• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Novel Thermally Coupled Reactive Distillation Column for the Hydrolysis of Methyl Acetate

    2015-06-22 14:38:29ZhaiJianLiuYuliangSunLanyiWangRujun
    中國煉油與石油化工 2015年2期
    關鍵詞:節(jié)約能源河網(wǎng)節(jié)約用水

    Zhai Jian; Liu Yuliang; Sun Lanyi; Wang Rujun

    (1.State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao 266580; 2. China Petroleum Engineering Co., Ltd., Beijing Company, Beijing 100085)

    A Novel Thermally Coupled Reactive Distillation Column for the Hydrolysis of Methyl Acetate

    Zhai Jian1; Liu Yuliang1; Sun Lanyi1; Wang Rujun2

    (1.State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao 266580; 2. China Petroleum Engineering Co., Ltd., Beijing Company, Beijing 100085)

    A different pressure thermally coupled reactive distillation column (DPT-RD) for the hydrolysis of methyl acetate (MeAc) is developed, and its design and optimization procedures are investigated. The sensitivity analysis is carried out to minimize the energy consumption, which is associated with the total annual cost (TAC). The influence of the proposed DPTRD scheme on energy consumption and economic efficiency are evaluated in comparison with the conventional reactive distillation column (CRD). Both the DPT-RD and CRD are simulated with the Aspen Plus?, and it can be observed that for the DPT-RD the energy consumption and the TAC are reduced, and the thermodynamic efficiency is increased as compared with the CRD process.

    different pressure thermally coupled distillation; reactive distillation; thermodynamic efficiency; energy savings; total annual cost

    1 Introduction

    Distillation columns are widely used in the petrochemical process, but they are also well-known for their high energy consumption and low thermodynamic efficiency. As a result, the process intensification becomes an important trend in chemical industry, which can improve process efficiency and decrease energy consumption by linking different separation units together or integrating with other processes[1]. Many kinds of energy integration techniques have been developed, such as the dividing wall column[2-3], the internally heat-integrated distillation column[4-6], the heat pump-assisted distillation column[7-8], etc. The different pressure thermally coupled distillation (DPT-CD) column is an example of internally thermally coupled distillation technology developed to achieve energy conservation[9]. In this technology, a distillation column is divided into two columns operating under different pressures. The top stream from the high-pressure column is used as the heat source for the reboiler of the low-pressure column. In this way, the thermally coupled process is realized. Li, et al.[9]analyzed the energy saving of DPT-CD by taking the separation of propane-propylene and C4hydrocarbons as an example, and found out that upon comparing with ordinary distillation technologies, the energy consumption could be reduced by 92.3% and 87.1% in these two DPT-CD processes, respectively.

    Reactive distillation is an innovative process with numerous applications in the petroleum and chemical industries. It combines the reaction and separation operations together, which can reduce the energy consumption and capital costs[10-11]. This technique is specifically applied to the equilibrium-limited reactions such as esteri fication and ester hydrolysis reactions. The conversion rate can be increased far beyond what is expected due to the continuous removal of reaction products from the reactive zone. Researchers’ results[12-13]showed that reactive distillation has great economic and environmental advantages. Gao Xin, et al.[14]proposed a new process based on the catalytic distillation for MeAc hydrolysis, and the energy saving for this process is 28.6%. Fuchigami[15]applied reactive distillation to the hydrolysis of MeAc by using reactive column packing made of ion-exchange resin molded with polyethylene powder in a furnace, investigated the in fluence of operating variables on the conversion of MeAc, and finally found out that the total energy requirement of

    the optimum process was only about 50% as much as that of the conventional process. Han, et al.[16]proposed adding a pre-reactor before the reactive distillation column, and got a great improvement in MeAc throughput compared with the traditional process. Lee, et al.[17]proposed a novel process for MeAc hydrolysis, in which the reflux drum of the distillation column was used as the fixed bed reactor packed with solid acid catalysts.

    The different pressure thermally coupled reactive distillation column (DPT-RD) proposed in this article combines DPT-CD and reactive distillation to form a new process intensification technology. Gao Xin and coworkers[18]investigated this novel configuration in the process for tert-amyl methyl ether synthesis. The results showed that the total annual cost (TAC) of this process was by about 6.6% lower than the conventional reactive distillation column (CRD) process. As a typical ester hydrolysis reaction, the hydrolysis of MeAc is investigated in this paper. The design and optimization procedures of the DPT-RD proposed are evaluated and the thermodynamic efficiency and economic performance of the DPTRD are studied.

    2 Process Description

    2.1 Conventional reactive distillation column

    Upon considering the conversion of MeAc and the need of subsequent separation process, the process flow diagram in Figure 1 is supposed as the conventional process in this work.

    Figure 1 Conventional reactive distillation process for MeAc hydrolysis

    The CRD column has 27 stages, which can be divided into three sections, namely the rectifying section, the stripping section and the reactive section (6thto 17thstage). The separation occurs in all sections. In the reactive section, the MeAc hydrolysis reaction takes place:

    The reaction is rate controlled with a liquid holdup of 0.063 m3in the reactive section. The NKC-9 ion exchange resin is chosen as the catalyst, and Quan Xia, et al.[19]provided the reaction kinetics equations which are shown as follows:

    where R is the reaction rate, L/(mol·h); xiis the molar fraction of component i; and kfand krare reaction kinetic constants of the forward and reverse reaction, respectively, L/(mol·h). The reactive section is packed with acid catalyst. The assumptions are made as follows: the catalyst loading occupies half of the tray holdup volume, and the tray holdup is determined by assuming a weir height of 50 mm with a tray spacing of 0.6 m.

