• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Adsorptive Desulfurization of Propylmercaptan and Dimethyl Sulfide by CuBr2Modified Bentonite

    2015-06-22 14:38:29
    中國煉油與石油化工 2015年2期
    關(guān)鍵詞:拘泥于儀隴縣示范園區(qū)

    (The State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237)

    Adsorptive Desulfurization of Propylmercaptan and Dimethyl Sulfide by CuBr2Modified Bentonite

    Cui Yuanyuan; Lu Yannan; Yi Dezhi; Shi Li; Meng Xuan

    (The State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237)

    Adsorptive desulfurization for removing propylmercaptan (PM) and dimethyl sul fide (DMS) over CuBr2modified bentonite was investigated under ambient conditions in this work. A saturated sulfur capacity as high as 196 mg of S per gram of adsorbent was demonstrated. The in fluence of loading amount of Cu (II) and calcination temperature on adsorptive desulfurization was investigated. Test results revealed that the optimum loading amount of Cu (II) was 15%, and the calcination temperature was 150 ℃. The pyridine-FTIR spectroscopy showed that a certain amount of Lewis acid could contribute to the increase of adsorption capacity. Spectral shifts of the ν(C-S) and ν(Cu-S) vibrations were detected from the Raman spectra of the Cu (II) complex which was a reaction product of CuBr2with DMS. According to the hybrid orbital theory and the complex adsorption reaction, the desulfurization of PM and DMS over the CuBr2modi fied bentonite is ascribed to the formation of S-M (σ) bonds.

    desulfurization; bentonite; propylmercaptan; dimethyl sul fide; mechanism

    1 Introduction

    Sulfides often exist as the main pollutants in liquid fuels and natural gas and its oxidation can bring about the formation of tropospheric sulfur dioxide (SO2), which would cause acid rains[1]. The presence of sulfur compounds will reduce the purity of petrochemical products, deteriorate the service performance, and severely poison the noble metal catalysts used in subsequent processes[2-4]. The deep desulfurization of gasoline and diesel is becoming more and more difficult, since the sulfur content of crude oil is becoming higher and the permitted sulfur limits in oil product are becoming stricter. Therefore, it is a worldwide urgent challenge to produce increasingly cleaner fuels[5-11]. Hydrodesulfurization (HDS) process is a conventional method to remove sulfur compounds using Co-Mo/ Al2O3or Ni-Mo/Al2O3catalysts at high temperature (300—340 ℃) and high pressure (2.0—10.0 MPa of H2). However, the hydrogenation of olefins would take place simultaneously during the HDS process, which will reduce the octane number of gasoline[7,9,12-15]. Compared with HDS, adsorptive desulfurization is a more economical method[14]and has attracted researchers’ interest extensively.

    Bentonite is a relatively economical material used for adsorptive desulfurization. Its partial-amorphous nature provides mesopores with a wide range of pore sizes and some peculiar physical and chemical properties (i.e., large specific surface area and satisfactory adsorptive affinity for organic and inorganic ions) and has been attracting more and more attention as effective separating agents or adsorbents[4,7-10,14,16].

    The primary objective of this study is to investigate the adsorptive desulfurization efficiency of the Cu (II)-modified bentonite for removing propylmercaptan (PM) and dimethyl sulfide (DMS). The adsorbents, raw bentonite and Cu (II)-modified bentonite, are characterized by X-ray diffractometry (XRD), thermogravimetric analysis (TGA) and pyridine-FTIR spectroscopy. Raman spectroscopy is used to characterize the Cu (II) complex. Finally, combined with the hybrid orbital theory and complex adsorption reaction, the adsorption mechanism is discussed briefly.

    2 Experimental

    2.1 Adsorbents and feedstocks

    In this work, the raw bentonite was bought from theHangzhou Yongsheng Catalyst Co., Ltd, Zhejiang province, China. It was used directly without further treatment. The composition analysis of the raw bentonite is shown in Table 1.

    Table 1 The composition of the raw bentonite

    The chemical reagents (CH3COO)2Cu, Cu(NO3)2, CuSO4, CuBr and CuBr2were purchased from the Sinopharm Chemical Reagent Co., Ltd. PM and DMS were purchased from the Shanghai Chemical Reagent Co., Ltd. The adsorbents in this work were prepared by means of the kneading method. The raw bentonite was mixed with (CH3COO)2Cu, Cu(NO3)2, CuSO4, CuBr and CuBr2for 0.5 h, respectively. Dilute nitric acid used as a liquid binder was added into the mixture to make the slurry. Pellets were formulated by an extruder with an outer diameter of 1 mm. All of the adsorbents were dried at 120 ℃ overnight and calcined in a muffle furnace at 150 ℃ for 4 h in air. The mass fraction of Cu (II) species in all adsorbents was 15%. In the follow-up experiments, the CuBr2modified bentonite with different Cu (II) contents and at different calcination temperature were prepared in the similar way.

    The model oil for adsorptive desulfurization was prepared by adding PM and DMS into n-hexane simultaneously, and the sulfur content of PM and DMS in the mixture was 2 000 μg/g each.

    2.2 Characterization of adsorbents

    2.2.1 X-ray diffraction

    The crystal structure of powder adsorbents was characterized by X-ray diffraction (XRD) method, using a Siemens D-500 X-ray diffractometer equipped with Ni-filtered CuKα radiation (40 kV, 100 mA). The 2θ scanning angle range was 10°—70° with each step of 0.02(°)/s.

    2.2.2 Thermogravimetric analysis

    Thermogravimetric analysis (TGA) was carried out using a STA 449F3 thermal analyzer, made by Netzsch, Germany. The instrument was heated at a heating rate of 10 ℃ /min to 700 ℃ in air with an air flow rate of 100 mL/min.

