• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Preparation of N-Doped TiO2-Loaded Halloysite Nanotubes and Its Photocatalytic Activity under Solar-Light Irradiation

    2015-06-22 14:38:29
    中國(guó)煉油與石油化工 2015年2期

    (College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002)

    Preparation of N-Doped TiO2-Loaded Halloysite Nanotubes and Its Photocatalytic Activity under Solar-Light Irradiation

    Cheng Zhilin; Sun Wei

    (College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002)

    The N-doped TiO2-loaded halloysite nanotubes (N-TiO2/HNTs) nanocomposites were prepared by using chemical vapor deposition method which was realized in autoclave. The photocatalytic activity of nanocomposites was evaluated by virtue of the decomposition of formaldehyde gas under solar-light irradiation. The XRD patterns verified that the anatase structured TiO2was deposited on HNTs. The TEM images showed that the surface of HNTs was covered with nanosized TiO2with a particle size of ca. 20 nm. The UV-vis spectra indicated that the N-TiO2/HNTs presented a significant absorption band in the visible region between 400 nm and 600 nm. Under solar-light irradiation, the highest degradation rate of formaldehyde gas attained 90% after 100 min of solar-light irradiation. The combination of the photocatalytic property of TiO2and the unique structure of halloysite would assert a promising perspective in degradation of organic pollutants.

    photocatalytic activity; halloysite nanotubes; nitrogen-doped; titanium dioxide

    1 Introduction

    Titanium dioxide (TiO2) is an interesting and promising photocatalyst for purifying wastewater via decomposition of organic compounds and for hydrogen production via water splitting[1-4], thanks to its low cost, photostability, chemical inertness, non-toxicity, and high efficiency[5-8]. However, because of its large band gap (3.2 eV), pure TiO2can only be activated by ultraviolet (UV) light which merely accounts for 3%—4% in the whole radiant solar energy. There are many ways to sensitize TiO2in a much larger wavelength region of solar light. Many studies on nonmetal elements doping have been carried out to extend the spectral response of TiO2into the visible region and enhance its photocatalytic activity, such as N[9-12], C[13], S[14], P[15]and B[16]. Among them, the N-doped titania was reported to be the most effective in reducing the band gap.

    So far, a variety of methods for preparation of N-doped TiO2(N-TiO2) have been developed, such as the ion implantation[17-20], sputtering[21-22], the chemical-vapor deposition[23-24]method, the sol-gel[25-26]method, and the decomposition of N-containing organometallic precursors[27-28]. However, TiO2nanoparticles are prone to aggregation, resulting in difficulty in separation and recovery of TiO2nanoparticles from the solution after degradation of pollutants. Therefore, the supporting technology was developed in order to prevent the aggregation of TiO2nanoparticles. To achieve pre-enrichment of pollutants and improve the separation of TiO2particles, immobilization of TiO2on an adsorbent or an inert support to create integrated photocatalytic adsorbents (IPAs) has been proposed[28]. Using IPAs, degradation of pollutants can be achieved by the simultaneous effects of physical adsorption by the adsorbent coupled with photochemical degradation by the immobilized TiO2.

    To date, there has been great interest in preparation of the supported catalysts, such as carbon nanotubes-structured composites[29], magnetic composites[30], graphene composites[31], carbon fiber[32], etc.

    HNTs structured nanomaterials have attracted great interest in their applications in different fields. Owing to their inherent hollow nanotube structure and silicon-aluminum composite structure, halloysite nanotubes (HNTs) have exhibited their promising performance as a catalyst support[33]. Compared to carbon nanotubes (CNTs), HNTs are an economically available nano-material with some unique characteristics[34]. Recently, Papoulis, et al.[35]have reported the fabrication of clay-supported TiO2compos-ites by coating TiO2sol solutions on halloysite nanotubes followed by subsequent hydrothermal treatment. Wang, et al.[36]have reported the TiO2/HNTs composite obtained by the solvothermal treatment with high photocatalytic activity on the degradation of methanol.

    To improve the visible-light photocatalytic activity for TiO2/HNTs applications, the nonmetal element doping method could be simple and effective. Herein, a facile CVD method in this work was employed to prepare N-doped TiO2/HNTs nanocomposites with high solar-light photocatalytic activity. The integrated photocatalytic nanocomposites were evaluated in terms of their ability to remove formaldehyde gas.

    2 Experimental

    2.1 Materials and reagents

    The halloysite nanotubes (HNTs) were obtained from Tianjin Linruide Science and Technology Co., Ltd., China. Titanic chloride and ammonium carbonate were purchased from the Shanghai Chemical Co., Ltd. All reagents were of analytically pure grade and used without further purification.

    2.2 Preparation of N-TiO2/halloysite nanotube composites

    The preparation of the N-TiO2/HNTs composites using the facile CVD method was shown in Figure 1. Firstly, one gram of HNTs and a proper amount of (NH4)2CO3serving as the doping N source were uniformly mixed by milling, and then the upside of bulkhead with many small holes was put into the autoclave. A certain amount of TiCl4was added to the bottom of the autoclave. The Ti/N molar ratio was adjusted by varying the mass of N source. Then the autoclave was transferred into the oven and treated at 100 ℃ for 12 h. At the end of reaction, the autoclave was cooled down to room temperature, and the powder was washed with deionized water at least five times and dried in a vacuum oven at 60 ℃ for 12 h. Finally, the samples were calcined at 500 ℃ for 6 h.