    A mixture of MeAc and methanol (65:35 in molar ratio) is fed to the bottom of reactive zone with a flow rate of 76.92 kmol/h, and water is routed to the top of column with a flow rate of 250 kmol/h. The vapor condensed at the top of the column is totally recycled. The reflux ratio (reflux ratio=FL/FDas shown in Figure 2) of the CRD is specified at 10 and the top stage/condenser pressure is 0.112 1 MPa with a stage pressure drop of 0.000 7 MPa. The flow sheet of CRD implemented in the Aspen Plus is shown in Figure 2, and Table 1 gives its design parameters.

    Figure 2 Flow sheet of CRD implemented in Aspen Plus

    Table 1 Design parameters of CRD

    2.2 Different pressure thermally coupled reactive distillation column

    DPT-RD contains an atmospheric column and a column with higher pressure. As the hydrolysis of MeAc is an endothermic reaction, high pressure and temperature is in favor of positive reaction, and a configuration of the reaction taking place in the high-pressure column is chosen in this work. The model of DPT-RD in the platform of the Aspen Plus is shown in Figure 3. DPT-RD mainly contains a high-pressure column (T1), a low-pressure column (T2), a compressor (COMPR), a main heat exchanger (HE1), an assisted reboiler (HE3) and an assisted condenser (HE2). The reactive zone of DPT-RD is wholly placed in the high-pressure column (T1).

    The feedstocks and products of DPT-RD are identical with CRD to keep the comparability of the two processes. The design parameters of DPT-RD are detailed in Table 2. In this study, the split fractions of splitters SP1 and SP2 are defined as

    where FT1D-CR, FT1D-1, FT2B-P, and FT2Bare the flow rate of T1D-CR, T1D-1, T2B-P and T2B in Figure 3, respectively.

    Figure 3 Flow sheet model of DPT-RD implemented in Aspen Plus

    Table 2 Design parameters of DPT-RD

    3 Design and Simulation

    There are three steps for the development of DPT-RD: shortcut design, rigorous simulation and optimization. The design method of the DPT-RD is based on the CRD. The feed conditions, product specifications and column operating conditions are available from either the plant or the given examples depending on the situation.

    The simulation of the DPT-RD is carried out using the rigorous distillation module RadFrac of Aspen Plus?. The UNIQUAC method is adopted for the calculation of the activity coefficients in liquid phase and the Hayden-O’Conell equation of state is used to describe the vapor phase behavior. The predicted azeotropic temperatures and compositions agree well with experimental results[20], as shown in Table 3.

    The shortcut design of the DPT-RD can be obtained by dividing a CRD into two columns with different pressures and by exchanging heat between the top stream from the high-pressure column and the bottom stream of the lowpressure column. And a compressor is adopted to provide the upward vapor for the high-pressure column.

    The RadFrac module of Aspen Plus?, a rigorous model for simulating all types of multistage vapor-liquid fractionation operations, is selected for the simulation of the flowchart as shown in Figure 3. The UNIQ-HOC physicalproperty method is adopted when the simulation is implemented using the Aspen Plus. Rigorous simulation used in the present study is based on the equilibrium-stage model, which uses the mass, equilibrium, summation of molar fractions and enthalpy (MESH) equations for each stage. The stage numbers of the whole column and reaction section in DPT-RD are the same as those of CRD respectively, with the purpose of comparing the performance of the two processes. And for both of DPT-RD and CRD, the stages are numbered in a downward direction.

    Table 3 Properties of azeotropic mixtures obtained during hydrolyzation of MeAc

    According to the features of DPT-RD (Figure 3), many sensitivity tests have been carried out in the optimization process to adjust the design and operating variables. Here, the design variables considered are the top pressure of T1, the compression ratio, the feeding stages of water and MeAc, the split fraction of SP1, and the split fraction of SP2. By keeping the input conditions identical for both distillation schemes, the variables of the DPT-RD are systematically adjusted to obtain the conditions that meet the product specifications.

    3.1 Selection of top pressure of T1

    Here, the heat transfer temperature difference refers to the difference between the top temperature of T1 and the bottom temperature of T2. Only after the heat transfer temperature difference reaches a specific value, the DPTRD then can operate effectively, which is very crucial for the good performance of DPT-RD. Figure 4 illustrates how the top pressure of T1 affects the heat transfer temperature difference of DPT-RD. It shows that, along with the increase in the top pressure of T1, the top temperatureof T1 would increase while the bottom temperature of T2 remains nearly unchanged, and the temperature difference would enlarge finally. When the heat duty keeps constant, the heat-exchange area should increase with the reduction of the temperature difference. Upon considering the cost of heat exchanger and the normal operation of DPT-RD, the top pressure of T1 was set at 0.233 0 MPa.

    Figure 4 Effect of pressure on heat transfer temperature difference

    3.2 Selection of compression ratio

    The influence of compression ratio on product purity and energy consumption of DPT-RD is presented in Figure 5 with other variables remaining unchanged. Obviously, as the compression ratio increases, the molar fraction of MeAc in the product stream drawn from the bottom of T2 slightly decreases. However, the energy consumed by the compressor significantly increases with an increasing compression ratio. Finally, the compression ratio is selected as 2.5 to meet the product specification.

