧美在线| 午夜免费观看网址| 19禁男女啪啪无遮挡网站| 亚洲人成77777在线视频| 亚洲av日韩精品久久久久久密| 久久精品国产亚洲av高清一级| 一级片免费观看大全| 真人一进一出gif抽搐免费| 操出白浆在线播放| 操美女的视频在线观看| 国内久久婷婷六月综合欲色啪| 亚洲精品av麻豆狂野| 动漫黄色视频在线观看| 免费高清视频大片| 制服诱惑二区| 日日爽夜夜爽网站| 成人av一区二区三区在线看| 久久久久久久午夜电影| 波多野结衣一区麻豆| 最近最新中文字幕大全电影3 | 人人澡人人妻人| 久久国产精品影院| 欧美老熟妇乱子伦牲交| 又大又爽又粗| 最近最新中文字幕大全电影3 | 亚洲全国av大片| 天堂动漫精品| 亚洲一卡2卡3卡4卡5卡精品中文| 男男h啪啪无遮挡| 亚洲精品中文字幕在线视频| 日韩欧美一区二区三区在线观看| 高清毛片免费观看视频网站| 中文字幕久久专区| 91字幕亚洲| 国产三级黄色录像| 亚洲精品中文字幕一二三四区| 黄片大片在线免费观看| 制服诱惑二区| 69精品国产乱码久久久| 久久国产亚洲av麻豆专区| 老司机靠b影院| 99精品欧美一区二区三区四区| 丝袜人妻中文字幕| 高潮久久久久久久久久久不卡| 动漫黄色视频在线观看| 99精品欧美一区二区三区四区| 久久性视频一级片| 精品久久久久久久人妻蜜臀av | 亚洲精品久久国产高清桃花| 国产精品一区二区免费欧美| 国产欧美日韩一区二区三区在线| av有码第一页| 亚洲成a人片在线一区二区| 亚洲午夜理论影院| 99国产极品粉嫩在线观看| 亚洲第一青青草原| 香蕉国产在线看| 日本三级黄在线观看| 成年版毛片免费区| 国产一卡二卡三卡精品| 波多野结衣一区麻豆| 啦啦啦韩国在线观看视频| 欧美亚洲日本最大视频资源| 精品久久久久久久毛片微露脸| 久久这里只有精品19| 看免费av毛片| 成人国产一区最新在线观看| 日韩欧美免费精品| 欧美国产日韩亚洲一区| 国产一区二区三区视频了| 丰满的人妻完整版| 国产欧美日韩一区二区精品| 欧美日本视频| 日本 av在线| 久久精品91无色码中文字幕| 中文字幕最新亚洲高清| 国产欧美日韩一区二区三区在线| 国内毛片毛片毛片毛片毛片| 亚洲国产中文字幕在线视频| 黄网站色视频无遮挡免费观看| 久久中文看片网| 1024视频免费在线观看| 欧美日韩亚洲国产一区二区在线观看| 一区二区三区国产精品乱码| 久久久水蜜桃国产精品网| 黄色女人牲交| 男女之事视频高清在线观看| tocl精华| 欧洲精品卡2卡3卡4卡5卡区| 正在播放国产对白刺激| 一级毛片精品| 在线观看www视频免费| 男女做爰动态图高潮gif福利片 | 国产成人精品久久二区二区91| 国产成人一区二区三区免费视频网站| 亚洲国产精品久久男人天堂| 国产成+人综合+亚洲专区| 国产成人欧美| 两个人免费观看高清视频| 男女之事视频高清在线观看| 欧美丝袜亚洲另类 | 露出奶头的视频| 久久中文字幕人妻熟女| 日本a在线网址| 视频在线观看一区二区三区| 日韩有码中文字幕| 成人国语在线视频| 久久久久久亚洲精品国产蜜桃av| 久久午夜综合久久蜜桃| 91在线观看av| 精品一区二区三区视频在线观看免费| 无遮挡黄片免费观看| 国产黄a三级三级三级人| 满18在线观看网站| 成人手机av| 国产成人欧美在线观看| 久久人人爽av亚洲精品天堂| 国产免费男女视频| 女人被躁到高潮嗷嗷叫费观| 色综合亚洲欧美另类图片| 国产亚洲精品久久久久5区| 首页视频小说图片口味搜索| 国产精品98久久久久久宅男小说| 