• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Development of Light Cycle Oil (LCO) Hydrocracking Technology over a Commercial W-Ni Based Catalyst

    2015-06-22 14:19:10PengChongYangXuejingFangXiangchenHuangXinluChengZhenminZengRonghuiGuoRong
    中國煉油與石油化工 2015年4期

    Peng Chong; Yang Xuejing; Fang Xiangchen; Huang Xinlu; Cheng Zhenmin; Zeng Ronghui; Guo Rong

    (1. State Key Laboratory of Chemical Engineering, East China University of Science and Technology (ECUST), Shanghai 200237; 2. Fushun Research Institute of Petroleum and Petrochemicals (FRIPP), Sinopec, Fushun 113001)

    Development of Light Cycle Oil (LCO) Hydrocracking Technology over a Commercial W-Ni Based Catalyst

    Peng Chong1,2; Yang Xuejing1; Fang Xiangchen1,2; Huang Xinlu2; Cheng Zhenmin1; Zeng Ronghui2; Guo Rong2

    (1. State Key Laboratory of Chemical Engineering, East China University of Science and Technology (ECUST), Shanghai 200237; 2. Fushun Research Institute of Petroleum and Petrochemicals (FRIPP), Sinopec, Fushun 113001)

    Because of its high density and low cetane number, the light cycle oil (LCO) containing heavy aromatics (60%—80%) can hardly be transformed through the conventional hydro-upgrading technology. In this report, a novel LCO hydrocracking technology (FD2G) was proposed for the utilization of LCO to manufacture high value-added products. Through the ingenious combination of hydroprocessing catalyst and the hydrocracking process, the high octane gasoline and the ultra-low sulfur diesel (ULSD) blendstocks were produced simultaneously. The influence of catalyst type, reaction temperature, pressure, respectively, on the research octane number (RON) of produced gasoline was studied in a fixed bed hydrogenation reactor. It indicated that high reaction temperature and medium pressure would favor the production of highoctane gasoline through the conversion of bi-aromatic and tri-aromatic hydrocarbons. The typical results of FD2G technology on commercial units showed that it could produce clean diesel with a sulfur content of less than 10 μg/g and clean gasoline with a research octane number (RON) of up to 92. It would be contributed to the achievement of the maximum profit of a refinery, the FD2G technology could provide a higher economic efficiency than the other diesel quality upgrading technology under the current gasoline and diesel price system.

    LCO; hydrocracking; high octane gasoline; ULSD; aromatics

    1 Introduction

    Generally, LCO is a secondary stream obtained from the catalytic cracking unit (FCC), having a boiling point similar to that of diesel. Its production is increasing in step with the predicted role of the FCC unit for meeting the increasing demand for light olefins and the increasing trend of feeding heavy feedstocks into the FCC unit[1]. However, due to its high content of aromatics, high specific gravity, high sulfur and nitrogen contents as well as low cetane rating[2], LCO is a poor diesel fuel blending component. For instance, the aromatics content of LCO delivered from FCC units varies between 75% and 90%. The relatively high sulfur and nitrogen contents can go up to 1.5 wt% and 750 μg/g, respectively. Typically, its cetane index of LCO ranges from 15 to 25, whereas it can be 40—60 for the straight run distillates produced from the same crude[3]as summarized in Figure 1. In China, LCO amounts to over 33% of the distillate pool and therefore besides desulfurization, the dearomatization process is also needed to transform this stream into a feasible blending component of refinery automotive diesel pool[4]. The disposalof LCO is one of the major concerns to the refiners.