    Figure 5 Effect of compression ratio on product purity andenergy consumption

    3.3 Selection of feeding stage of water

    The influence of the feeding stage of water on the product purity and energy consumption is displayed in Figure 6. This simulation experiment is performed with the values of other variables fixed. It can be concluded that the feeding stage of water has little impact on product purity and energy consumption. The 6th stage (numbered from top downward) is chosen as the stage of water feeding, where the molar fraction of MeAc in product stream and the compressor duty would change relatively quickly.

    Figure 6 Effect of feeding stage of water on product purity and energy consumption

    3.4 Selection of feeding stage of MeAc and methanol

    The feeding stage of MeAc and methanol has been varied from 8th to 19th (numbered from top downward), while the values of other variables remain the same as those shown in Table 3. Figure 7 shows how the feeding stage of MeAc and methanol affects the product purity and energy consumptionof DPT-RD. Both of the molar fraction of MeAc and the compressor duty nearly remain constant before the feeding stage moves to the 16th stage, but when the feeding stage continues to move downward, the compressor consumes more energy and the product purity drops sharply. The stream of MeAc and methanol is fed at 16th stage hereupon to achieve the desired product purity in this work.

    3.5 Selection of split fraction of SP1

    Figure 8 shows the effect of split fraction of SP1 on product purity and energy consumption, with other variables remaining constant. It’s clear that, when the split fraction of SP1 increases, the product purity also increases, but the energy consumption increases constantly as well. This happens because of the increase in the flow rates inside the column. To save energy as much as possible, the split fraction of SP1 is chosen as 0.43.

    Figure 8 Effect of split fraction of SP1 on product purity and energy consumption

    3.6 Selection of split fraction of SP2

    The top pressure of T1, the compression ratio, the feeding stage of water, the feeding stage of MeAc and methanol, and the split fraction of SP1 are specified at 0.233 0 MPa, 2.5, 4, 17, and 0.43, respectively, as required by the test process. When the split fraction of SP2 varies, the corresponding product purity and energy consumption profiles are presented in Figure 9. As the split fraction of SP2 increases, the product purity at first remains unchanged and then drops quickly, while the energy consumption decreases continuously. This happens because the hydrolysis of MeAc is an equilibrium-limited reaction, and the continuous removal of reaction products facilitates the conversion of MeAc. From this sensitivity test, the split

    另外,美國“河網(wǎng)”組織于2009年10月26日舉辦了主題為“節(jié)約用水,節(jié)約能源:應對氣候變化和保護河流的綜合方法”的研討會,其主要議題就是水—能、節(jié)水和節(jié)能的關系。相信隨著全球氣候變化導致的水資源供給不穩(wěn)定性加劇以及能源緊缺,該領域?qū)蔀槲磥淼囊粋€研究熱點。

    Figure 9 Effect of split fraction of SP2 on product purity and energy consumption

    fraction of SP2 can be selected as 0.55. Based on the aforementioned work, the optimum parameters of DPT-RD for the hydrolysis of MeAc can be obtained, and the simulation results of DPT-RD under optimal conditions are shown in Table 4.

    4 Results and Discussions

    There are manyReferences for the calculation of thermodynamic efficiency and total annual cost (TAC)[21-22]. The thermodynamic analysis results and TAC of CRD and DPT-RD for the hydrolysis of MeAc are summarized in Table 5.It can be seen that the CRD requires a heat duty of 7 062.3 kW while the energy consumption of the DPT-RD is 2 441.1 kW, which shows that the DPT-RD can save the energy by 36.1% compared to the CRD. The total heat transfer area of the reboilers of the CRD is 357.3 m2, while that of the DPT-RD is 149.3 m2, which can achieve a reduction of 58.2%. The reduction in total heat transfer area of the condensers is about 90.6% with the value equating to 560.6 m2for the CRD and 54.1 m2for the DPT-RD, respectively. The capital cost investment for the DPT-RD is increased compared to the CRD because of the expensive cost of compressor used in the DPT-RD. As regards the operating cost aspects, the CRD requires both a bottom reboiler and a top condenser, whereas DPT-RD could omit the bottom reboiler. Hence, the operating cost for the DPT-RD is relatively low. As a result, compared to the CRD, the TAC for the DPT-RD is decreased by about 41.3% over a period of 5 years of plant life time with the value equating to 2 238.2×103$/a for the CRD and 1 314.0×103$/a for the DPT-RD, respectively. Besides, the thermodynamic efficiency is enhanced by 2.9%. According to the above analysis, it is obvious that the DPT-RD is an economic option and can save much energy and TAC for the hydrolysis of MeAc.

    Table 5 Thermodynamic analysis results and TAC of CRD and DPT-RD for the hydrolysis of MeAc

    5 Conclusions

    In this study, the hydrolysis of MeAc is studied using a CRD and a different pressure thermally coupled reactive distillation column (DPT-RD). The design configuration and optimization of this technology are investigated. The optimal design flow sheet of DPT-RD is obtained by minimizing the total energy consumption of the process by means of the sensitivity analysis. The results show that the proposed DPT-RD can achieve significant energy savings and improve the thermodynamic efficiency by around 2.9%, and its TAC is reduced by 41.3% in comparison with the CRD. Obviously, the DPT-RD provides advantages in terms of higher energy savings and a lower TAC.