    Figure 1 Sketch of the improved chemical vapor deposition device

    2.3 Measurement of photocatalytic activity

    The photocatalytic reaction was conducted in a 200-mL cylindrical glass vessel. 0.3 g of photocatalysts were evenly coated on a square glass substrate, 70 mm in length and 70 mm in width, and dried under vacuum. A 1000W Xe lamp was used as the simulated solar light source (with an UV portion of 8%). Formaldehyde gas (70 mg/m3) was used as a reactant to evaluate the catalytic activity of NTiO2/HNTs. The degradation rate was calculated by measuring the change in the concentration of formaldehyde before and after reaction by a gas chromatograph.

    2.4 Characterization

    The formation of zeolite membranes was confirmed by X-ray diffraction (XRD) using a Bruker-AXS D8 Advance powder diffractometer. The morphology of samples was observed by a transmission electron microscope (TEM, Tecnai 12, Philips Company). The XPS analysis was recorded by using an ESCALAB 250Xi XPS spectrometer (Thermo Scientific Company). The UV-vis light absorption spectra were obtained from a Varian Cary 5000 spectrophotometer equipped with an integrating sphere assembly

    3 Results and Discussion

    Figure 2 shows the XRD patterns of the N-TiO2/HNTs prepared with varied Ti/N molar ratios. Compared with the pure HNTs sample, all of the observed peaks are mainly consistent with the characteristic peaks of halloysite as shown in Figure 1E. However, the two new peaks at 2θ=48o and 53.9oand a stronger peak at 2θ=25.3ocan be observed when the Ti/N molar ratio was 1:1, 1:2 and 1:3, respectively, and meanwhile the reduction of the halloysite peaks after TiCl4vapor treatment was identified. According to JCPDS 21-1272, all of the characteristic peaks of TiO2can be ascribed to the (101), (004), (200), (211) planes of the anatase type TiO2. This indicates that the TiO2-loaded HNTs structured composite materials were successfully prepared. In addition, the sample witha Ti/N molar ratio of 1:0 indicated no characteristic peaks of TiO2on the XRD pattern, which could give an explanation that the NH3vapor released from the decomposition of N source accelerated the gas-phase hydrolysis of TiCl4under the heated condition, thus promoting the deposition of TiO2on the external surface of HNTs. Figure 3 shows the UV-vis optical absorption spectra obtained by diffuse reflectance of the N-TiO2/HNTs with different Ti/N molar ratios. The previously studied work indicated that only a strong absorption band in the UV region can be observed for pure TiO2[31]. However, the NTiO2/HNTs in this work present a significant absorption tail in the visible region between 400 nm and 600 nm, which is the typical absorption feature of N-TiO2. Furthermore, with a decreasing Ti/N molar ratio, the absorption band in the visible region is even more remarkable, which should be resulted from the increase of the N doping concentration in TiO2. Obviously, the modification of TiO2with nitrogen using the facile CVD method would result in a shift of the absorbance region towards longer wavelength, and even into the 600 nm region. The light absorbance of the N-TiO2/HNTs in the visible-light region is desirable for its practical application since it can be activated even by solar light.

    Figure 2 XRD patterns of N-TiO2/ HNTs obtained with thevaried Ti/N molar ratios

    As shown in Figure 4-A, a majority of HNTs consist of cylindrical tubes, 50 nm—70 nm in diameter and 0.2 μm—2 μm in length. After the facile CVD treatment, a large amount of N-TiO2nanoparticles can be clearly observed with a size of ca. 20 nm deposited on the outer surface of halloysite nanotubes (Figure 4-B). The result of XPS spectrum confirms that the N element has successfully doped into the crystal structure of TiO2.

    Figure 4 TEM micrographs of HNTs (A); N-TiO2/ HNTs at a Ti/N molar ratio of 1:3 (B); and XPS spectrum of N-TiO2/ HNTs (inset)

    Figure 5 shows the dependence of the degradation rate offormaldehyde on HNTs and N-TiO2/HNTs under solarlight irradiation. With a decreasing Ti/N molar ratio in synthetic raw material, the solar-light-induced photocatalytic activity of the prepared sample was obviously enhanced. The maximum value of degradation rate on the N-TiO2/HNTs with a Ti/N molar ratio of 1:3 attained 90% with solar-light irradiation in 100 min, which occurred probably due to the increase of N atoms doped into TiO2. This result is consistent with the conclusion of UV-vis absorption spectrometric analysis. Because of the good absorption performance of HNTs, the photocatalytic activity of the HNTs that was close to 5% should be originated from the absorption of HNTs to formaldehyde, which therefore could keep the throughout stabilized value in the overall irradiation time.