    Figure 1 Typical LCO properties and disposition

    LCO was reported to be treated either by catalytic cracking[5-6]or hydrogenation[7-21]. The hydrocracking of LCO is obviously of great interest in a bid to maximize the economic profit of a refinery and upgrade the utilization efficiency of the crude oil resource. In recent years, LCO hydrocracking has been studied using model compounds[22], light fractions of LCO[23]and the LCO blended with other refinery streams[24]. Noble metals, such as Pt, Pd and Pt-Pd alloy are reported to be more active for this process. It is revealed that the acidity of the support is of curial importance as well. Zeolite materials with medium acidity showed high conversion, including Hβ, HY and HZSM-5[25]. The effects of pressure, temperature, space velocity on LCO hydrocracking[26-30]were also studied. Nevertheless, these noble metal catalysts are of low stability and are liable to fast deactivation during the hydrocracking of feeds with heteroatomic aromatics containing S and N. Accordingly, these feeds require pretreatment steps (hydrodesulfurization, hydrodenitrogenation, and hydrodemetallization) prior to hydrocracking. Hydrotreating, aromatics saturation, and mild hydrocracking as well as selective ring opening are primary elemental processes for treating LCO. However, aiming to reduce the excessive sulfur compounds, the harsh operating conditions have to be applied. Meanwhile, the aromatic ring is usually over-saturated, which leads to the undesirable decrease of the cetane number as well as the waste of hydrogen resource. The UOP Company has developed a new LCO UnicrackingTMtechnology, which can process LCO to produce gasoline blendstocks with high octane number, and then the LCO-X technology based on the LCO UnicrackingTMtechnology and selective alkyl transfer technology can produce benzene and xylene. However, it has not yet been in practical use in commercial scale. In this paper, we will introduce the LCO hydrocracking technology (FD2G) for the production of a high octane gasoline based on a commercial hydrogenation system based on non-noble metal (W-Ni based) catalysts. This technology was developed in 2002 and then was applied in commercial scale in 2013.

    2 Development of the Technology

    Figure 2 demonstrates the hydrocarbon distribution of a typical LCO produced using a Middle East vacuum gas oil and residue. Numerous aromatic hydrocarbons are found in LCO, including the majority of polycyclic aromatic hydrocarbons, the di-aromatic content of which reaches >50%. The proportion of polycyclic aromatic hydrocarbons increases when the LCO narrow fractions gradually become heavier, while mono-aromatics content is reduced. The tri-aromatic hydrocarbons are mainly concentrated in the fraction boiling at >290 ℃. The high aromatic content of LCO is undesirable in the diesel fraction because aromatics in LCO can cause high density and poor burning behavior of diesel fuel. Meanwhile, researchers also realize the potential value of polyaromatics in LCO, which can be hydrocracked selectively into mono-aromatics to obtain high-octane gasoline.

    Figure 2 Distribution of aromatics in the LCO■—tri-aromatic;■—di-aromatic;■—mono-aromatic

    Hydrocracking technology is an excellent choice for transforming the molecular structure of hydrocarbons and upgrading oil quality. One of the characteristics of hydrocracking technology is the ability to control the occurrence of a reaction and the reaction extent by combining catalysts with process technology. The FD2G technology provides a full initiative effect on these characteristics, including preventing mono-aromatics from being hydrogenated into naphthenes by controlling the hydroconversion process, and ultimately transforming heavy aromatics into light aromatics. For example, the ideal reaction pathway of the FD2G technology in the di-aromatics hydrocracking reaction is demonstrated in Figure 3.

    The key factors of this technology are the selection of a suitable catalyst and operating conditions. The desired reaction pathway is the transformation of di-aromatic and triaromatic hydrocarbons contained in LCO to monoaromatics with high octane number in the gasoline distil-late, rather than further hydrogenation saturation into low octane naphthenes. To maintain a proper operating run length of the catalyst while obtaining high-octane gasoline is still an issue.

    Figure 3 The ideal reaction path of LCO hydrocracking

    3 Pilot Verification

    Reaction conditions are the main factors that influence the reaction rate. For example, both the reaction temperature and space velocity can affect the conversion and product distribution, while the hydrogen/oil volume ratio can affect the hydrogen partial pressure in the system. The key issue of the FD2G technology is controlling the degree of aromatic hydrogenation saturation using appropriate catalysts combined with the optimal process condition.

    Certain differences occur in selecting process parameters between the FD2G and the conventional hydrocracking process in order to maintain the content of light aromatic hydrocarbons in the gasoline product as much as possible. A series of experiments are performed in pilot units to determine the optimized catalysts and operating conditions.