    2.2.3 Acidity characterization

    The amount of acids, the acid density, and the acid variety were measured via the Fourier transform infrared (FT-IR) spectroscopy (Magna-IR550, Nicolet Company), using pyridine as the probe molecule.

    2.2.4 Raman spectra

    The Raman spectroscopic studies were conducted on a Renishaw System 100 Raman spectrometer. The laser power was 3 mW at the sample position. The Raman scattered light was detected perpendicular to the laser beam with a Peltiercooled CCD detector, and the spectral resolution for all measurements was 1 cm-1.

    2.3 Adsorption experiments

    2.3.1 Dynamic tests

    The adsorptive desulfurization capacity of the adsorbents for PM and DMS was measured using dynamic tests on a fixed-bed reactor under ambient conditions in a custommade quartz tube (with an internal diameter of 9 mm, a length of 500 mm and a bed volume of 1.25 cm3). The weight hourly space velocity (WHSV) of the model oil was 5 h-1. Reaction products were sampled every halfhour and analyzed with a HP5890 gas chromatograph equipped with FID and GC-MS (type GC6890-MS 5973N, made by the Agilent Co.).

    where C0is the initial molar concentration of sulfur (mol/L), C is the final molar concentration of sulfur (mol/L).2.3.2 Static tests

    The saturated desulfurization capacity of the adsorbents for DMS and PM was evaluated by static tests at ambient temperature. 0.1 g of adsorbent and 10 g of model oil were put into an airtight container to enter into reaction for 24 hours. The concentration of sulfur was analyzed bya gas chromatograph.

    Sulfur capacity (mg S/g of adsorbent) = 1 000×(C0- C)VM/m where C0is the initial molar concentration of sulfur (mol/L), C is the final molar concentration of sulfur (mol/L), V is the volume of solution (L), M is the molar mass of sulfur (g/mol), and m is the mass of adsorbent (g).

    2.3.3 Preparation of the Cu (II) complex

    The Cu (II) complex was prepared by static complex adsorption of CuBr2and an excess of DMS in an airtight container for 24 hours. The deposit formed during the reaction was filtered and extensively washed with n-hexane subsequently. The product was obtained after drying at room temperature.

    3 Results and Discussion

    3.1 Desulfurization performance of the modified bentonite

    The desulfurization performance of the (CH3COO)2Cu, Cu(NO3)2, CuSO4, CuBr and CuBr2modified bentonite (BE for short) were evaluated via dynamic tests at room temperature. Breakthrough curves for PM and DMS are shown in Figure 1 and Figure 2, respectively.

    Figure 1 Breakthrough curves for PM adsorption on modified bentonite calcined at 150 ℃

    It can be seen from Figure 1 that all of the modified bentonite samples could absorb more PM than the raw bentonite. Among them, the CuBr2, Cu(NO3)2, and CuSO4modified bentonite samples showed more excellent PM removal performance, which could achieve a complete elimination of PM for 5 h. Figure 2 shows that except the (CH3COO)2Cu modified bentonite sample, the other samples had a better DMS removal performance than the raw bentonite. The CuBr2modified bentonite showed the best DMS desulfurization performance, which could maintain a complete elimination of DMS for 4 h. As a result, the CuBr2modified bentonite had a better desulfurization performance for both PM and DMS compared with other samples. Therefore, CuBr2was selected as the active component.

    Figure 2 Breakthrough curves for DMS adsorption on modified bentonite calcined at 150 ℃

    3.2 Effects of the amount of Cu (II) loading on adsorption of PM and DMS

    Figure 3 Breakthrough curves for PM adsorption on CuBr2modified bentonite with different contents of Cu (II) calcined at 150 ℃

    Figure 4 Breakthrough curves for DMS adsorption on CuBr2modified bentonite with different contents of Cu (II) calcined at 150 ℃

    A correlation between desulfurization performance and contents of Cu (II) on bentonite had been tested. The results presented in Figure 3 and Figure 4 denote the breakthrough curves for PM and DMS. It can be seen from the curves shown in Figure 3 and Figure 4 that the bentonite loaded with CuBr2could adsorb more sulfur than the raw bentonite. The desulfurization performance increased gradually with an increasing amount of Cu (II) loading. When the amount of Cu (II) loading was 15%, the sulfur adsorption capacity reached a maximum for both PM and DMS. If the Cu (II) loading increased to 20%, as presented in Figure 3, there was no significant change in the desulfurization efficiency compared with the case using the 15% of Cu (II) loading. The results showed that the CuBr2modified bentonite with 15% of Cu (II) loading could be the proper adsorbent for removal of PM and DMS from the model oil.

    The X-ray diffraction analysis in Figure 5 was carried out to identify the mineralogical structure of the raw bentonite and the CuBr2modified bentonite adsorbents with different contents of Cu (II) species. The XRD patterns of the bentonite adsorbents loaded with CuBr2showed the characteristic reflections for CuBr2at 2θ = 14.42°, 24.64°, 29.08°, 29.44°, 35.94°, 46.34°, 47.24° and 60.32° corresponding to the planesof cubic CuBr2crystal, respectively. Figure 5 confirms that the strength of the peaks of CuBr2increased with an increasing Cu (II) content, and the crystallinity of the modi fied bentonite adsorbents slightly decreased. These facts suggested that CuBr2on the bentonite existed as an amorphous material with a low Cu (II) content of less than 5%. With the increase of Cu (II) content, CuBr2on the bentonite existed as a crystalline solid. Excessive CuBr2content would block the pores of the bentonite adsorbents, which could affect the adsorptive desulfurization efficiency. To investigate the type and number of surface acidic sites of the adsorbents, FT-IR spectra for the adsorption of pyridine at 200 ℃and 450 ℃ were obtained as shown in Figure 6 and Figure 7. It can be seen from Figure 6 thatthe spectra presented the adsorption band at 1 450 cm-1, which was attributed to the ν(C-C) vibration of pyridine adsorbed at the Lewis acid sites[14,17]in the Cu (II)-bentonite. When the temperature rose up to 450 ℃, as shown in Figure 7, no peak could be found. Therefore, it could be concluded that the Lewis acid sites would be increased by the addition of CuBr2on bentonite, and a certain amount of weak Lewis acid sites could contribute to the adsorption of sulfur compounds.