    Acknowledgements: This work was supported by the National Natural Science Foundation of China (Grant Nos. 21276279, 21476261); the Key Technologies Development Project of Qingdao Economic and Technological Development Zone (Grant No. 2013-1-57); the Fundamental Research Funds for the Central Universities (No. 14CX05030A; No. 14CX06108A). Furthermore, the authors are grateful to the editor and the anonymous reviewers for their helpful comments and constructive suggestions with regard to the revision of the paper.

    [1] R eay D. The role of process intensification in cutting greenhouse gas emissions[J]. Applied Thermal Engineering, 2008, 28(16): 2011-2019

    [2] M ueller I, Kenig E Y. Reactive distillation in a dividing wall column: Rate-based modeling and simulation[J]. Industrial & Engineering Chemistry Research, 2007, 46(11): 3709-3719

    [3] P remkumar R, Rangaiah G P. Retrofitting conventional column systems to dividing-wall columns[J]. Chemical Engineering Research and Design, 2009, 87(1): 47-60

    [5] N akaiwa M, Huang K, Endo A, et al. Internally heatintegrated distillation columns: A review[J]. Chemical Engineering Research and Design, 2003, 81(1): 162-177

    [6] Naito K, Nakaiwa M, Huang K, et al. Operation of a bench-scale ideal heat integrated distillation column (HID-iC): an experimental study[J]. Computers & Chemical Engineering, 2000, 24(2-7): 495-499

    [7] Gadalla M, Oluji? ?, De Rijke A, et al. Reducing CO2emissions of internally heat-integrated distillation columns for separation of close boiling mixtures[J]. Energy, 2006, 31(13): 2409-2417

    [8] Annakou O, Mizsey P. Rigorous investigation of heat pump assisted distillation[J]. Heat Recovery Systems and CHP, 1995, 15(3): 241-247

    [9] Li H, Li X, Luo M. Different pressure thermally coupled distillation technology for energy saving [J]. Chemical Industry and Engineering Progress, 2008, 27(7): 1125-1128

    [10] Luyben W L, Yu C C. Reactive Distillation Design and Control[M]. Wiley-AIChE, 2008

    [11] Sundmacher K, Kienle A. Reactive Distillation: Status and Future Directions[M]. Wiley-VCH, 2006

    [12] Taylor R., Krishna R. Modelling reactive distillation[J]. Chemical Engineering Science, 2000, 55(22): 5183-5229

    [13] Malone M F. Reactive distillation[J]. Industrial & Engineering Chemistry Research, 2000, 39(11): 3953-3957

    [14] Gao X, Li X, Li H. Hydrolysis of methyl acetate via catalytic distillation: Simulation and design of new technological process[J]. Chemical Engineering and Processing: Process Intensification, 2010, 49(12): 1267-1276

    [15] Fuchigami Y. Hydrolysis of methyl acetate in distillation column packed with reactive packing of ion exchange resin[J]. Journal of Chemical Engineering of Japan, 1990, 23(3): 354-359

    [16] Han S J, Jin Y, Yu Z Q. Application of a fluidized reaction-distillation column for hydrolysis of methyl acetate[J]. Chemical Engineering Journal, 1997, 66(3): 227-230

    [17] Lee M K, Kim T J. Method and apparatus for hydrolyzing methyl acetate: KR, 2000072037[P], 2000-12-05

    [18] Gao X, Wang F Z, Li H., et al. Heat-integrated reactive distillation process for TAME synthesis[J]. Separation and Purification Technology, 2014, 132: 468-478

    [19] Quan X, Chen X, Wei K. Kinetics of the hydrolysis of methyl acetate catalyzed by NKC-9 cation-exchange resin[J]. Industrial Catalysis, 2006, 14(10): 31-35 (in Chinese)

    [20] Gmehling J, Menke J, Krafczyk J, et al. Azeotropic Data, Volume 3[M]. VCH Verlag, Weinheim, 2004

    [21] Mane A, Jana A K. A new intensified heat integration in distillation column[J]. Industrial & Engineering Chemistry Research, 2010, 49(19): 9534-9541

    [22] SunlY, Chang X W, Qi C X, et al. Implementation of ethanol dehydration using dividing-wall heterogeneous azeotropic distillation column[J]. Separation Science and Technology, 2011, 46(8): 1365-1375

    date: 2014-12-14; Accepted date: 2015-04-06.

    Professor Sun Lanyi, Telephone: +86-13854208340; Fax: +86-532-86981787; E-mail: sunlanyi@upc.edu.cn.