琪琪午夜伦伦电影理论片6080| 女警被强在线播放| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美成人一区二区免费高清观看 | 90打野战视频偷拍视频| 成熟少妇高潮喷水视频| 激情视频va一区二区三区| 国产精品二区激情视频| 久久精品国产99精品国产亚洲性色 | av天堂在线播放| 一夜夜www| 色av中文字幕| 777久久人妻少妇嫩草av网站| 午夜免费观看网址| 桃色一区二区三区在线观看| 国产精品98久久久久久宅男小说| 国产一区二区三区在线臀色熟女| 欧美国产日韩亚洲一区| 亚洲全国av大片| 日本a在线网址| svipshipincom国产片| 国产亚洲精品久久久久久毛片| 在线免费观看的www视频| 久9热在线精品视频| 国产成人免费无遮挡视频| av中文乱码字幕在线| 免费人成视频x8x8入口观看| 啦啦啦观看免费观看视频高清 | www.精华液| 亚洲欧美激情在线| 色综合亚洲欧美另类图片| 美女高潮到喷水免费观看| 欧美日韩瑟瑟在线播放| 精品福利观看| 人人妻,人人澡人人爽秒播| 日本 av在线| 一二三四社区在线视频社区8| 国产精品日韩av在线免费观看 | 国产一级毛片七仙女欲春2 | 在线av久久热| 欧美乱色亚洲激情| 麻豆久久精品国产亚洲av| 欧美乱码精品一区二区三区| 国产区一区二久久| 无人区码免费观看不卡| 中文字幕久久专区| 日韩av在线大香蕉| 一进一出抽搐动态| 亚洲欧美日韩高清在线视频| 午夜福利影视在线免费观看| 九色亚洲精品在线播放| 精品一区二区三区视频在线观看免费| 欧美av亚洲av综合av国产av| 国产一区二区激情短视频| 日韩大码丰满熟妇| 久久久久国产一级毛片高清牌| 看黄色毛片网站| 国产亚洲av高清不卡| 久久狼人影院| 国产91精品成人一区二区三区| 99国产综合亚洲精品| 51午夜福利影视在线观看| 久久久久国产一级毛片高清牌| 欧美精品啪啪一区二区三区| 日韩欧美国产一区二区入口| 精品久久久久久久毛片微露脸| 欧美人与性动交α欧美精品济南到| 国产精品亚洲av一区麻豆| 成人国语在线视频| 香蕉久久夜色| 黑人巨大精品欧美一区二区蜜桃| 午夜免费观看网址| av视频在线观看入口| 国产麻豆成人av免费视频| 亚洲第一欧美日韩一区二区三区| 精品国产国语对白av| 国产亚洲av高清不卡| 日本欧美视频一区| 天堂√8在线中文| 亚洲欧美一区二区三区黑人| 首页视频小说图片口味搜索| 99久久99久久久精品蜜桃| 99久久久亚洲精品蜜臀av| 国产一卡二卡三卡精品| 亚洲国产欧美一区二区综合| 女人被狂操c到高潮| 美国免费a级毛片| 亚洲全国av大片| 国产私拍福利视频在线观看| 午夜亚洲福利在线播放| 高清毛片免费观看视频网站| 正在播放国产对白刺激| 亚洲专区国产一区二区| 久久天堂一区二区三区四区| 日韩高清综合在线| 国产成人av教育| 亚洲色图综合在线观看| 成人特级黄色片久久久久久久| 成人三级黄色视频| 国产亚洲欧美在线一区二区| 两性夫妻黄色片| 国产精品一区二区免费欧美| 变态另类成人亚洲欧美熟女 | 免费在线观看黄色视频的| 亚洲欧美日韩高清在线视频| 国产精品免费视频内射| 一区二区日韩欧美中文字幕| 免费搜索国产男女视频| 级片在线观看| 中文字幕精品免费在线观看视频| 欧美日本亚洲视频在线播放| 免费高清在线观看日韩| 久久久国产成人精品二区| 成人精品一区二区免费| 午夜精品国产一区二区电影| 久久久精品欧美日韩精品| 