    Figure 5 X-ray diffraction patterns of CuBr2modified bentonite with different Cu (II) contents calcined at 150 ℃

    Figure 6 FT-IR spectra at 200 ℃ for Cu (II)-bentonite (containing 15 % of Cu (II) calcined at 150 ℃) and bentonite

    Figure 7 FT-IR spectra at 450 ℃ for Cu (II)-bentonite (containing 15 % of Cu (II) calcined at 150 ℃) and bentonite

    3.3 Effects of calcination temperature on adsorption of PM and DMS

    四川省南充市儀隴縣作為中國千千萬萬鄉(xiāng)村中的一員,其打造的現(xiàn)代農(nóng)業(yè)生產(chǎn)經(jīng)營(yíng)模式,在一定程度上帶動(dòng)著當(dāng)?shù)貐^(qū)域產(chǎn)業(yè)的快速發(fā)展。柑橘示范園區(qū)規(guī)劃采用“大園小鎮(zhèn)”模式,即鄉(xiāng)村旅游開發(fā)中所提出的一種創(chuàng)新休閑農(nóng)業(yè)的模式,也是鄉(xiāng)村發(fā)展的一種創(chuàng)新模式,使得產(chǎn)業(yè)振興不再拘泥于以往的固有模式,跳出陳舊“圈子”,打開振興新思路。

    A correlation between the desulfurization performance and the calcination temperature of the CuBr2modified bentonite has been tested. As shown in Figure 8, the sulfur adsorption capacity decreased with an increase of the calcination temperature.

    Figure 8 Effects of calcination temperature on desulfurization performance of Cu (II)-bentonite (containing 15 % of Cu (II) species)

    Figure 9 X-ray diffraction patterns of CuBr2modified bentonite at different calcination temperatures

    The modified bentonite samples calcined at different temperatures were characterized by X-ray diffraction, as shown in Figure 9. The samples calcined at 150 ℃showed the presence of the CuBr2phase. The intensity of the peaks corresponding to CuBr2decreased with an increasing calcination temperature. When the sample was calcined at 250 ℃, the XRD peaks for CuBr were noticed at 2θ=27.08°, 44.98° and 53.30°, respectively, which were attributed to the planes (111), (220) and (311), respectively. The intensity of these characteristic peaks decreased or even disappeared when the calcination temperatures went up to 350 ℃ and 450 ℃. In addition, new crystallite phases of CuO were observed and the most intense signals were located at 2θ of 35.48°, 38.66° and 48.76°, respectively. This suggests that most of CuBr species have been transformed to CuO. In order to get more structural information, the thermogravimetric analysis method under air flow was conducted to further evaluate the effect of calcination temperature on the desulfurization performance. The differential scanning calorimetry-thermogravimetric analysis (DSCTGA) curves for raw bentonite and the CuBr2modified bentonite adsorbents, which were dried at 120 ℃ for 24 h, are shown in Figure 10 and Figure 11, respectively. In the curve of raw bentonite, no single remarkable peaks in TG and endothermic or exothermic curves were found. This phenomenon indicated that the framework of the bentonite was stable in this temperature range and most of the adsorbed water would be evaporated during the pretreatment of the sample at 120 ℃. Being different from the raw bentonite, a considerable weight loss and two endothermic peaks were observed for the CuBr2modi-fied bentonite, as it can be seen in Figure 11. Combined with XRD characterization, the weight loss peaks formed in the modi fied bentonite were typically attributed to the stepwise decomposition of CuBr2·xH2O, denoting that the peak in the range of 50—150 ℃ was caused by the evaporation of water adsorbed in the bentonite and the dehydration of crystalline water in CuBr2·xH2O, while the peak in the range of 200—400 ℃ was resulted from the transformation of CuBr2to CuBr and CuO.

    Figure 10 TGA-DSC curves of the raw bentonite obtained under air flow

    Figure 11 TGA-DSC curves of the CuBr2modified bentonite adsorbent obtained under air flow

    4 Raman Characterization of the Cu (II) Complex

    With the purpose of discovering the reaction mechanism of DMS and Cu (II), the Cu (II) complex was prepared thereby. The Raman spectra of the products are presented in Figure 12.

    Figure 12 Raman spectra of CuBr2and the Cu (II) complex: (a) CuBr2; (b) Cu (II) complex

    Cu (II) atoms, with extranuclear electrons configuration (1s22s22p63s23p63d94s0), can form the usual σ bonds using the vacant s-orbitals and p-orbitals[14]. As a result, the usual S-M (σ) bonds could be obtained if sulfur atoms of DMS could provide lone pair electrons to Cu (II)[14,18]. As shown in Figure 12, the distinct peaks of Cu-S stretching vibrations at 300 cm-1and C-S vibration at 700 cm-1were detected in the Cu (II) complex, which suggested that DMS could bind to the Cu (II) species without breaking up its C-S bonds in its molecule[19,20].