    3.1 The flow diagram

    A fixed-bed hydrogenation unit is utilized, as shown in Figure 4. All technical parameters are precisely controlled using a distributed control system. Both top and bottom of the reactor are filled with inert particles to maintain the uniform distribution of fluids and to prevent catalyst particles from entering the pipelines. The catalysts are loaded into the hydrofining and cracking reactors with dimensions of D/dp>18, and L/dp>350. (D, L, dp are the inner diameter of the reactor, bed height, and catalyst size, respectively.) Electrolytic hydrogen with a purity of over 99.9 vol% is used in this experiment, and the content of oxygen in hydrogen stream, which is subject to highpressure deoxygenation followed by dehydration using silica gel, is less than 5 μL/L. The tail oil can be recycled back to the feed tank of this unit. Thus, the influence of different process schemes on the reaction can be examined.

    3.2 Effects of the catalyst

    Figure 4 Schematic flow diagram for a single-pass hydrocracking reactor system1—Feed tank; 2—Oil pump; 3—Hydrofining reactor; 4—Hydrocracker; 5—Gas-liquid separator; 6—Fresh hydrogen; 7—Recycle hydrogen; 8—Compressor; 9—Water scrubber

    Selecting a hydrocracking catalyst is an important step indeveloping the FD2G technology; and the selected catalyst used in the experiments is a multi-functional catalyst with its active centers capable of performing hydrogenation, cracking and isomerization reactions. A hydrocracking catalyst is usually designed according to the differences in raw materials and the requirements for targeted products. Three different types of hydrocracking catalysts are generally widely applied in industry. For instance, the hydrocracking catalysts with strong acidity and relatively weak hydrogenation activity are used to produce light oil. The hydrocracking catalysts with medium acidity and strong hydrogenation activity are used to produce middle distillates. Single-stage hydrocracking catalysts have appropriate hydrocracking activity, good quality mid-barrel distillates, strong heterogeneous properties, and high selectivity for diesel fuel with good cold flow property.

    Theoretical analysis showed that the hydrocracking catalysts for producing light oil were more suitable for the hydrocracking process of light cycle oil. To produce more gasoline with high octane number, light aromatic hydrocarbons should be retained in the gasoline distillate as much as possible. The effects of three different commercial catalysts on LCO hydrogenation process under the same conditions have been studied. The properties of the three commercial catalysts are summarized in Table 1. The LCO is a stream with high sulfur content (1.05%) and low cetane number (about 17) because of its high aromatic content.

    Figure 5 shows the results of LCO hydrocracking over different commercial catalysts under the same operating conditions. It shows that a stream of excellent quality gasoline with a high research octane number of 84.4 and an aromatic content of 57.8% could be obtained with catalyst C. By contrast, the research octane number obtained using catalysts A and B only reached 74.5 and 71.6, respectively. Therefore, catalyst C is suitable for LCO hydrocracking because the strong acidic nature and relatively weak hydrogenation activity of this catalyst could retain more light aromatic hydrocarbons in gasoline.

    3.3 Effects of pressure

    Studies have shown that the reaction pressure greatly affects hydroprocessing reaction and aromatic content. The product slate is directly related to the reaction pressure and hydrogenation saturation of aromatic components, which are more advantageous under a higher pressure[31-35]. Pressure greatly influences the LCO hydrocracking, while 60%—80% of aromatics are found in the feed. Greater differences occur between LCO hydrocracking and conventional hydrocracking processes. Experiments under different reaction pressure are conducted based on experiments 1—3 using catalyst C. The RON of the gasoline distillates along with the change of pressure are shown in Figure 6. It shows that the research octane number of the gasoline distillate increases significantly as the reaction pressure decreases from 13.7 MPa to 6.0 MPa. The reduction in reaction pressure is favorable to LCO hydrocracking for producing excellent high-octane gasoline. However, a decrease in reaction pressure also hampers the overall productivity. According to the general experience of industrial applications of conventional hydrocracking, a low operating pressure affects the service life of catalyst, acceleratescoking, and hinders quality improvement of diesel products. Such hydrocracking requires a comprehensive consideration to determine the proper pressure used in the LCO hydrocracking technology.