    Figure 5 Degradation rate of formaldehyde on N-TiO2/ HNTs under solar-light irradiation

    4 Conclusions

    The N-doped TiO2-loaded halloysite nanotubes nanocomposites with solar-light photocatalytic activity were successfully prepared by using a facile chemical vapor deposition method. The method was realized via the vapor deposition of TiCl4assisted by decomposition of N source in autoclave at 100 ℃ for 12 h. When the Ti/N molar ratio in raw material was 1:3, the N-doped TiO2/HNTs exhibited a good solar-light photocatalytic oxidation activity for formaldehyde.

    Acknowledgment: This work was supported by the Talent Introduction Fund of Yangzhou University, the Jiangsu Social Development Project (BE2014613) and the Six Talent Peaks of Jiangsu province (2014-XCL-013). The authors also acknowledge the Project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions. The data of this paper originated from the Test Center of Yangzhou University.

    [1] Fujishima A, Honda K. TiO2photoelectrochemistry and photocatalysis[J]. Nature, 1972, 238(5358): 37-38

    [2] Park J H, Kim S, Bard A J. Novel carbon-doped TiO2nanotube arrays with high aspect ratios for efficient solar water splitting[J]. Nano Lett, 2006, 6(1): 234-28

    [3] Khan S U M, Al-Shahry M, Ingler W. B. Efficient photochemical water splitting by a chemically modified N-TiO2[J]. Science, 2002, 297(5589): 2243-2245

    [4] Cermenati L, Pichat P, Guillard C, et al. TiO2photocatalytic mechanisms in water purification by use of quinoline, photo-Fenton generated OH radicals and superoxide dismutase[J]. J Phys Chem B, 1997, 101(14): 2650-2658

    [5] Yang H, Zhu S, Pan N, Studying the mechanisms of titanium dioxide as ultraviolet blocking additive for films and fabrics by an improved scheme[J]. J Appl Polym Sci, 2004, 92(5): 3201-3210

    [6] Linsebigler A L, Lu G, Yates J T. Photocatalysis on TiO2surfaces: principles, mechanisms, and selected results[J]. Chem Rev, 1999, 95(3): 735-758

    [7] Su C, Hong B Y, Tseng C M. Sol-gel preparation and photocatalysis of titanium dioxide [J]. Catal Today, 2004, 96(3): 119-126

    [8] Sakthivel S, Janczarek M, Kish H. Visible light activity and photoelectrochemical properties of nitrogen-doped TiO2[J]. J Phys Chem B, 2004, 108(50): 19384-19387

    [9] Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides[J]. Science, 2001, 293(5528): 269-271

    [10] Cong Y, Zhang J, Chen F, et al. Synthesis and characterization of nitrogen doped TiO2nanophotocatalyst with high visible light activity[J]. J Phys Chem C, 2007, 111(19): 6976-6982

    [11] Xing M, Zhang J, Chen F, New approaches to prepare nitrogen-doped TiO2photocatalysts and study on their photocatalytic activities in visible light[J]. Appl Catal B: Environ, 2009, 89(3/4): 563-569

    [12] Ma Y F, Zhang J L, Tian B Z, et al. Synthesis and characterization of thermally stable Sm, N co-doped TiO2with highly visible light activity[J], J. Hazard. Mater, 2010, 182 (1/3): 386-393

    [13] Sakthivel S, Kisch H, Daylight photocatalysis by carbonmodified titanium dioxide[J]. Angew Chem Int Ed, 2003,42 (40): 4908-4911

    [14] Wang Y, Huang Y, Ho W, et al. Biomolecule-controlled hydrothermal synthesis of C-N-S-tridoped TiO2nanocrystalline photocatalysts for NO removal under simulated solar light irradiation[J]. J Hazard Mater, 2009, 169(1/3): 77-87

    [15] Lin L, Lin W, Xie J L, et al. Photocatalytic properties of phosphor-doped titania nanoparticles[J], Appl Catal B: Environ, 2007, 75(1/2): 52-58

    [16] Xing M, Wu Y, Zhang J, et al. Effect of synergy on the visible light activity of B, N and Fe co-doped TiO2for the degradation of MO[J]. Nanoscale, 2010, 2(7): 1233-1239

    [17] Ghicov A, Macak J M, Tsuchiya H, et al. TiO2nanotube layers: Dose effects during nitrogen doping by ion implantation[J]. Chem Phys Lett, 2006, 419(4/6): 426-429

    [18] Zhou M H, Yu J G. Preparation and enhanced daylightinduced photocatalytic activity of C, N, S-tridoped titanium dioxide powders[J]. J Hazard Mater, 2008,152(3): 1229-1236

    [19] Diwald O, Thompson T L, Goralski E G, et al. The effect of nitrogen ion implantation on the photoactivity of TiO2rutile single crystals[J]. J Phys Chem B, 2004, 108(1): 52-57

    [20] Chen S Z, Zhang P Y, Zhuang D M, et al. Investigation of nitrogen doped TiO2photocatalytic films prepared by reactive magnetron sputtering[J]. Catal Commun, 2004, 5(11) :677-680