    5 Conclusions

    The XRD and TGA results have synergistically demonstrated that the bentonites loaded with CuBr2are excellent adsorbents for the removal of PM and DMS from liquid fuels. Moreover the bentonite, which was loaded with 15% of Cu (II) and baked at 150 ℃, exhibited a sulfur adsorption capacity of about 200 mg-S/g of adsorbent during the desulfurization of model oil containing about 2 000 μg/g of PM and 2 000 μg/g of DMS. The FT-IR analyses indicated that a certain amount of weak Lewis acid sites could contribute to the adsorption of sulfur compounds. The characteristics of the Cu-S and C-S stretching vibrations were simultaneously identified in the Raman spectra of the Cu (II) complex. On the basis of complex adsorption reaction and hybrid orbital theory, the adsorption of DMS on the CuBr2modified bentonite occurred via the formation of S-M (σ) bonds. More studies such as the performance of the CuBr2modified bentonite prepared by different methods or the reaction of CuBr2with bentonite excavated from different regions will be needed in order to fully understand the effect of copper loading and the combination mechanism of Cu (II) species with sulfur.

    Acknowledgments: This work is financially supported by the National Natural Science Foundation of China (No. 21276086).

    [1] He Jie, Zhao Junbin, Lan Yunxiang. Adsorption and photocatalytic oxidation of dimethyl sulfide and ethyl mercaptan over layered K1-2xMnxTiNbO5and K1-2xNixTiNbO5[J]. Journal of Fuel Chemistry and Technology, 2009, 37(4): 485-488

    [2] Jieun Lee, Hee Tae Beum, Chang Hyun Ko, et al. Adsorptive removal of dimethyl disulfide in olefin-rich C4with ion-exchanged zeolites[J]. Industrial & Engineering Chemistry Research, 2011, 50(10): 6382-6390

    [4] Huang Huan, Yi Dezhi, Lu Yannan, et al. Study on the adsorption behavior and mechanism of dimethyl sulfide on silver modified bentonite by in situ FTIR and temperatureprogrammed desorption[J]. Chemical Engineering Journal, 2013, 225: 447-455

    [5] Kumar S, Srivastava V C, Badoni R P. Studies on adsorptive desulfurization by zirconia based adsorbents[J]. Fuel, 2011, 90(11): 3209-3216

    [6] Tang Xiaolin, Shi Li. Study of the adsorption reactions of thiophene on Cu (I)/HY-Al2O3by Fourier transform infrared spectroscopy and temperature-programmed desorption: Adsorption, desorption, and sorbent regeneration mechanisms[J]. Langmuir, 2011, 27(19): 11999-12007

    [7] Yi Dezhi, Huang Huan, Meng Xuan, et al. Desulfurization of liquid hydrocarbon streams via adsorption reactions by silver-modified bentonite[J]. Industrial & Engineering Chemistry Research, 2013, 52(18): 6112-6118

    [8] Seyedeyn-Azad F, Ghandy A H, Aghamiri S F, et al. Removal of mercaptans from light oil cuts using Cu (II)-Y type zeolite[J]. Fuel Processing Technology, 2009, 90(12): 1459-1463

    [9] Tang Xiaolin, Meng Xuan, Shi Li. Desulfurization of model gasoline on modified bentonite[J]. Industrial & Engineering Chemistry Research, 2011, 50(12): 7527-7533

    [10] Tang Xiaolin, Le Zheting, Shi Li. Deep desulfurization via adsorption by silver modified bentonite[J]. China Petroleum Processing & Petrochemical Technology, 2011, 13(3): 16-20

    [11] Dharaskar S A, Wasewar K L, Varma M N, et al. Synthesis, characterization, and application of novel trihexyl tetradecyl phosphonium bis (2,4,4-trimethylpentyl) phosphinate for extractive desulfurization of liquid fuel[J]. Fuel Processing Technology, 2014, 123: 1-10

    [12] Srivastav A, Srivastava V C. Adsorptive desulfurization by activated alumina[J]. Journal of Hazardous Materials, 2009, 170(2/3): 1133-1140

    [13] Heeyeon Kim, Jung Joon Lee, Sang Heup Moon. Hydrodesulfurization of dibenzothiophene compounds using fluorinated NiMo/Al2O3catalysts[J]. Applied Catalysis B: Environmental, 2003, 44: 287-299

    [14] Yi Dezhi, Huang Huan, Shi Li. Desulfurization of Model Oil via Adsorption by Copper (II) Modified Bentonite[J]. Bulletin Korean Chemical Society, 2013, 34: 777-782

    [15] Al-Ghouti M A, Al-Degs Y S, Khalili F I. Minimisation of organosulphur compounds by activated carbon from commercial diesel fuel: Mechanistic study[J]. Chemical Engineering Journal, 2010, 162: 669-676

    [16] Hart M P. Brown D R. Surface acidities and catalytic activities of acid-activated clays[J]. Journal of Molecular Catalysis A: Chemical, 2004, 212: 315-321

    [17] Kalita P, Gupta N M, Kumar R. Synergistic role of acid sites in the Ce-enhanced activity of mesoporous Ce-Al-MCM-41 catalysts in alkylation reactions: FTIR and TPD-ammonia studies[J]. Journal of Catalysis, 2007, 245: 338-347

    [18] Hadt R G, Xie Xiangjin, Pauleta S R, et al. Analysis of resonance Raman data on the blue copper site in pseudoazurin: Excited state π and σ charge transfer distortions and their relation to ground state reorganization energy[J]. Journal of Inorganic Biochemistry, 2012, 115: 155-162

    [19] Noh J, Jang S, Lee D, et al. Abnormal adsorption behavior of dimethyl disulfide on gold surfaces[J]. Current Applied Physics, 2007, 7: 605-610

    [20] Seung ll Cho, Eun Sun Park, Kwan Kim, et al. Spectral correlation in the adsorption of aliphatic mercaptans on silver and gold surfaces: Raman spectroscopic and computational study[J]. Journal of Molecular Structure, 1999, 479: 83-92

    date: 2014-08-22; Accepted date: 2015-01-09.