热99re8久久精品国产| 精品久久久久久成人av| 亚洲 欧美 日韩 在线 免费| 精品乱码久久久久久99久播| 黄片大片在线免费观看| 女警被强在线播放| 国产精品一区二区在线不卡| 国产日韩一区二区三区精品不卡| 色婷婷久久久亚洲欧美| 丰满的人妻完整版| 国产精品 国内视频| 午夜久久久久精精品| 日本黄色视频三级网站网址| 亚洲 欧美 日韩 在线 免费| 女生性感内裤真人,穿戴方法视频| 青草久久国产| 欧美中文日本在线观看视频| 国产精品一区二区免费欧美| 老司机靠b影院| 一区福利在线观看| 色综合站精品国产| 色播亚洲综合网| 大香蕉久久成人网| 别揉我奶头~嗯~啊~动态视频| 日韩欧美国产在线观看| 手机成人av网站| 午夜福利高清视频| 黄色女人牲交| 亚洲一码二码三码区别大吗| 欧美日韩福利视频一区二区| 校园春色视频在线观看| 一级黄色大片毛片| 88av欧美| av在线天堂中文字幕| 国产av精品麻豆| 久久久国产成人精品二区| av免费在线观看网站| 精品国产一区二区三区四区第35| 久久国产精品男人的天堂亚洲| 亚洲熟妇熟女久久| 亚洲人成77777在线视频| av福利片在线| 免费观看精品视频网站| 久久 成人 亚洲| 国产亚洲精品久久久久久毛片| 亚洲 国产 在线| 亚洲少妇的诱惑av| 欧美日本中文国产一区发布| 麻豆国产av国片精品| 淫妇啪啪啪对白视频| 美女国产高潮福利片在线看| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲专区字幕在线| 亚洲国产高清在线一区二区三 | 在线观看66精品国产| 亚洲美女黄片视频| 日本精品一区二区三区蜜桃| 免费人成视频x8x8入口观看| av福利片在线| 看免费av毛片| 亚洲国产高清在线一区二区三 | 精品国产亚洲在线| 国产精品,欧美在线| videosex国产| 男人的好看免费观看在线视频 | 一a级毛片在线观看| 99在线人妻在线中文字幕| 首页视频小说图片口味搜索| 亚洲三区欧美一区| 久久精品人人爽人人爽视色| 国产麻豆69| 成人永久免费在线观看视频| 婷婷精品国产亚洲av在线| 欧美激情极品国产一区二区三区| 美女 人体艺术 gogo| 一级黄色大片毛片| 一级片免费观看大全| 欧美国产精品va在线观看不卡| 久久久久久国产a免费观看| 久久久久精品国产欧美久久久| 美女大奶头视频| 可以在线观看的亚洲视频| 亚洲中文字幕日韩| 电影成人av| 亚洲午夜理论影院| 一个人免费在线观看的高清视频| 久久国产亚洲av麻豆专区| 1024香蕉在线观看| 天堂影院成人在线观看| 丰满的人妻完整版| 在线播放国产精品三级| 91麻豆精品激情在线观看国产| 大码成人一级视频| 97人妻精品一区二区三区麻豆 | 老司机福利观看| 乱人伦中国视频| 制服诱惑二区| 又紧又爽又黄一区二区| 亚洲七黄色美女视频| 精品久久久精品久久久| 99国产综合亚洲精品| 国产1区2区3区精品| 99热只有精品国产| 黄片播放在线免费| 国产91精品成人一区二区三区| 免费久久久久久久精品成人欧美视频| 国产又色又爽无遮挡免费看| 成熟少妇高潮喷水视频| 日韩 欧美 亚洲 中文字幕| 最新在线观看一区二区三区| 99国产极品粉嫩在线观看| 免费在线观看黄色视频的| 色哟哟哟哟哟哟| 国产成人影院久久av| 欧美日韩瑟瑟在线播放| av视频在线观看入口| 午夜福利影视在线免费观看| 久久人妻福利社区极品人妻图片| 91在线观看av| 欧美日韩亚洲综合一区二区三区_| 