    [21] Premkumar J. Development of super-hydrophilicity on nitrogen-doped TiO2thin film surface by photoelectrochemical method under visible light[J]. Chem Mater, 2004, 16(21): 3980-3981

    [22] Diwald O, Thompson T L, Zubkov T, et al. Photochemical activity of nitrogen-doped rutile TiO2(111) in visible light[J]. J Phys Chem B, 2004, 108(19): 6004-6008

    [23] Tachikawa T, Takai Y, Tojo S, et al. Visible light-induced degradation of ethylene glycol on nitrogen-doped TiO2powders[J]. J Phys Chem B, 2006, 110(26): 13158-13165

    [24] Imao T, Horiuchi T, Noma N, et al. Preparation of new photosensitive TiO2gel films using chemical additives including nitrogen and their patterning[J]. J Sol-Gel Sci Technol, 2006, 39(2): 119-122

    [25] Venkatachalam N, Vinu A, Anandan S, et al. Visible light active photocatalytic degradation of bisphenol-A using nitrogen doped TiO2[J]. J Nanosci Nanotechnol, 2006, 6(8) : 2499-2507

    [26] Belver C, Bellod R, Fuerte A, et al. Nitrogen-containing TiO2photocatalysts: Part 2. Photocatalytic behavior under sunlight excitation[J]. Appl Catal B: Environ, 2006, 65(3/4): 301-308

    [27] Sano T, Negishi N, Koike K, et al. Preparation of a visible light-responsive photocatalyst from a complex of Ti4+with a nitrogen-containing ligand[J]. J Mater Chem, 2004, 14(3): 380-384

    [28] Shan A Y, Ghazi TiM, Rashid S A, Immobilisation of titanium dioxide onto supporting materials in heterogeneous photocatalysis: A review[J]. Appl Cat A: Gen, 2010, 389 (1/2): 1-8

    [29] Peng T, Zeng P, Ke D, et al. Hydrothermal preparation of MWCNTs/CdS nanocomposite and its efficient photocatalytic hydrogen production under visible light irradiation[J]. Energy Fuels, 2011, 25: 2203-2210

    [30] Li S K, Huang F Z, Wang Y, et al. Magnetic Fe3O4@C@ Cu2O composites with bean-like core/shell nanostructures: Synthesis, properties and application in recyclable photocatalytic degradation of dye pollutants[J]. J Mater Chem, 2011, 21(20): 7459-7466

    [31] Li Q, Guo B D, Yu J G, et al. Highly efficient visible-lightdriven photocatalytic hydrogen production of CdS-clusterdecorated graphene nanosheets[J]. J Am Chem Soc, 2011, 133(28): 10878-10884

    [32] Wang X D, Zhang K, Guo X L, et al. Synthesis and characterization of N-doped TiO2loaded onto activated carbon fiber with enhanced visible-light photocatalytic activity[J]. New J Chem, 2014, 38(12): 6139-6146

    [33] Zhai R, Zhang B, Liu L, et al. Immobilization of enzyme biocatalyst on natural halloysite nanotubes[J]. Catal Commun, 2010, 12(4): 259-263

    [34] Wang J H, Zhang X, Zhang B, et al. Rapid adsorption of Cr (VI) on modified halloysite nanotubes[J]. Desalination, 2010, 259(1/3): 22-28

    [35] Papoulis D, Komarneni S, Nikolopoulou A, et al. Palygorskite and halloysite-TiO2nanocomposites: Synthesis and photocatalytic activity[J]. Appl Clay Sci, 2010, 50(1): 118-124

    [36] Wang R, Jiang G, Ding Y, et al. Photocatalytic activity of heterostructures based on TiO2and halloysite nanotubes[J]. ACS Appl Mater Interfaces, 2011, 3(10): 4154-4158

    [37] Peng F, CailF, Huang L, et al. Visible-light photocatalytic activity using a facile hydrothermal method[J]. J Phys Chem Sol, 2008, 69(7): 1657-1664

    date: 2014-11-28; Accepted date: 2015-02-05.

    Prof. Cheng Shilin, Telephone: +86-13820878380; E-mail: zlcheng224@126.com.