    Table 1 Properties of the catalyst used

    Figure 5 The effects of catalyst on LCO hydrocracking■—RON;●—Aromatics content

    Figure 6 The effects of total pressure on the RON of produced gasolineHydrogen /oil volume ratio= 1 200:1; LHSV= 0.8

    3.4 Effects of temperature

    The reaction of aromatic hydrogenation is a reversible exothermic reaction with the amount of substance reduced (hydrogen consumption). It means that the activation energy of the positive reaction (hydrogenation) is lower than that of the reverse reaction (dehydrogenation). Thus, the acceleration of the dehydrogenation reaction will be more significant than that of hydrogenation reaction, when the reaction temperature increases, which will lead to the reduction of the equilibrium constant as well. In consequence, the conversion rate of aromatics will reach the maximum. The corresponding temperature to the maximum conversion rate is the optimal temperature for hydrogenation reaction. Below this temperature, the hydrogenation of aromatic hydrocarbon is kinetic controlled. Then, the conversion of aromatic hydrocarbon will be greatly thermodynamically hampered, when the temperature is higher than the optimal one. The balance between thermodynamic limitation and the hydrogenation degree of the aromatic hydrocarbons should be carefully evaluated.

    Another challenge on the technology development is to control the hydrogenation of aromatics to avoid the excess hydrogenation of aromatic hydrocarbons. Higher reaction temperature is favorable to this technology which is verified by the experiments. As shown in Figure 7, the cracking depth can be significantly improved and the yield of gasoline distillate can increase by increasing the reaction temperature. In consequence, the octane number of gasoline fractions was increased with the increase of the cracking depth.

    4 Commercial Application

    The LCO hydrocracking technology had been applied in the hydrocracking unit I at the Jinling Petrochemical Company in 2013 and Maoming Petrochemical Company to successfully produce high research octane gasoline and excellent quality diesel. Only the catalyst system was changed, and process conditions were optimized without large equipment modifications. The results showed that this technology could produce gasoline blendstock at a yield of 35%—50% coupled with a high research octane number of 91—94 and a sulfur content of less than 10 μg/g. In addition, the sulfur content of clean diesel blendstock was also less than 10 μg/g, and its cetane number was increased by 10—14 units as compared with the feedstock.

    At present, deep desulfurization and aromatic hydrogenation of diesel refining technology (HF), the maximum diesel cetane number technology (MCI) have both been applied in the commercial units. The systematic comparison between the HF technology, MCI technology and the present FD2G technology are summarized in Table 2. The main operating conditions, chemical hydrogen consumption, the production yield and the properties of obtained products were compared under the same quality of thediesel product. The results show that the FD2G technology has a higher economic efficiency than other diesel quality upgrading technologies under the current gasoline and diesel price system.

    Table 2 The comparison between the HF, MCI and FD2G technology

    5 Conclusions

    The FD2G technology can effectively convert heavy aromatics in LCO to light aromatics through selective hydrocracking of aromatics, thereby producing high-octane gasoline blendstocks and clean low-sulfur diesel blendstocks.

    Typical results of FD2G technology on commercial units show that it could produce clean diesel with a sulfur content of less than 10 μg/g and clean gasoline with a research octane number (RON) of up to 92.

    FD2G technology was deemed to be a good choice for refineries abundant in FCC diesel with high aromatics content and are seeking to improve cetane numbers and produce more gasoline and aromatics.

    [1] Ren T, Patel M, Blok K. Olefins from conventional and heavy feedstocks: Energy use in steam cracking and alternative processes[J]. Energy, 2006, 31(4): 425-451

    [2] Mu?íková Z, Procháska F, Pospí?il M. Storage stability of FCC light cycle oil[J]. Fuel, 2010, 89(11): 3534-3539

    [3] Rossi R D B, Huovie C, Thakkar V, et al. Maximazing diesel in existing assets[C/CD]. NPRA Annual Meeting, AM-09-33. 2009

    [4] Sharafutdinov I, Stratiev D, Shishkova I, et al. Industrial investigation on feasibility to raise near zero sulfur diesel production by increasing fluid catalytic cracking light cycle oil production[J]. Fuel Processing Technology, 2012, 104: 211-218

    [5] Gilbert W R, Jr Morgado E, de Abreu M A S, et al. A novel fluid catalytic cracking approach for producing low aromatic LCO [J]. Fuel Processing Technology, 2011, 92(12): 2235-2240

    [6] Corma A, Martínez C, Sauvanaud L. New materials as FCC active matrix components for maximizing diesel (light cycle oil, LCO) and minimizing its aromatic content[J]. Catalysis Today, 2007, 127(1/4): 3-16

    [7] Yun G-N, Lee Y-K. Dispersion effects of Ni2P catalysts on hydrotreating of light cycle oil[J]. Applied Catalysis B: Environmental. 2014, 150–151: 647-655