    Dr. Meng Xuan, Telephone: +86-21-64252274; E-mail: mengxuan@ecust.edu.cn.

    猜你喜歡
    拘泥于儀隴縣示范園區(qū)
    所謂伊人
    儀隴縣:營(yíng)商環(huán)境大優(yōu)化 民生福祉大提升
    儀隴縣:農(nóng)民工服務(wù)專項(xiàng)行動(dòng)做足“實(shí)”字文章
    全省根治欠薪暨勞動(dòng)保障監(jiān)察工作座談會(huì)在儀隴縣召開
    龍寺水土保持科技示范園區(qū)
    儀隴縣有機(jī)蠶桑發(fā)展思考
    好吃的水果
    北京經(jīng)濟(jì)技術(shù)開發(fā)區(qū)等8個(gè)園區(qū)確定為國家知識(shí)產(chǎn)權(quán)示范園區(qū)
    做個(gè)平和的人
    陜西諾維北斗信息科技股份有限公司董事長(zhǎng)——王蓓蓓 創(chuàng)業(yè)是不拘泥于當(dāng)前
    激情五月婷婷亚洲| 久久久国产一区二区| 一级毛片 在线播放| 亚洲欧美精品专区久久| 老司机影院毛片| 岛国毛片在线播放| 欧美变态另类bdsm刘玥| 亚洲欧洲国产日韩| 婷婷色综合www| 午夜福利视频精品| 国产高清有码在线观看视频| 91aial.com中文字幕在线观看| av天堂中文字幕网| 插逼视频在线观看| 国产成人a区在线观看| 国产欧美日韩一区二区三区在线 | 嫩草影院入口| 亚洲色图综合在线观看| 国产黄片视频在线免费观看| 九色成人免费人妻av| 在线观看三级黄色| 国产精品三级大全| 我要看日韩黄色一级片| av又黄又爽大尺度在线免费看| 亚洲av福利一区| 激情五月婷婷亚洲| 一级二级三级毛片免费看| 一边亲一边摸免费视频| 又粗又硬又长又爽又黄的视频| 高清日韩中文字幕在线| www.色视频.com| 26uuu在线亚洲综合色| 亚洲成人中文字幕在线播放| 精品国产乱码久久久久久小说| 哪个播放器可以免费观看大片| 国产黄频视频在线观看| 亚洲美女黄色视频免费看| 亚洲欧美精品专区久久| 精品国产乱码久久久久久小说| 精品国产三级普通话版| 亚洲怡红院男人天堂| 久久国产乱子免费精品| av免费观看日本| 国产精品无大码| 亚洲欧洲国产日韩| 美女国产视频在线观看| 亚洲美女黄色视频免费看| 国产一区二区在线观看日韩| 欧美bdsm另类| 国产精品一及| 麻豆国产97在线/欧美| 国产视频首页在线观看| 久久97久久精品| 夜夜骑夜夜射夜夜干| 国产精品久久久久久精品电影小说 | 男人舔奶头视频| 亚洲熟女精品中文字幕| 久久久久精品久久久久真实原创| 男女下面进入的视频免费午夜| 国产成人91sexporn| 国产精品秋霞免费鲁丝片| 2018国产大陆天天弄谢| 99九九线精品视频在线观看视频| 精品少妇久久久久久888优播| 亚洲aⅴ乱码一区二区在线播放| av国产久精品久网站免费入址| 精品一区二区三区视频在线| 免费在线观看成人毛片| 男人狂女人下面高潮的视频| 九九爱精品视频在线观看| 伊人久久国产一区二区| 亚洲国产精品国产精品| 蜜桃在线观看..| 国产无遮挡羞羞视频在线观看| 精品人妻熟女av久视频| 国产人妻一区二区三区在| 三级国产精品片| 中文字幕人妻熟人妻熟丝袜美| 久久婷婷青草| 亚洲国产精品999| 成人免费观看视频高清| 人体艺术视频欧美日本| 成人毛片60女人毛片免费| 日本av免费视频播放| 中国三级夫妇交换| 欧美少妇被猛烈插入视频| 国产亚洲最大av| 久久人人爽av亚洲精品天堂 | 中文字幕久久专区| 久久久欧美国产精品| 国产在线视频一区二区| av.在线天堂| 国产精品国产三级专区第一集| av免费观看日本| 爱豆传媒免费全集在线观看| 国产精品一及| 大码成人一级视频| 亚洲精品国产色婷婷电影| 久久影院123| 日日摸夜夜添夜夜爱| 亚洲国产最新在线播放| 久久韩国三级中文字幕| 亚洲精品国产av成人精品| 麻豆成人午夜福利视频| 妹子高潮喷水视频| 少妇的逼好多水| 精品久久久久久电影网| 久久久久视频综合| 国产精品精品国产色婷婷| 大片免费播放器 马上看| 女性被躁到高潮视频| 国产精品99久久99久久久不卡 | 九九爱精品视频在线观看| 又爽又黄a免费视频| 国产大屁股一区二区在线视频| 亚洲精品一二三| 免费大片黄手机在线观看| 夜夜看夜夜爽夜夜摸| 亚洲av欧美aⅴ国产| 亚洲精品久久久久久婷婷小说| 日韩制服骚丝袜av| 一本—道久久a久久精品蜜桃钙片| 九色成人免费人妻av| 日本av手机在线免费观看| 亚洲综合精品二区| 久久久久性生活片| 老熟女久久久| 大又大粗又爽又黄少妇毛片口| kizo精华| 免费看光身美女| 国产av码专区亚洲av| 欧美精品一区二区免费开放| 男女边吃奶边做爰视频| 在线观看免费高清a一片| a 毛片基地| 中文字幕亚洲精品专区| 赤兔流量卡办理| 成人高潮视频无遮挡免费网站| av视频免费观看在线观看| 亚洲中文av在线| 久久99精品国语久久久| www.