    国产免费av片在线观看野外av| 高清在线国产一区| 禁无遮挡网站| 有码 亚洲区| 色吧在线观看| 国产不卡一卡二| 一级a爱片免费观看的视频| 国产精品影院久久| 亚洲 国产 在线| 亚洲国产高清在线一区二区三| 欧美区成人在线视频| 成人高潮视频无遮挡免费网站| 中文字幕av在线有码专区| 日本一本二区三区精品| 波多野结衣巨乳人妻| 国产亚洲精品av在线| 欧美日韩瑟瑟在线播放| 免费av观看视频| 免费一级毛片在线播放高清视频| 别揉我奶头 嗯啊视频| 两人在一起打扑克的视频| 日韩亚洲欧美综合| 十八禁人妻一区二区| 男女之事视频高清在线观看| 亚洲最大成人av| 日韩欧美三级三区| 日韩欧美三级三区| 国产高清视频在线观看网站| 国产精品免费一区二区三区在线| 国产主播在线观看一区二区| eeuss影院久久| 午夜a级毛片| 少妇丰满av| 精品人妻视频免费看| 久久国产乱子免费精品| 亚洲精品在线观看二区| 成人毛片a级毛片在线播放| 悠悠久久av| 日韩免费av在线播放| 此物有八面人人有两片| 男人舔奶头视频| 一个人看视频在线观看www免费| 亚洲在线观看片| 国产综合懂色| 又爽又黄a免费视频| 老女人水多毛片| 老女人水多毛片| 亚洲在线观看片| 成人欧美大片| 国产色爽女视频免费观看| 亚洲三级黄色毛片| 免费人成在线观看视频色| 欧美潮喷喷水| 人人妻人人看人人澡| 可以在线观看毛片的网站| 欧美最黄视频在线播放免费| 美女被艹到高潮喷水动态| 麻豆一二三区av精品| 国产色婷婷99| 人人妻人人看人人澡| 亚洲,欧美,日韩| 特级一级黄色大片| 国内精品一区二区在线观看| 国产精品乱码一区二三区的特点| 成人国产综合亚洲| 欧美区成人在线视频| 亚洲成av人片在线播放无| 久久久久免费精品人妻一区二区| 麻豆一二三区av精品| 小蜜桃在线观看免费完整版高清| 免费av观看视频| 亚洲成av人片在线播放无| 国产亚洲精品综合一区在线观看| 色综合婷婷激情| 日韩国内少妇激情av| 日本熟妇午夜| 看十八女毛片水多多多| 亚洲经典国产精华液单 | 国内少妇人妻偷人精品xxx网站| 国产高潮美女av| 嫩草影视91久久| 欧美日本亚洲视频在线播放| 婷婷色综合大香蕉| 国产精品av视频在线免费观看| 亚洲美女视频黄频| 国产欧美日韩一区二区三| 精品午夜福利在线看| 色哟哟·www| or卡值多少钱| 中文字幕熟女人妻在线| 欧美性感艳星| 一级毛片久久久久久久久女| 老鸭窝网址在线观看| 别揉我奶头~嗯~啊~动态视频| 日韩有码中文字幕| 欧美中文日本在线观看视频| 亚洲男人的天堂狠狠| av在线老鸭窝| 日日摸夜夜添夜夜添小说| 欧美高清成人免费视频www| 激情在线观看视频在线高清| 九九在线视频观看精品| 欧美日韩黄片免| 日韩欧美国产一区二区入口| 精品人妻1区二区| 少妇被粗大猛烈的视频| 他把我摸到了高潮在线观看| 亚洲自偷自拍三级| 亚洲熟妇熟女久久| 一个人免费在线观看的高清视频| 国产一区二区三区在线臀色熟女| 日本免费a在线| 在线观看午夜福利视频| 亚洲欧美日韩高清专用| 热99re8久久精品国产| 老司机午夜十八禁免费视频| 中出人妻视频一区二区| 亚洲不卡免费看| 亚洲欧美日韩高清在线视频| 成人欧美大片| 亚洲va日本ⅴa欧美va伊人久久| 亚洲av五月六月丁香网| 一进一出抽搐gif免费好疼| 91午夜精品亚洲一区二区三区 | 国产精品av视频在线免费观看| 人妻制服诱惑在线中文字幕| 成人欧美大片| 久久精品国产亚洲av天美| 美女cb高潮喷水在线观看| 中文字幕av在线有码专区| 丰满人妻熟妇乱又伦精品不卡| 看片在线看免费视频| 国产精品98久久久久久宅男小说| 欧美激情在线99| 久久午夜福利片| 久久久久九九精品影院| 欧美色欧美亚洲另类二区| 动漫黄色视频在线观看| 国产大屁股一区二区在线视频| 亚洲av中文字字幕乱码综合| 国产精品1区2区在线观看.