    [8] Ding L, Zheng Y, Yang H, et al. LCO hydrotreating with Mo-Ni and W-Ni supported on nano- and micro-sized zeolite beta [J]. Applied Catalysis A: General, 2009, 353(1): 17-23

    [9] Ding L, Zheng Y, Zhang Z, et al. Hydrotreating of light cycled oil using WNi/Al2O3catalysts containing zeolite beta and/or chemically treated zeolite Y[J]. Journal of Catalysis, 2006, 241(2): 435-445

    [10] Wang Y, Shen B, Li J, et al. Interaction of coupled titanium and phosphorus on USY to tune hydrodesulfurization of 4,6-DMDBT and FCC LCO over NiW catalyst [J]. Fuel Processing Technology, 2014, 128(0): 166-175

    [11] Dukanovi? Z, Gli?i? S B, ?obanin V J, et al. Hydrotreating of straight-run gas oil blended with FCC naphtha and light cycle oil[J]. Fuel Processing Technology. 2013, 106: 160-165

    [12] Del Rio D, Bastos R, Sedran U. Commercial additives for sulfur control in FCC gasoline: Overall analysis of their impact on LCO and gasoline[J]. Catalysis Today, 2013, 213: 206-210

    [13] B etancourt P, Marrero S, Pinto-Castilla S. V–Ni–Mo sulfide supported on Al2O3: Preparation, characterization and LCO hydrotreating[J]. Fuel Processing Technology, 2013, 114: 21-25

    [14] Azizi N, Ali S A, Alhooshani K, et al. Hydrotreating oflight cycle oil over NiMo and CoMo catalysts with different supports [J]. Fuel Processing Technology, 2013, 109: 172-178

    [15] Wang L, Shen B, Fang F, et al. Upgrading of light cycle oil via coupled hydrogenation and ring-opening over NiW/ Al2O3-USY catalysts[J]. Catalysis Today, 2010, 158(3/4): 343-347

    [16] Calemma V, Giardino R, Ferrari M. Upgrading of LCO by partial hydrogenation of aromatics and ring opening of naphthenes over bi-functional catalysts[J]. Fuel Processing Technology, 2010, 91(7): 770-776

    [17] Tailleur R G. Low-emission diesel production by upgrading LCO plus SR diesel fractions [J]. Catalysis Today, 2008, 130(2/4): 492-500

    [18] Liu Z, Zheng Y, Wang W, et al. Simulation of hydrotreating of light cycle oil with a system dynamics model [J]. Applied Catalysis A: General, 2008, 339(2): 209-220

    [19] Froment G F, Castaneda-Lopez L C, Marin-Rosas C. Kinetic modeling of the hydrotreatment of light cycle oil and heavy gas oil using the structural contributions approach[J]. Catalysis Today, 2008, 130(2–4): 446-454

    [20] Ding L, Zheng Y, Zhang Z, et al. Hydrotreating of light cycle oil using WNi catalysts containing hydrothermally and chemically treated zeolite Y. Catalysis Today. 2007, 125(3/4): 229-238

    [21] Chen J, Yang H, Ring Z. HDS kinetics study of dibenzothiophenic compounds in LCO[J]. Catalysis Today, 2004, 98(1/2): 227-233

    [22] Albertazzi S, Baraldini I, Busca G, et al. Noble metal containing Al/Ce/Mg pillared montmorillonite clay as catalysts in the hydrotreating of LCO fractions [J]. Applied Clay Science, 2005, 29(3/4): 224-234

    [23] Laredo G C, Saint-Martin R, Martinez M C, et al. High quality diesel by hydrotreating of atmospheric gas oil/light cycle oil blends [J]. Fuel, 2004, 83(10): 1381-1389

    [24] Ancheyta-Juárez J, Rodríguez-Salomón S, Valenzuela-Zapata M A. Experimental evaluation of vacuum gas oil?light cycle oil blends as FCC feedstock[J]. Energy & Fuels, 2001, 15(3): 675-679

    [31] Scherzer J, Gruia A J. Hydrocracking Science and Technology[M]. CRC Press, 1996

    [32] Liu Lihua, Liu Shuqun. Ni2P-MoS2/γ-Al2O3catalyst for deep hydrodesulfurization via the hydrogenation reaction pathway[J]. China Petroleum Processing and Petrochemical Technology, 2014, 16(4): 12-18