    猜你喜歡
    節(jié)約能源河網(wǎng)節(jié)約用水
    可穿戴設備高效自供電結(jié)構(gòu)設計研究
    基于小世界網(wǎng)絡的海河流域河網(wǎng)結(jié)構(gòu)及功能響應
    水科學進展(2023年4期)2023-10-07 11:23:44
    廣 告 目 次
    節(jié)約用水
    品牌研究(2022年23期)2022-08-24 03:38:58
    節(jié)約能源(公益宣傳)
    節(jié)約用水
    基于PSR模型的上海地區(qū)河網(wǎng)脆弱性探討
    節(jié)約用水
    節(jié)約用水
    不同引水水源對平原河網(wǎng)影響分析
    亚洲成av人片免费观看| 久久国产精品影院| 一a级毛片在线观看| or卡值多少钱| 麻豆国产av国片精品| 亚洲欧美精品综合久久99| 香蕉久久夜色| 日本五十路高清| 五月玫瑰六月丁香| 成人性生交大片免费视频hd| 久久久久久久久免费视频了| 成年女人看的毛片在线观看| av欧美777| 十八禁网站免费在线| 夜夜躁狠狠躁天天躁| 国产精品亚洲av一区麻豆| 欧美日韩乱码在线| 欧美一区二区国产精品久久精品| 天堂√8在线中文| or卡值多少钱| 午夜免费成人在线视频| 欧美三级亚洲精品| 亚洲精品乱码久久久v下载方式 | 色播亚洲综合网| 亚洲九九香蕉| 亚洲,欧美精品.| 国产伦精品一区二区三区视频9 | 亚洲一区二区三区色噜噜| 国产精品亚洲一级av第二区| 欧美精品啪啪一区二区三区| 久久久久国产精品人妻aⅴ院| 久久香蕉精品热| 婷婷精品国产亚洲av在线| 成人特级av手机在线观看| av女优亚洲男人天堂 | 日本免费a在线| 国产亚洲欧美98| 欧美日本视频| 午夜影院日韩av| 极品教师在线免费播放| 婷婷丁香在线五月| 在线观看66精品国产| avwww免费| 欧美在线一区亚洲| 国产又黄又爽又无遮挡在线| 两个人的视频大全免费| 床上黄色一级片| 欧美色视频一区免费| 99热这里只有是精品50| 欧美一区二区精品小视频在线| 天堂动漫精品| 国产欧美日韩一区二区精品| netflix在线观看网站| 波多野结衣高清无吗| 成年女人永久免费观看视频| 热99re8久久精品国产| 看片在线看免费视频| 老熟妇仑乱视频hdxx| 啦啦啦观看免费观看视频高清| 亚洲无线观看免费| 国产1区2区3区精品| 国产欧美日韩精品一区二区| h日本视频在线播放| 母亲3免费完整高清在线观看| 午夜福利视频1000在线观看| 色视频www国产| 黑人欧美特级aaaaaa片| 日韩中文字幕欧美一区二区| 国产乱人伦免费视频| 91字幕亚洲| 亚洲激情在线av| 国产蜜桃级精品一区二区三区| 国产午夜精品久久久久久| 久久精品影院6| www.www免费av| 亚洲国产精品久久男人天堂| 亚洲欧美精品综合一区二区三区| 国产精品久久久久久精品电影| 日日摸夜夜添夜夜添小说| 成熟少妇高潮喷水视频| 午夜福利在线观看吧| 五月伊人婷婷丁香| 网址你懂的国产日韩在线| 欧美成人免费av一区二区三区| 日韩三级视频一区二区三区| 午夜两性在线视频| 成人精品一区二区免费| 成熟少妇高潮喷水视频| 99国产极品粉嫩在线观看| 日韩欧美国产在线观看| 久久精品综合一区二区三区| 小蜜桃在线观看免费完整版高清| 搡老妇女老女人老熟妇| 亚洲成人免费电影在线观看| 精品久久久久久久久久久久久| www.999成人在线观看| 12—13女人毛片做爰片一| 国产97色在线日韩免费| 亚洲,欧美精品.| 欧美三级亚洲精品| 脱女人内裤的视频| 一本精品99久久精品77| 麻豆久久精品国产亚洲av| 99热只有精品国产| 女警被强在线播放| 天天一区二区日本电影三级| 草草在线视频免费看| 91久久精品国产一区二区成人 | 免费看日本二区| 亚洲自偷自拍图片 自拍| 男女午夜视频在线观看| 亚洲黑人精品在线| 国产 一区 欧美 日韩| 女同久久另类99精品国产91| 免费高清视频大片| 日本撒尿小便嘘嘘汇集6| 日韩欧美在线乱码| 搡老岳熟女国产| 狠狠狠狠99中文字幕| 中出人妻视频一区二区| 国产视频一区二区在线看| 国产欧美日韩一区二区三| 麻豆av在线久日| av黄色大香蕉| 精品一区二区三区视频在线观看免费| www.999成人在线观看| av女优亚洲男人天堂 | 在线观看美女被高潮喷水网站 | 日本a在线网址| 99久国产av精品| 婷婷亚洲欧美| 国产精品久久久久久精品电影| a在线观看视频网站| 久久人妻av系列| 小说图片视频综合网站| 