中文字幕高清在线视频| 久久久久久国产a免费观看| 中文字幕av电影在线播放| 国产午夜精品久久久久久| 最近最新中文字幕大全电影3 | 亚洲av美国av| 久久久久久久久免费视频了| 99精品欧美一区二区三区四区| 国产成人啪精品午夜网站| 亚洲片人在线观看| 级片在线观看| 中文字幕人妻丝袜一区二区| 精品一区二区三区av网在线观看| 在线免费观看的www视频| 成人18禁在线播放| 国产一卡二卡三卡精品| 久久久久久久久免费视频了| 十八禁网站免费在线| 欧美大码av| 亚洲片人在线观看| 在线播放国产精品三级| 国产91精品成人一区二区三区| 国产av一区在线观看免费| 精品人妻在线不人妻| 国产精品久久电影中文字幕| 午夜免费观看网址| 久久久久久久久免费视频了| 老汉色av国产亚洲站长工具| 免费在线观看日本一区| 亚洲熟妇熟女久久| 亚洲av成人一区二区三| 亚洲九九香蕉| 久久精品亚洲精品国产色婷小说| 男女之事视频高清在线观看| 亚洲专区字幕在线| 满18在线观看网站| 成人国产综合亚洲| 一个人观看的视频www高清免费观看 | 97碰自拍视频| 久久久精品国产亚洲av高清涩受| 亚洲全国av大片| 久99久视频精品免费| 精品电影一区二区在线| 夜夜夜夜夜久久久久| 国产野战对白在线观看| 婷婷丁香在线五月| 男人舔女人下体高潮全视频| 国产精品久久电影中文字幕| 精品人妻在线不人妻| 丰满人妻熟妇乱又伦精品不卡| 18禁国产床啪视频网站| 怎么达到女性高潮| 十八禁网站免费在线| 免费在线观看日本一区| 欧美激情极品国产一区二区三区| 国产成人精品久久二区二区免费| or卡值多少钱| 国产亚洲精品一区二区www| 成在线人永久免费视频| 国产亚洲精品一区二区www| 少妇裸体淫交视频免费看高清 | 亚洲avbb在线观看| 午夜免费观看网址| 啦啦啦观看免费观看视频高清 | 搞女人的毛片| 免费人成视频x8x8入口观看| 国产亚洲精品久久久久久毛片| 国产精华一区二区三区| 国产成+人综合+亚洲专区| 国产成年人精品一区二区| 脱女人内裤的视频| 99国产综合亚洲精品| 少妇熟女aⅴ在线视频| a级毛片在线看网站| 久久香蕉精品热| 成年人黄色毛片网站| 精品电影一区二区在线| 久久精品国产99精品国产亚洲性色 | 制服丝袜大香蕉在线| 国产乱人伦免费视频| 久久精品成人免费网站| 黄色 视频免费看| 国产麻豆69| 搡老岳熟女国产| 国产成人欧美在线观看| 国产免费av片在线观看野外av| 亚洲天堂国产精品一区在线| 亚洲精品国产精品久久久不卡| 一区二区三区国产精品乱码| 亚洲七黄色美女视频| 变态另类成人亚洲欧美熟女 | 亚洲精品在线观看二区| 成人亚洲精品av一区二区| 久久精品国产清高在天天线| 免费在线观看日本一区| 国产亚洲欧美在线一区二区| 国产免费男女视频| 一级,二级,三级黄色视频| 亚洲 欧美 日韩 在线 免费| 精品无人区乱码1区二区| 美女大奶头视频| 日韩欧美国产在线观看| 成人亚洲精品一区在线观看| 欧美激情久久久久久爽电影 | 欧美+亚洲+日韩+国产| 中文字幕色久视频| 欧美午夜高清在线| 91精品国产国语对白视频| 久久人妻福利社区极品人妻图片| 久久国产精品影院| 三级毛片av免费| 国产不卡一卡二| 精品久久久久久久久久免费视频| 亚洲av电影在线进入| 又黄又爽又免费观看的视频| 在线观看免费日韩欧美大片| 成人av一区二区三区在线看| 女人被狂操c到高潮| 欧美午夜高清在线| 色播在线永久视频| 一级片免费观看大全| 