| av天堂中文字幕网| 嫩草影视91久久| 亚洲片人在线观看| 国产亚洲欧美在线一区二区| 夜夜爽天天搞| 欧美日韩福利视频一区二区| 中出人妻视频一区二区| 亚洲欧美日韩高清在线视频| 一个人看视频在线观看www免费| 人妻夜夜爽99麻豆av| 日韩欧美精品v在线| 久久精品影院6| 嫩草影院新地址| 少妇裸体淫交视频免费看高清| 性色avwww在线观看| 在线看三级毛片| 观看免费一级毛片| 韩国av一区二区三区四区| av福利片在线观看| 午夜福利高清视频| av欧美777| 国产精品爽爽va在线观看网站| 日本 欧美在线| 国内精品久久久久久久电影| 人妻久久中文字幕网| 成人欧美大片| 一个人看的www免费观看视频| 12—13女人毛片做爰片一| 日韩中字成人| 丰满人妻一区二区三区视频av| 深爱激情五月婷婷| 成年人黄色毛片网站| 国产亚洲欧美98| 黄色丝袜av网址大全| 欧美日本视频| 日本成人三级电影网站| 成人国产一区最新在线观看| 欧美午夜高清在线| 亚洲av电影在线进入| 老鸭窝网址在线观看| 狂野欧美白嫩少妇大欣赏| 欧美中文日本在线观看视频| 内射极品少妇av片p| 亚洲精品在线美女| 好男人电影高清在线观看| 久久婷婷人人爽人人干人人爱| 淫秽高清视频在线观看| 给我免费播放毛片高清在线观看| 久久久国产成人精品二区| 窝窝影院91人妻| 一级黄色大片毛片| 日本与韩国留学比较| 成人特级av手机在线观看| 日本一二三区视频观看| 欧美3d第一页| 中文字幕久久专区| 天天一区二区日本电影三级| 好男人电影高清在线观看| 精品乱码久久久久久99久播| 天美传媒精品一区二区| bbb黄色大片| 国产大屁股一区二区在线视频| 一本综合久久免费| 国产免费一级a男人的天堂| 亚洲 国产 在线| 久久精品人妻少妇| 国产欧美日韩一区二区三| 岛国在线免费视频观看| 精品无人区乱码1区二区| 脱女人内裤的视频| 一区二区三区激情视频| 精品国产三级普通话版| 欧美一区二区亚洲| 真人一进一出gif抽搐免费| 国产久久久一区二区三区| 国产成+人综合+亚洲专区| 日韩人妻高清精品专区| 日本精品一区二区三区蜜桃| 在线观看午夜福利视频| 一卡2卡三卡四卡精品乱码亚洲| 久久久久久久久中文| 三级国产精品欧美在线观看| 婷婷六月久久综合丁香| 一级毛片久久久久久久久女| 国产中年淑女户外野战色| 亚洲欧美日韩高清在线视频| www.色视频.com| 欧美一区二区亚洲| 午夜激情欧美在线| 国产色婷婷99| 欧美日韩黄片免| 久久久久久久久大av| 国产高清有码在线观看视频| 成年女人毛片免费观看观看9| 国产av麻豆久久久久久久| 黄色配什么色好看| 久久久久亚洲av毛片大全| 国产一区二区激情短视频| 国产亚洲精品久久久com| 黄色丝袜av网址大全| 免费av不卡在线播放| 精品久久久久久久久亚洲 | 亚洲精品在线观看二区| 麻豆国产97在线/欧美| 午夜精品久久久久久毛片777| 男女那种视频在线观看| 欧美日韩瑟瑟在线播放| 亚洲乱码一区二区免费版| 久久久精品欧美日韩精品| 免费在线观看成人毛片| 窝窝影院91人妻| 国产一区二区三区视频了| 在线免费观看的www视频| 在现免费观看毛片| 中文字幕久久专区| 精品一区二区三区人妻视频| 少妇的逼好多水| 男人和女人高潮做爰伦理| av在线老鸭窝| 三级男女做爰猛烈吃奶摸视频| 3wmmmm亚洲av在线观看| 免费人成视频x8x8入口观看| 成人亚洲精品av一区二区| 婷婷亚洲欧美| 国产精品av视频在线免费观看| 亚洲av美国av| 久久亚洲真实| 亚洲人成网站在线播| 99久久九九国产精品国产免费| 一区福利在线观看| 久久亚洲真实| 日韩欧美国产在线观看| av福利片在线观看| 久久精品国产清高在天天线| 高清毛片免费观看视频网站| av在线老鸭窝| 1000部很黄的大片| 久久久久久大精品| 首页视频小说图片口味搜索| 好看av亚洲va欧美ⅴa在| 亚洲国产精品999在线| av视频在线观看入口| 又爽又黄a免费视频| 国产亚洲精品久久久久久毛片| 亚洲国产欧洲综合997久久,| 亚洲国产色片| 国产伦一二天堂av在线观看| 日韩中字成人| 天天躁日日操中文字幕| 久久人妻av系列| 日韩欧美 国产精品| 亚洲性夜色夜夜综合| 老司机福利观看| .