亚洲精品美女久久久久99蜜臀| 后天国语完整版免费观看| 日韩大尺度精品在线看网址| 欧美又色又爽又黄视频| 欧美成人性av电影在线观看| 成熟少妇高潮喷水视频| 国产精品一区二区精品视频观看| 日韩欧美一区二区三区在线观看| 中国美女看黄片| 最新美女视频免费是黄的| 日本黄色视频三级网站网址| 男女床上黄色一级片免费看| 国产淫片久久久久久久久 | 久久这里只有精品19| 在线国产一区二区在线| 亚洲精品在线观看二区| 叶爱在线成人免费视频播放| 女人被狂操c到高潮| 色老头精品视频在线观看| 亚洲美女视频黄频| a在线观看视频网站| 看免费av毛片| 亚洲精品在线观看二区| 亚洲av第一区精品v没综合| 熟女少妇亚洲综合色aaa.| 白带黄色成豆腐渣| 国产精品久久久久久精品电影| 亚洲性夜色夜夜综合| 久久性视频一级片| 中文在线观看免费www的网站| 国产成人精品久久二区二区免费| 亚洲精品在线观看二区| 日本a在线网址| www.熟女人妻精品国产| 午夜福利在线观看免费完整高清在 | 欧美激情在线99| 午夜成年电影在线免费观看| 日韩中文字幕欧美一区二区| 成人特级av手机在线观看| www国产在线视频色| 在线观看66精品国产| 欧美午夜高清在线| 别揉我奶头~嗯~啊~动态视频| 搡老熟女国产l中国老女人| 国产高清激情床上av| 香蕉国产在线看| 99久久99久久久精品蜜桃| 亚洲国产看品久久| 久久午夜亚洲精品久久| 色综合婷婷激情| 欧美在线黄色| 毛片女人毛片| 欧美高清成人免费视频www| 巨乳人妻的诱惑在线观看| 桃红色精品国产亚洲av| 人人妻人人看人人澡| www日本黄色视频网| 男人的好看免费观看在线视频| 亚洲av中文字字幕乱码综合| 丁香欧美五月| 丝袜人妻中文字幕| 少妇的逼水好多| 国产一区二区在线观看日韩 | 99久久精品国产亚洲精品| 色老头精品视频在线观看| 一二三四社区在线视频社区8| 日本撒尿小便嘘嘘汇集6| av天堂中文字幕网| 成年女人永久免费观看视频| 特大巨黑吊av在线直播| 亚洲国产高清在线一区二区三| 噜噜噜噜噜久久久久久91| 午夜成年电影在线免费观看| 日韩免费av在线播放| 亚洲七黄色美女视频| 国产成人av激情在线播放| 国产男靠女视频免费网站| 在线观看午夜福利视频| 欧美zozozo另类| 精品午夜福利视频在线观看一区| 久久精品91蜜桃| 久久中文字幕人妻熟女| 日本三级黄在线观看| 日韩免费av在线播放| 色播亚洲综合网| 国产精品电影一区二区三区| 色噜噜av男人的天堂激情| 精品熟女少妇八av免费久了| 国产成+人综合+亚洲专区| 欧美午夜高清在线| 亚洲成a人片在线一区二区| 国产亚洲av高清不卡| 久久久久久大精品| 久久伊人香网站| 亚洲专区中文字幕在线| 99国产精品一区二区蜜桃av| 国产探花在线观看一区二区| 巨乳人妻的诱惑在线观看| 久久久国产成人免费| 亚洲国产精品合色在线| 波多野结衣高清作品| 亚洲一区高清亚洲精品| 成人特级黄色片久久久久久久| 亚洲九九香蕉| 日韩欧美国产在线观看| 国产三级在线视频| 禁无遮挡网站| 免费看光身美女| 亚洲精品美女久久久久99蜜臀| 成熟少妇高潮喷水视频| 欧美+亚洲+日韩+国产| 一边摸一边抽搐一进一小说| 亚洲成av人片在线播放无| 色吧在线观看| 欧美中文日本在线观看视频| 身体一侧抽搐| 欧美激情在线99| 成人精品一区二区免费| 1024香蕉在线观看| 国产97色在线日韩免费| 人妻夜夜爽99麻豆av| 亚洲aⅴ乱码一区二区在线播放| 脱女人内裤的视频| 在线观看一区二区三区| 国产成人av教育| 麻豆成人av在线观看| 成在线人永久免费视频| 国产成人av激情在线播放| 少妇丰满av| 操出白浆在线播放| 亚洲专区国产一区二区| 极品教师在线免费播放| 精品国产乱子伦一区二区三区| 97人妻精品一区二区三区麻豆| 久久午夜亚洲精品久久| 亚洲国产精品合色在线| 国产一区二区在线av高清观看| 国产精品 欧美亚洲| 国产男靠女视频免费网站| 好男人在线观看高清免费视频| 日韩国内少妇激情av| 欧美一区二区国产精品久久精品| 精品久久久久久久久久久久久| 日韩成人在线观看一区二区三区| 久9热在线精品视频| 国产精品99久久99久久久不卡| 精品乱码久久久久久99久播| 欧美乱妇无乱码| 国产精品亚洲av一区麻豆| 亚洲欧洲精品一区二区精品久久久| 不卡一级毛片| 最近最新免费中文字幕在线| 亚洲专区字幕在线| 欧美一区二区国产精品久久精品| xxx96com| 国产精品av视频在线免费观看| 免费在线观看成人毛片| 亚洲国产高清在线一区二区三| 91久久精品国产一区二区成人 | 又紧又爽又黄一区二区| 免费看美女性在线毛片视频| 99热精品在线国产| 色吧在线观看| 日韩欧美在线二视频| 午夜福利在线在线| 亚洲欧美日韩高清专用| 国产黄片美女视频| 精品国产乱码久久久久久男人| 亚洲 欧美一区二区三区| 他把我摸到了高潮在线观看| 色综合欧美亚洲国产小说| www.