色视频.com| 日韩av免费高清视频| 国精品久久久久久国模美| 亚洲婷婷狠狠爱综合网| 亚洲精品第二区| 亚洲图色成人| 亚洲av中文字字幕乱码综合| 国产高清不卡午夜福利| 午夜福利高清视频| 搡女人真爽免费视频火全软件| 国产精品爽爽va在线观看网站| 好男人视频免费观看在线| 建设人人有责人人尽责人人享有的 | 夜夜骑夜夜射夜夜干| 在线 av 中文字幕| 欧美日韩亚洲高清精品| 国产爽快片一区二区三区| 国产一区有黄有色的免费视频| 岛国毛片在线播放| 国内少妇人妻偷人精品xxx网站| 黄片wwwwww| 精品久久国产蜜桃| 国产免费一区二区三区四区乱码| 久久久久国产精品人妻一区二区| 尤物成人国产欧美一区二区三区| 内射极品少妇av片p| 寂寞人妻少妇视频99o| 美女主播在线视频| 亚洲av福利一区| 一区二区三区四区激情视频| 亚洲精品日本国产第一区| 中文字幕制服av| 精品一品国产午夜福利视频| 一个人看的www免费观看视频| 亚洲av欧美aⅴ国产| 免费播放大片免费观看视频在线观看| 九九久久精品国产亚洲av麻豆| 美女xxoo啪啪120秒动态图| 亚洲欧美清纯卡通| 国产精品蜜桃在线观看| 精品一区二区三卡| 高清午夜精品一区二区三区| 精品久久久久久久久亚洲| 亚洲内射少妇av| 久久国产亚洲av麻豆专区| 51国产日韩欧美| 老师上课跳d突然被开到最大视频| 99re6热这里在线精品视频| 国产乱人视频| 亚洲一级一片aⅴ在线观看| 丰满迷人的少妇在线观看| 国产成人免费无遮挡视频| 熟女人妻精品中文字幕| 久久久久久久久久久丰满| 日日摸夜夜添夜夜添av毛片| 1000部很黄的大片| 亚洲怡红院男人天堂| 亚洲,一卡二卡三卡| 99热6这里只有精品| 国产成人精品一,二区| 成人亚洲精品一区在线观看 | 大片电影免费在线观看免费| 国产成人免费无遮挡视频| 免费看av在线观看网站| 欧美一级a爱片免费观看看| 18+在线观看网站| 99精国产麻豆久久婷婷| 久久精品国产自在天天线| 美女xxoo啪啪120秒动态图| 毛片女人毛片| 亚洲精品国产av蜜桃| 亚洲国产色片| 免费看av在线观看网站| kizo精华| 亚洲精品视频女| 亚洲精品色激情综合| av国产久精品久网站免费入址| 天堂俺去俺来也www色官网| 亚洲三级黄色毛片| 高清黄色对白视频在线免费看 | 人妻 亚洲 视频| videos熟女内射| 三级经典国产精品| 亚洲天堂av无毛| 少妇的逼好多水| 一本久久精品| 亚洲国产成人一精品久久久| 国产av一区二区精品久久 | 亚洲美女视频黄频| 欧美性感艳星| 男人和女人高潮做爰伦理| 欧美高清性xxxxhd video| 伊人久久精品亚洲午夜| 男人舔奶头视频| 多毛熟女@视频| 国产人妻一区二区三区在| 国产一区有黄有色的免费视频| 五月开心婷婷网| 3wmmmm亚洲av在线观看| 在线观看美女被高潮喷水网站| 国产黄色视频一区二区在线观看| 联通29元200g的流量卡| 国产在线免费精品| 91aial.com中文字幕在线观看| 成人18禁高潮啪啪吃奶动态图 | 婷婷色av中文字幕| kizo精华| 国产精品国产三级专区第一集| 99九九线精品视频在线观看视频| 五月天丁香电影| 成年女人在线观看亚洲视频| 亚洲欧美精品自产自拍| 18禁裸乳无遮挡动漫免费视频| 亚洲国产最新在线播放| 中文在线观看免费www的网站| 成人亚洲精品一区在线观看 | 国产黄片视频在线免费观看| 51国产日韩欧美| 午夜免费男女啪啪视频观看| 日韩av不卡免费在线播放| 2018国产大陆天天弄谢| 99久久精品国产国产毛片| 国产大屁股一区二区在线视频| 最近中文字幕2019免费版| 九九久久精品国产亚洲av麻豆| 91在线精品国自产拍蜜月| 特大巨黑吊av在线直播| 十八禁网站网址无遮挡 | 欧美xxⅹ黑人| 黑人高潮一二区| 国产精品嫩草影院av在线观看| 尤物成人国产欧美一区二区三区| 岛国毛片在线播放| 少妇丰满av| 精品久久久久久久末码| 国产深夜福利视频在线观看| 九草在线视频观看| 91aial.com中文字幕在线观看| 日韩强制内射视频| 日本欧美国产在线视频| 日本欧美视频一区| 久久人妻熟女aⅴ| 色婷婷av一区二区三区视频| av不卡在线播放| 中文字幕免费在线视频6| 欧美激情极品国产一区二区三区 | 性高湖久久久久久久久免费观看| 国产精品福利在线免费观看| 成人18禁高潮啪啪吃奶动态图 | 国产伦精品一区二区三区四那| 亚洲av欧美aⅴ国产| 日韩三级伦理在线观看| 日韩免费高清中文字幕av| 国产成人a区在线观看| 人妻夜夜爽99麻豆av| 中国国产av一级| 国产v大片淫在线免费观看| 亚洲,欧美,日韩| 日韩伦理黄色片| 18禁裸乳无遮挡免费网站照片| 又黄又爽又刺激的免费视频.