    [33] Zheng Renyang, Xin Jing, Zhang Runqiang, et al. Influence of hydrotreating depth on properties of LCO[J]. Petroleum Processing and Petrochemicals, 2014, 45(10): 1-7(in Chinese)

    [34] Ge Panzhu, Gao Xiaodong, Ren Liang. Hydrogenation performance of 1-methylnaphthalene on different catalysts[J]. Petroleum Processing and Petrochemicals, 2014, 45(6): 36-39(in Chinese)

    [35] Liang Jilei, Liu Yunqi, Wang Liqiang, et al. Preparation and application of hydroupgrading catalyst for inferior diesel. Part I. Catalyst preparation method and selective ring-opening of tetralin[J]. Petroleum Processing and Petrochemicals, 2014, 45(7): 36-41(in Chinese)

    date: 2015-06-08; Accepted date: 2015-09-02.

    Prof. Fang Xiangchen, E-mail: fxc@ ecust.edu.cn.

    亚洲成人中文字幕在线播放| 国产精品久久电影中文字幕| 免费在线观看成人毛片| 国内毛片毛片毛片毛片毛片| 国产成人福利小说| 国产一区二区亚洲精品在线观看| 最新中文字幕久久久久| 人妻夜夜爽99麻豆av| 亚洲 欧美 日韩 在线 免费| 色哟哟哟哟哟哟| 又粗又爽又猛毛片免费看| 最好的美女福利视频网| 美女免费视频网站| 久久久成人免费电影| 欧美精品国产亚洲| 国产一区二区激情短视频| 欧美日韩乱码在线| 色精品久久人妻99蜜桃| 最近在线观看免费完整版| 亚洲成av人片免费观看| 久久久久精品国产欧美久久久| 欧美日韩瑟瑟在线播放| av欧美777| 亚洲av第一区精品v没综合| 美女 人体艺术 gogo| 看免费av毛片| 日本免费一区二区三区高清不卡| 少妇的逼好多水| 久久九九热精品免费| 日韩欧美国产在线观看| 亚洲专区国产一区二区| 久久精品久久久久久噜噜老黄 | 两个人视频免费观看高清| 国产日本99.免费观看| 久久久久久久亚洲中文字幕 | 99在线视频只有这里精品首页| 99热只有精品国产| 精品午夜福利在线看| 久久久精品欧美日韩精品| 欧美zozozo另类| 很黄的视频免费| 国产色婷婷99| 亚洲av五月六月丁香网| 欧美区成人在线视频| 人人妻,人人澡人人爽秒播| 久久精品夜夜夜夜夜久久蜜豆| 少妇的逼好多水| 亚洲七黄色美女视频| 毛片女人毛片| 美女 人体艺术 gogo| 丰满人妻熟妇乱又伦精品不卡| 国产又黄又爽又无遮挡在线| 91久久精品电影网| 听说在线观看完整版免费高清| 亚洲人成伊人成综合网2020| 国产午夜精品论理片| av中文乱码字幕在线| 淫秽高清视频在线观看| 久久久国产成人精品二区| 亚洲一区二区三区不卡视频| 搡女人真爽免费视频火全软件 | 精华霜和精华液先用哪个| 国产伦人伦偷精品视频| 久久久国产成人精品二区| 天堂av国产一区二区熟女人妻| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | avwww免费| 搡老岳熟女国产| 91麻豆精品激情在线观看国产| 亚洲av美国av| 露出奶头的视频| 最近最新免费中文字幕在线| 三级毛片av免费| 久久伊人香网站| 免费一级毛片在线播放高清视频| 国产精品国产高清国产av| 国产爱豆传媒在线观看| av欧美777| 亚洲最大成人av| 