国产精品久久| 91麻豆精品激情在线观看国产| 一本一本综合久久| 99久久精品一区二区三区| 波多野结衣高清无吗| 搡老妇女老女人老熟妇| 国产精品久久久久久久久免 | 搡老岳熟女国产| 一区二区三区四区激情视频 | 亚洲,欧美,日韩| 97人妻精品一区二区三区麻豆| 两个人视频免费观看高清| 99久久成人亚洲精品观看| 国产精品久久久久久久电影| 亚洲激情在线av| 欧美成狂野欧美在线观看| 淫妇啪啪啪对白视频| 国产一区二区三区视频了| 有码 亚洲区| 欧美丝袜亚洲另类 | 国产精品99久久久久久久久| av在线观看视频网站免费| 少妇裸体淫交视频免费看高清| 欧美成人免费av一区二区三区| 人妻制服诱惑在线中文字幕| 3wmmmm亚洲av在线观看| 久久午夜福利片| 午夜精品一区二区三区免费看| 久久久久久九九精品二区国产| 乱人视频在线观看| 日本撒尿小便嘘嘘汇集6| 国产免费男女视频| 久久这里只有精品中国| 久久性视频一级片| av专区在线播放| 国产爱豆传媒在线观看| 九九久久精品国产亚洲av麻豆| 久久久久九九精品影院| 日日摸夜夜添夜夜添小说| 自拍偷自拍亚洲精品老妇| 欧美zozozo另类| 中文字幕人妻熟人妻熟丝袜美| 嫩草影视91久久| 天美传媒精品一区二区| 级片在线观看| 国产男靠女视频免费网站| 日韩欧美精品免费久久 | 亚洲av免费在线观看| 欧美成狂野欧美在线观看| 可以在线观看毛片的网站| 国产av在哪里看| 亚洲aⅴ乱码一区二区在线播放| 国产在视频线在精品| 老熟妇仑乱视频hdxx| 黄色视频,在线免费观看| 午夜福利成人在线免费观看| 欧美最新免费一区二区三区 | 免费观看的影片在线观看| 免费人成在线观看视频色| 色在线成人网| 天天躁日日操中文字幕| 国产探花在线观看一区二区| 亚洲精品在线观看二区| 亚洲国产精品成人综合色| 国产在视频线在精品| 一进一出抽搐gif免费好疼| 欧美一区二区国产精品久久精品| 欧美中文日本在线观看视频| 欧美日韩综合久久久久久 | 欧美乱色亚洲激情| 国产高清激情床上av| 一本一本综合久久| 好看av亚洲va欧美ⅴa在| 他把我摸到了高潮在线观看| 国产真实乱freesex| 国产伦在线观看视频一区| 久久久成人免费电影| 99热6这里只有精品| 动漫黄色视频在线观看| 黄色视频,在线免费观看| 亚洲在线观看片| 欧美又色又爽又黄视频| 天美传媒精品一区二区| 天堂影院成人在线观看| 久久久久久九九精品二区国产| 天美传媒精品一区二区| 国产av一区在线观看免费| 日韩欧美 国产精品| 一个人免费在线观看电影| 精品人妻一区二区三区麻豆 | 久久久久久久精品吃奶| 亚洲av成人精品一区久久| 自拍偷自拍亚洲精品老妇| 最后的刺客免费高清国语| netflix在线观看网站| 亚洲片人在线观看| 国产人妻一区二区三区在| 日韩精品中文字幕看吧| 久久中文看片网| 很黄的视频免费| 欧美日韩综合久久久久久 | 久久久久亚洲av毛片大全| 男女视频在线观看网站免费| 窝窝影院91人妻| 色噜噜av男人的天堂激情| 别揉我奶头~嗯~啊~动态视频| 两性午夜刺激爽爽歪歪视频在线观看| 国产91精品成人一区二区三区| 欧美日韩福利视频一区二区| 两性午夜刺激爽爽歪歪视频在线观看| 色吧在线观看| 性欧美人与动物交配| 成年女人看的毛片在线观看| 亚洲av第一区精品v没综合| 午夜久久久久精精品| 精品人妻偷拍中文字幕| 亚洲av熟女| 99久久精品一区二区三区| 99久久精品热视频| 少妇人妻精品综合一区二区 | 欧美日韩国产亚洲二区| 欧美午夜高清在线| 久久久久性生活片| 在线观看免费视频日本深夜| 久久人人爽人人爽人人片va | 欧美日韩瑟瑟在线播放| 男女床上黄色一级片免费看| 国产精品亚洲av一区麻豆| 国产一区二区三区视频了| 最近中文字幕高清免费大全6 | 别揉我奶头~嗯~啊~动态视频| 99久久九九国产精品国产免费| 精品久久久久久久久av| 亚洲久久久久久中文字幕| 久久久久亚洲av毛片大全| 一本久久中文字幕| 亚洲一区二区三区不卡视频| 免费av毛片视频| 免费看日本二区| ponron亚洲| 嫩草影院入口| 亚洲国产日韩欧美精品在线观看| 国产精品免费一区二区三区在线| 性欧美人与动物交配| 欧美一区二区精品小视频在线| 国产精品久久久久久人妻精品电影| 免费人成在线观看视频色| 他把我摸到了高潮在线观看| 免费看日本二区| 午夜福利在线观看免费完整高清在 | 国产单亲对白刺激| 亚洲国产高清在线一区二区三| 69人妻影院| 国产精品电影一区二区三区| 亚洲精品成人久久久久久| 国产精品嫩草影院av在线观看 | 老司机午夜福利在线观看视频| 麻豆久久精品国产亚洲av| 99国产精品一区二区蜜桃av| 99久久精品一区二区三区| 久久中文看片网| 欧美另类亚洲清纯唯美| 自拍偷自拍亚洲精品老妇| 1024手机看黄色片| 亚洲精品一卡2卡三卡4卡5卡| 欧美精品国产亚洲| 欧美黄色片欧美黄色片| 精品久久久久久成人av| 国产男靠女视频免费网站| 1024手机看黄色片| 日本成人三级电影网站| 性色av乱码一区二区三区2| 中文字幕高清在线视频| 国产私拍福利视频在线观看| 国产成人欧美在线观看| 大型黄色视频在线免费观看| 午夜精品在线福利| .