| av在线蜜桃| 欧美另类一区| 干丝袜人妻中文字幕| 国产精品一区二区三区四区免费观看| 又大又黄又爽视频免费| 亚洲精品久久午夜乱码| 国产91av在线免费观看| 永久网站在线| 国产高清国产精品国产三级 | 国产免费福利视频在线观看| 啦啦啦在线观看免费高清www| 国产片特级美女逼逼视频| 中文字幕久久专区| 亚洲精品久久久久久婷婷小说| 人人妻人人添人人爽欧美一区卜 | 亚洲欧美成人精品一区二区| av国产免费在线观看| 91精品国产国语对白视频| 日韩不卡一区二区三区视频在线| 啦啦啦中文免费视频观看日本| 极品少妇高潮喷水抽搐| 亚洲欧美精品自产自拍| 亚洲精品国产色婷婷电影| 国产精品伦人一区二区| 国产精品一区二区三区四区免费观看| www.色视频.com| 99久国产av精品国产电影| 欧美高清成人免费视频www| 99视频精品全部免费 在线| 精品国产三级普通话版| 亚洲av免费高清在线观看| 另类亚洲欧美激情| 一级毛片黄色毛片免费观看视频| 久久热精品热| 国产亚洲最大av| 香蕉精品网在线| 一级毛片黄色毛片免费观看视频| 亚洲自偷自拍三级| 日韩一区二区三区影片| 国产精品一区二区三区四区免费观看| 亚洲伊人久久精品综合| 男人爽女人下面视频在线观看| 久久精品熟女亚洲av麻豆精品| 亚洲精品自拍成人| 91在线精品国自产拍蜜月| av黄色大香蕉| 天天躁夜夜躁狠狠久久av| 18禁在线播放成人免费| 内地一区二区视频在线| 欧美三级亚洲精品| 成人18禁高潮啪啪吃奶动态图 | 日本免费在线观看一区| 国产亚洲午夜精品一区二区久久| 超碰97精品在线观看| 国产av码专区亚洲av| 精品一区在线观看国产| 纯流量卡能插随身wifi吗| 日本免费在线观看一区| 国产精品三级大全| 国产无遮挡羞羞视频在线观看| 99精国产麻豆久久婷婷| 欧美另类一区| 欧美日韩亚洲高清精品| 亚洲国产高清在线一区二区三| 一级a做视频免费观看| 91精品国产九色| 全区人妻精品视频| 伦理电影免费视频| 美女高潮的动态| 亚洲在久久综合| 国产一区亚洲一区在线观看| 久久人人爽人人片av| 国产黄片美女视频| 欧美精品国产亚洲| 免费黄色在线免费观看| 亚洲欧美日韩东京热| 中国三级夫妇交换| 久久99热6这里只有精品| 夫妻性生交免费视频一级片| 狂野欧美激情性xxxx在线观看| 九九爱精品视频在线观看| 国产高潮美女av| 2018国产大陆天天弄谢| 特大巨黑吊av在线直播| 亚洲国产高清在线一区二区三| 成人18禁高潮啪啪吃奶动态图 | 日韩欧美 国产精品| 激情 狠狠 欧美| 亚洲精品国产av蜜桃| 男女免费视频国产| 国产精品一区二区在线不卡| 高清在线视频一区二区三区| 国产永久视频网站| 天堂8中文在线网| 免费黄频网站在线观看国产| 日韩av不卡免费在线播放| 精品久久久久久久末码| 亚洲精华国产精华液的使用体验| 国产精品秋霞免费鲁丝片| 亚洲精品第二区| 高清黄色对白视频在线免费看 | 国产成人a∨麻豆精品| 国产精品人妻久久久久久| 精品久久久久久电影网| 狂野欧美白嫩少妇大欣赏| 老司机影院毛片| 中国国产av一级| 日本欧美视频一区| 精品人妻视频免费看| 18禁裸乳无遮挡免费网站照片| 91狼人影院| xxx大片免费视频| 老司机影院成人| 欧美日韩亚洲高清精品| 高清午夜精品一区二区三区| 久久99热这里只有精品18| 在现免费观看毛片| 亚洲最大成人中文| 精品久久久久久久久av| 嘟嘟电影网在线观看| 久久热精品热| 丰满少妇做爰视频| 伦精品一区二区三区| 精品久久久久久久久av| 亚洲精品乱码久久久v下载方式| 国产永久视频网站| 精品久久久久久久末码| 中国美白少妇内射xxxbb| 我的女老师完整版在线观看| 91精品国产九色| 亚洲精品aⅴ在线观看| 亚洲婷婷狠狠爱综合网| 日韩在线高清观看一区二区三区| 日韩大片免费观看网站| 99热这里只有是精品在线观看| 九九在线视频观看精品| 久久影院123| 国产免费又黄又爽又色| 26uuu在线亚洲综合色| 久久精品国产亚洲网站| 欧美日韩一区二区视频在线观看视频在线| 超碰av人人做人人爽久久| 大又大粗又爽又黄少妇毛片口| 99热网站在线观看| 久热久热在线精品观看| 久久久亚洲精品成人影院| 大香蕉97超碰在线| 日本黄色日本黄色录像| 