自偷自拍.com| 欧美色视频一区免费| 曰老女人黄片| 我要搜黄色片| 亚洲av中文字字幕乱码综合| 国产私拍福利视频在线观看| www.精华液| 99国产极品粉嫩在线观看| 一夜夜www| 怎么达到女性高潮| 久久久成人免费电影| 欧美色视频一区免费| 不卡av一区二区三区| 欧美性猛交╳xxx乱大交人| 免费观看精品视频网站| 99热只有精品国产| 亚洲男人的天堂狠狠| 国产伦在线观看视频一区| 久久热在线av| 男人舔奶头视频| 国产欧美日韩一区二区精品| 亚洲 欧美 日韩 在线 免费| 久久天躁狠狠躁夜夜2o2o| 国内精品一区二区在线观看| 叶爱在线成人免费视频播放| 亚洲成av人片在线播放无| 色综合站精品国产| 欧美一级a爱片免费观看看| 久久中文看片网| 蜜桃久久精品国产亚洲av| 精华霜和精华液先用哪个| 色视频www国产| 午夜免费成人在线视频| 狂野欧美白嫩少妇大欣赏| 99久久久亚洲精品蜜臀av| 亚洲精品久久国产高清桃花| 黄色成人免费大全| 亚洲黑人精品在线| 欧美不卡视频在线免费观看| av视频在线观看入口| 老司机深夜福利视频在线观看| 久久精品综合一区二区三区| 人妻丰满熟妇av一区二区三区| 国产91精品成人一区二区三区| 伦理电影免费视频| 黄色女人牲交| 午夜福利成人在线免费观看| 亚洲欧美日韩无卡精品| 夜夜夜夜夜久久久久| 亚洲精品一区av在线观看| 非洲黑人性xxxx精品又粗又长| 日韩欧美 国产精品| 精品一区二区三区视频在线 | 亚洲熟妇熟女久久| 天堂网av新在线| 一二三四社区在线视频社区8| 天堂网av新在线| 国产精品一区二区三区四区久久| 国产在线精品亚洲第一网站| 18禁国产床啪视频网站| 天堂影院成人在线观看| 在线永久观看黄色视频| 亚洲男人的天堂狠狠| 在线观看一区二区三区| 蜜桃久久精品国产亚洲av| 亚洲美女视频黄频| 国产精品永久免费网站| 色综合亚洲欧美另类图片| 国产精品 欧美亚洲| 久久精品国产亚洲av香蕉五月| 精品99又大又爽又粗少妇毛片 | 精品久久久久久久人妻蜜臀av| 久久精品综合一区二区三区| 小蜜桃在线观看免费完整版高清| 国产精品爽爽va在线观看网站| 亚洲成av人片在线播放无| 听说在线观看完整版免费高清| 欧美乱码精品一区二区三区| 久久久久久大精品| 国产亚洲精品av在线| 亚洲成人中文字幕在线播放| 成年免费大片在线观看| 久久精品人妻少妇| 欧美黑人巨大hd| 日日夜夜操网爽| 波多野结衣高清无吗| 亚洲精品中文字幕一二三四区| 日韩欧美在线二视频| 国产乱人视频| 色精品久久人妻99蜜桃| 最近最新中文字幕大全电影3| 亚洲国产日韩欧美精品在线观看 | 97超视频在线观看视频| 非洲黑人性xxxx精品又粗又长| 熟妇人妻久久中文字幕3abv| 97人妻精品一区二区三区麻豆| 国模一区二区三区四区视频 | 亚洲18禁久久av| 精品一区二区三区视频在线 | 国产精品1区2区在线观看.| 免费电影在线观看免费观看| 老司机午夜福利在线观看视频| 男人舔女人的私密视频| 亚洲欧美一区二区三区黑人| 日日夜夜操网爽| 1000部很黄的大片| 我要搜黄色片| 国产av一区在线观看免费| 国产av在哪里看| 欧美乱妇无乱码| 欧美激情久久久久久爽电影| 1024香蕉在线观看| 成年免费大片在线观看| 成人特级黄色片久久久久久久| 久久精品综合一区二区三区| 国产激情久久老熟女| 伊人久久大香线蕉亚洲五| 久久天躁狠狠躁夜夜2o2o| 麻豆一二三区av精品| 日韩欧美一区二区三区在线观看| 久99久视频精品免费| 白带黄色成豆腐渣| 综合色av麻豆| 日韩大尺度精品在线看网址| 久久久久久国产a免费观看| 中文资源天堂在线| 国产伦人伦偷精品视频| 亚洲av五月六月丁香网| 亚洲精品久久国产高清桃花| 老汉色∧v一级毛片| 非洲黑人性xxxx精品又粗又长| 久久国产乱子伦精品免费另类| 亚洲欧美精品综合久久99| 黄色女人牲交| 高潮久久久久久久久久久不卡| 午夜福利免费观看在线| 熟妇人妻久久中文字幕3abv| 在线观看66精品国产| 欧美成人性av电影在线观看| 中文资源天堂在线| 成在线人永久免费视频| 国产伦精品一区二区三区四那| 麻豆国产97在线/欧美| 亚洲在线观看片| 在线永久观看黄色视频| 精品日产1卡2卡| av国产免费在线观看| 亚洲欧洲精品一区二区精品久久久| 免费高清视频大片| 欧美乱色亚洲激情| 免费看十八禁软件| 久久精品人妻少妇| 亚洲av电影不卡..