国产精品久久| 午夜亚洲福利在线播放| 天堂av国产一区二区熟女人妻| 97超视频在线观看视频| 欧美另类亚洲清纯唯美| 亚洲成人精品中文字幕电影| 日韩 亚洲 欧美在线| 国产视频一区二区在线看| 午夜亚洲福利在线播放| 看黄色毛片网站| 国产精品一区二区三区四区久久| 亚洲国产精品久久男人天堂| 亚洲乱码一区二区免费版| 成人性生交大片免费视频hd| 一级黄色大片毛片| 国产精品女同一区二区软件 | 精品久久久久久久久久久久久| 亚洲精品一区av在线观看| 亚洲av免费高清在线观看| 亚洲精品一卡2卡三卡4卡5卡| 国产高清有码在线观看视频| 国产伦在线观看视频一区| 色哟哟·www| 国产精品一区二区免费欧美| 婷婷六月久久综合丁香| 亚洲欧美精品综合久久99| 日本与韩国留学比较| 很黄的视频免费| 又粗又爽又猛毛片免费看| 久久久色成人| 动漫黄色视频在线观看| 亚洲精品影视一区二区三区av| 国内精品一区二区在线观看| 综合色av麻豆| 丁香六月欧美| 国内揄拍国产精品人妻在线| 成人亚洲精品av一区二区| 一级a爱片免费观看的视频| 两人在一起打扑克的视频| av天堂在线播放| 一进一出抽搐动态| 成人特级黄色片久久久久久久| 十八禁人妻一区二区| 国产精品1区2区在线观看.| 日韩av在线大香蕉| 久久久久久久久久成人| 欧美性感艳星| 亚洲一区二区三区不卡视频| 成人特级av手机在线观看| 天堂av国产一区二区熟女人妻| 少妇的逼好多水| 可以在线观看毛片的网站| 女生性感内裤真人,穿戴方法视频| 免费在线观看日本一区| 精品午夜福利在线看| 九色国产91popny在线| 国产精品久久久久久精品电影| 一卡2卡三卡四卡精品乱码亚洲| 少妇人妻一区二区三区视频| 成人鲁丝片一二三区免费| 午夜福利18| aaaaa片日本免费| 免费看a级黄色片| 中文字幕精品亚洲无线码一区| 国产白丝娇喘喷水9色精品| 成年女人永久免费观看视频| 免费人成在线观看视频色| 亚洲精品粉嫩美女一区| 脱女人内裤的视频| 床上黄色一级片| 中文字幕av在线有码专区| 露出奶头的视频| 国产熟女xx| 制服丝袜大香蕉在线| 日韩国内少妇激情av| 国产伦人伦偷精品视频| 在线国产一区二区在线| 国产一区二区三区在线臀色熟女| 搡老熟女国产l中国老女人| 国内毛片毛片毛片毛片毛片| 国产熟女xx| 我要搜黄色片| 国产精品99久久久久久久久| 搡老妇女老女人老熟妇| 日韩精品中文字幕看吧| 一个人观看的视频www高清免费观看| 亚洲精品一卡2卡三卡4卡5卡| 高清毛片免费观看视频网站| 精品不卡国产一区二区三区| 十八禁人妻一区二区| 成人特级黄色片久久久久久久| 男人的好看免费观看在线视频| 亚洲一区二区三区色噜噜| av女优亚洲男人天堂| 一区二区三区高清视频在线| 国产真实乱freesex| 国产精品久久久久久亚洲av鲁大| 99久久精品国产亚洲精品| 亚洲精品一区av在线观看| 性欧美人与动物交配| 久久精品国产自在天天线| 欧洲精品卡2卡3卡4卡5卡区| 国产精品一及| 亚洲在线观看片| 综合色av麻豆| 国产熟女xx| а√天堂www在线а√下载| 免费无遮挡裸体视频| 俺也久久电影网| 老熟妇仑乱视频hdxx| 亚洲欧美激情综合另类| 丁香欧美五月| 精品久久久久久成人av| 美女黄网站色视频| 脱女人内裤的视频| 久久久久久久午夜电影| 久久久久久久久久成人| 毛片一级片免费看久久久久 | 中文字幕人妻熟人妻熟丝袜美| 男女床上黄色一级片免费看| 真人做人爱边吃奶动态| 欧美性感艳星| 亚洲色图av天堂| 国模一区二区三区四区视频| 国产一级毛片七仙女欲春2| 成人av在线播放网站| 亚洲av成人不卡在线观看播放网| 熟女人妻精品中文字幕| 人人妻,人人澡人人爽秒播| 又爽又黄无遮挡网站| 男女下面进入的视频免费午夜| 日本在线视频免费播放| 国产精品一区二区三区四区久久| 午夜免费男女啪啪视频观看 | 免费在线观看影片大全网站| 亚洲人成伊人成综合网2020| eeuss影院久久| 国产色爽女视频免费观看| 久久精品影院6| 亚洲国产日韩欧美精品在线观看| 一区二区三区四区激情视频 | 美女大奶头视频| 校园春色视频在线观看| 欧美黄色片欧美黄色片|