日本猛色少妇xxxxx猛交久久| 国产乱人偷精品视频| 麻豆成人午夜福利视频| 国产白丝娇喘喷水9色精品| 日韩强制内射视频| 久久久a久久爽久久v久久| 久久精品国产自在天天线| 国产乱来视频区| 亚洲国产高清在线一区二区三| 一二三四中文在线观看免费高清| 另类亚洲欧美激情| 亚州av有码| 熟妇人妻不卡中文字幕| 街头女战士在线观看网站| 女性被躁到高潮视频| 国产高清不卡午夜福利| 欧美日韩视频高清一区二区三区二| av专区在线播放| 男女下面进入的视频免费午夜| av不卡在线播放| 国产精品不卡视频一区二区| 亚洲天堂av无毛| av卡一久久| 少妇 在线观看| 老女人水多毛片| 美女中出高潮动态图| 国产午夜精品一二区理论片| 亚洲在久久综合| 亚洲伊人久久精品综合| 亚洲精品国产av成人精品| 国产欧美亚洲国产| 免费大片18禁| 欧美97在线视频| www.色视频.com| 国产69精品久久久久777片| 欧美日韩一区二区视频在线观看视频在线| 久久 成人 亚洲| 91狼人影院| 国产精品爽爽va在线观看网站| 精品一品国产午夜福利视频| 色婷婷av一区二区三区视频| 在线亚洲精品国产二区图片欧美 | 妹子高潮喷水视频| 日韩欧美 国产精品| 亚洲精品日本国产第一区| 边亲边吃奶的免费视频| 国产 精品1| 高清黄色对白视频在线免费看 | 亚洲精品456在线播放app| 中文字幕av成人在线电影| 18禁裸乳无遮挡免费网站照片| 免费看光身美女| 亚洲国产精品一区三区| 日韩一区二区视频免费看| av又黄又爽大尺度在线免费看| 中文在线观看免费www的网站| 日韩不卡一区二区三区视频在线| 蜜桃亚洲精品一区二区三区| 亚洲精品日韩在线中文字幕| 一级毛片我不卡| 国产在线视频一区二区| 久久综合国产亚洲精品| 人人妻人人看人人澡| 舔av片在线| 蜜桃在线观看..| 天堂8中文在线网| 亚洲国产日韩一区二区| 成人漫画全彩无遮挡| 赤兔流量卡办理| 大码成人一级视频| 一级爰片在线观看| 丰满人妻一区二区三区视频av| 欧美极品一区二区三区四区| 中文欧美无线码| 免费看av在线观看网站| 亚洲精品久久久久久婷婷小说| 日韩一区二区三区影片| 亚洲精品视频女| 51国产日韩欧美| 中文字幕av成人在线电影| 中文字幕精品免费在线观看视频 | 男人舔奶头视频| 在线免费十八禁| 交换朋友夫妻互换小说| 婷婷色综合www| 国产精品一区二区在线观看99| 在线观看免费高清a一片| 性高湖久久久久久久久免费观看| 亚洲色图综合在线观看| 熟女av电影| 久久ye,这里只有精品| 97超碰精品成人国产| 精品久久久久久久久av| 成人综合一区亚洲| 我的女老师完整版在线观看| 亚洲国产精品国产精品| 久久久久久伊人网av| 97在线人人人人妻| 亚州av有码| 国产精品麻豆人妻色哟哟久久| 视频区图区小说| 久久久久久久国产电影| 久久精品久久久久久噜噜老黄| 久久久久久久国产电影| 久久久久精品久久久久真实原创| 午夜激情福利司机影院| 两个人的视频大全免费| 国产精品久久久久成人av| 国产男女超爽视频在线观看| 性色avwww在线观看| 午夜福利在线观看免费完整高清在| 日韩亚洲欧美综合| 我的老师免费观看完整版| 最近的中文字幕免费完整| 亚洲精品久久久久久婷婷小说| 久久精品久久久久久久性| 亚洲天堂av无毛| 99热这里只有精品一区| 国产精品av视频在线免费观看| 又爽又黄a免费视频| 国产精品一及| 日韩视频在线欧美| 精品一区在线观看国产| 国产毛片在线视频| 国精品久久久久久国模美| 女人久久www免费人成看片| 好男人视频免费观看在线| 精品国产露脸久久av麻豆| 高清欧美精品videossex| 男的添女的下面高潮视频| 欧美精品亚洲一区二区| 日韩一本色道免费dvd| 午夜激情福利司机影院| 日本与韩国留学比较| 蜜桃亚洲精品一区二区三区| 最黄视频免费看| 中文在线观看免费www的网站| 97超视频在线观看视频| 男女无遮挡免费网站观看| 狂野欧美激情性xxxx在线观看| 国产精品不卡视频一区二区| 久久精品久久精品一区二区三区| 久久久久久久久久久免费av| 日韩免费高清中文字幕av| 欧美精品一区二区大全| 人妻系列 视频| av国产免费在线观看| 国产高清三级在线| 成人特级av手机在线观看| 看免费成人av毛片| 午夜福利影视在线免费观看| 成人毛片a级毛片在线播放| 我的女老师完整版在线观看| 成人二区视频| 搡女人真爽免费视频火全软件| 秋霞伦理黄片| 久久韩国三级中文字幕| 国内少妇人妻偷人精品xxx网站| 国产综合精华液| 国产有黄有色有爽视频| 女人十人毛片免费观看3o分钟| 亚洲av日韩在线播放| 极品教师在线视频| 日韩中文字幕视频在线看片 | 五月伊人婷婷丁香|