国产一区二区三区视频了| 日韩一卡2卡3卡4卡2021年| 久久国产精品男人的天堂亚洲| 国产片内射在线| 久久精品影院6| 国产成+人综合+亚洲专区| 1024视频免费在线观看| 亚洲 国产 在线| 欧美成人免费av一区二区三区| 久久中文看片网| 久久 成人 亚洲| 性色av乱码一区二区三区2| 手机成人av网站| 一区在线观看完整版| 久久人人精品亚洲av| 成人亚洲精品av一区二区| 88av欧美| 国产伦一二天堂av在线观看| 黄片大片在线免费观看| av天堂在线播放| 日本三级黄在线观看| 老汉色av国产亚洲站长工具| 欧美性长视频在线观看| 午夜精品在线福利| 精品久久久久久,| 国产高清videossex| 久久久久久久午夜电影| 欧美日韩精品网址| 久久香蕉激情| 国产又爽黄色视频| 国产aⅴ精品一区二区三区波| 久久久精品欧美日韩精品| 久热爱精品视频在线9| 一进一出抽搐动态| 男女做爰动态图高潮gif福利片 | 亚洲第一青青草原| 亚洲av片天天在线观看| 麻豆av在线久日| 亚洲全国av大片| 亚洲男人的天堂狠狠| 十八禁网站免费在线| 欧美绝顶高潮抽搐喷水| 91国产中文字幕| 村上凉子中文字幕在线| 丰满人妻熟妇乱又伦精品不卡| 女性生殖器流出的白浆| 亚洲午夜精品一区,二区,三区| 制服诱惑二区| 久久久国产欧美日韩av| 制服人妻中文乱码| 天天添夜夜摸| 日韩中文字幕欧美一区二区| 日本vs欧美在线观看视频| 在线观看一区二区三区| 国产激情欧美一区二区| av视频在线观看入口| 亚洲精品中文字幕在线视频| 91麻豆av在线| 亚洲男人天堂网一区| 国产亚洲精品一区二区www| 一边摸一边抽搐一进一小说| 日本五十路高清| 91大片在线观看| 免费看美女性在线毛片视频| 亚洲熟女毛片儿| 国产97色在线日韩免费| 日本精品一区二区三区蜜桃| 在线十欧美十亚洲十日本专区| 欧美色视频一区免费| 中文字幕人成人乱码亚洲影| 一级毛片精品| 日本 欧美在线| 欧美+亚洲+日韩+国产| 高清在线国产一区| 国产av精品麻豆| 久久久久久免费高清国产稀缺| 中文字幕色久视频| 日韩三级视频一区二区三区| 曰老女人黄片| 免费在线观看黄色视频的| 久热这里只有精品99| 中文字幕高清在线视频| 99riav亚洲国产免费| av天堂在线播放| 亚洲天堂国产精品一区在线| 久久中文字幕人妻熟女| 一区二区三区激情视频| 99久久精品国产亚洲精品| 婷婷六月久久综合丁香| 中文字幕高清在线视频| 麻豆av在线久日| 日本五十路高清| 精品久久久久久久久久免费视频| 男女之事视频高清在线观看| 欧美亚洲日本最大视频资源| 国产单亲对白刺激| 美女高潮喷水抽搐中文字幕| 两性午夜刺激爽爽歪歪视频在线观看 | 午夜a级毛片| 91精品国产国语对白视频| 电影成人av| 神马国产精品三级电影在线观看 | 可以免费在线观看a视频的电影网站| 长腿黑丝高跟| 欧美精品亚洲一区二区| 免费在线观看亚洲国产| 亚洲男人天堂网一区| 色老头精品视频在线观看| 美女 人体艺术 gogo| 亚洲,欧美精品.| 国产免费男女视频| av福利片在线| 在线永久观看黄色视频| 久久精品亚洲精品国产色婷小说| 久9热在线精品视频| 精品人妻在线不人妻| 国产亚洲精品一区二区www| 波多野结衣一区麻豆| 一区二区日韩欧美中文字幕| 欧美日本视频| 国产欧美日韩一区二区精品| 两个人免费观看高清视频| 国产亚洲精品av在线| 在线观看午夜福利视频| 亚洲自拍偷在线| 国产精品电影一区二区三区|