在线观看| 黄片小视频在线播放| 国产精品电影一区二区三区| 搡老妇女老女人老熟妇| 日韩中文字幕欧美一区二区| 精品一区二区三区四区五区乱码| av欧美777| 亚洲人成网站高清观看| 欧美性猛交╳xxx乱大交人| 亚洲av五月六月丁香网| 国产淫片久久久久久久久 | 成熟少妇高潮喷水视频| 88av欧美| 国产亚洲精品一区二区www| 男女视频在线观看网站免费| 日本黄大片高清| av片东京热男人的天堂| 精品国产美女av久久久久小说| 国产激情欧美一区二区| 亚洲七黄色美女视频| 中文亚洲av片在线观看爽| 国产麻豆成人av免费视频| 五月伊人婷婷丁香| 天堂网av新在线| av在线天堂中文字幕| 欧美绝顶高潮抽搐喷水| 日韩高清综合在线| 又粗又爽又猛毛片免费看| 午夜福利成人在线免费观看| 长腿黑丝高跟| 日韩成人在线观看一区二区三区| 中文字幕最新亚洲高清| 露出奶头的视频| 国产乱人伦免费视频| 国产真实乱freesex| 日韩欧美精品v在线| 色尼玛亚洲综合影院| 波多野结衣高清作品| 成人永久免费在线观看视频| 国产成人影院久久av| 久久欧美精品欧美久久欧美| svipshipincom国产片| 19禁男女啪啪无遮挡网站| 日本熟妇午夜| 国产欧美日韩一区二区精品| 精华霜和精华液先用哪个| 99热这里只有是精品50| 免费观看人在逋| 全区人妻精品视频| 免费在线观看亚洲国产| 一进一出好大好爽视频| 黑人操中国人逼视频| 欧美成人一区二区免费高清观看 | 狂野欧美激情性xxxx| 1024香蕉在线观看| 韩国av一区二区三区四区| 欧美成人一区二区免费高清观看 | 国产视频内射| 免费电影在线观看免费观看| 国产亚洲精品一区二区www| a在线观看视频网站| 日本五十路高清| 99久久成人亚洲精品观看| 久久久久久久午夜电影| 老熟妇乱子伦视频在线观看| 女警被强在线播放| 国产主播在线观看一区二区| 99精品在免费线老司机午夜| 日韩av在线大香蕉| 一区二区三区高清视频在线| 99久久综合精品五月天人人| 中文字幕人妻丝袜一区二区| 国产免费男女视频| 久久午夜亚洲精品久久| www日本黄色视频网| 免费在线观看日本一区| 性色av乱码一区二区三区2| 亚洲成人免费电影在线观看| 日韩有码中文字幕| 99久久精品热视频| 91在线观看av| 十八禁人妻一区二区| 日本五十路高清| 国产又黄又爽又无遮挡在线| 黄色视频,在线免费观看| 亚洲中文字幕日韩| 少妇的丰满在线观看| 亚洲熟妇中文字幕五十中出| 色老头精品视频在线观看| 精品熟女少妇八av免费久了| 国产精品av视频在线免费观看| 亚洲中文日韩欧美视频| 日韩高清综合在线| 在线视频色国产色| 夜夜躁狠狠躁天天躁| а√天堂www在线а√下载| 成人av一区二区三区在线看| 亚洲avbb在线观看| 久久久久久大精品| 午夜两性在线视频| 老司机午夜福利在线观看视频| АⅤ资源中文在线天堂| 网址你懂的国产日韩在线| 很黄的视频免费| 一进一出好大好爽视频| 无限看片的www在线观看| 给我免费播放毛片高清在线观看| 欧美在线黄色| 成人精品一区二区免费| 精品久久久久久久末码| 亚洲乱码一区二区免费版| 男女那种视频在线观看| 亚洲av熟女| 国产乱人视频| 一本精品99久久精品77| 精品免费久久久久久久清纯| 国产爱豆传媒在线观看| 天堂影院成人在线观看| 国产精品女同一区二区软件 | 亚洲人成伊人成综合网2020| 国产欧美日韩一区二区三| 国产伦一二天堂av在线观看| 麻豆成人午夜福利视频| 久久精品aⅴ一区二区三区四区| 人人妻人人看人人澡| 久久久久国内视频| 国产三级在线视频| 99热精品在线国产| 久久亚洲真实| www.自偷自拍.com| 日本一本二区三区精品| а√天堂www在线а√下载| 久久精品人妻少妇| 最新美女视频免费是黄的| 日日干狠狠操夜夜爽| 大型黄色视频在线免费观看| 国产 一区 欧美 日韩| 岛国在线免费视频观看| 成人国产一区最新在线观看| 欧美大码av| 久久香蕉国产精品| 变态另类成人亚洲欧美熟女| 操出白浆在线播放| 午夜影院日韩av| 国内久久婷婷六月综合欲色啪| 波多野结衣高清作品| 亚洲av电影在线进入| 国产在线精品亚洲第一网站| 亚洲自拍偷在线| 欧美极品一区二区三区四区| 国产精品免费一区二区三区在线| 中文字幕久久专区| 制服丝袜大香蕉在线| 在线十欧美十亚洲十日本专区| 精品国产乱码久久久久久男人| 欧美不卡视频在线免费观看| 成年人黄色毛片网站|