99riav亚洲国产免费| 老司机福利观看| 日日夜夜操网爽| 久久香蕉精品热| 老熟妇仑乱视频hdxx| 国产精品久久久久久精品电影| 精品久久久久久久末码| 久久伊人香网站| 中文亚洲av片在线观看爽| 美女黄网站色视频| 一进一出抽搐动态| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲国产精品999在线| 一级毛片久久久久久久久女| 精品午夜福利视频在线观看一区| 欧美精品啪啪一区二区三区| 日韩人妻高清精品专区| 精华霜和精华液先用哪个| 国产私拍福利视频在线观看| 国产国拍精品亚洲av在线观看| 天美传媒精品一区二区| 久99久视频精品免费| 国内久久婷婷六月综合欲色啪| 99久久99久久久精品蜜桃| 国产午夜福利久久久久久| 美女大奶头视频| 深夜精品福利| 性插视频无遮挡在线免费观看| 午夜激情福利司机影院| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 免费在线观看影片大全网站| 久久这里只有精品中国| 一级毛片久久久久久久久女| 免费观看的影片在线观看| 怎么达到女性高潮| 国产乱人视频| 99国产精品一区二区蜜桃av| 亚洲欧美日韩高清在线视频| 村上凉子中文字幕在线| 18美女黄网站色大片免费观看| 真实男女啪啪啪动态图| 悠悠久久av| 一个人免费在线观看的高清视频| 国产久久久一区二区三区| 欧美日韩综合久久久久久 | 中文字幕熟女人妻在线| 精品99又大又爽又粗少妇毛片 | 亚洲激情在线av| 国产精品嫩草影院av在线观看 | 欧美激情久久久久久爽电影| 国产精品一区二区三区四区久久| 精品无人区乱码1区二区| 日韩国内少妇激情av| 搡女人真爽免费视频火全软件 | 精品久久久久久久久av| 成人亚洲精品av一区二区| 国产精品1区2区在线观看.| 深夜精品福利| 极品教师在线视频| 国产免费一级a男人的天堂| 综合色av麻豆| 蜜桃久久精品国产亚洲av| 日本黄色视频三级网站网址| 俄罗斯特黄特色一大片| 午夜福利成人在线免费观看| 亚洲电影在线观看av| 久久久久久国产a免费观看| 桃色一区二区三区在线观看| 国产精品乱码一区二三区的特点| 国内揄拍国产精品人妻在线| 青草久久国产| a级一级毛片免费在线观看| 国产一区二区三区视频了| 成年免费大片在线观看| 十八禁人妻一区二区| 嫩草影院入口| 亚洲第一欧美日韩一区二区三区| 国产大屁股一区二区在线视频| 少妇高潮的动态图| 亚洲精品在线观看二区| 变态另类丝袜制服| 久久午夜福利片| 亚洲人成网站在线播| 亚洲成av人片在线播放无| 精品一区二区三区视频在线观看免费| 搡女人真爽免费视频火全软件 | 脱女人内裤的视频| 99久久久亚洲精品蜜臀av| 90打野战视频偷拍视频| 最新在线观看一区二区三区| 小蜜桃在线观看免费完整版高清| 亚洲真实伦在线观看| 最近视频中文字幕2019在线8| 成熟少妇高潮喷水视频| 嫩草影视91久久| 两个人视频免费观看高清| 国产综合懂色| 日本与韩国留学比较| 免费搜索国产男女视频| 女人被狂操c到高潮| 69人妻影院| 久久精品夜夜夜夜夜久久蜜豆| 深爱激情五月婷婷| 亚洲最大成人手机在线| 可以在线观看的亚洲视频| 亚洲男人的天堂狠狠| 内射极品少妇av片p| 最好的美女福利视频网| 亚洲最大成人av| 亚洲人与动物交配视频| 窝窝影院91人妻| 身体一侧抽搐| 国产私拍福利视频在线观看| 久久午夜福利片| 高清在线国产一区| 一个人看的www免费观看视频| 欧美bdsm另类| 两个人视频免费观看高清| 人妻久久中文字幕网| 欧美精品啪啪一区二区三区| 最新中文字幕久久久久| 免费观看人在逋| 直男gayav资源| 日韩人妻高清精品专区| 十八禁人妻一区二区| 日日摸夜夜添夜夜添av毛片 | 日韩欧美在线二视频| 一个人看的www免费观看视频| 一二三四社区在线视频社区8| 又爽又黄无遮挡网站| 亚洲人成网站在线播放欧美日韩| 亚洲七黄色美女视频| 午夜精品一区二区三区免费看| 国产精品影院久久| 久久久色成人| 激情在线观看视频在线高清| 国产精品自产拍在线观看55亚洲| 国产色婷婷99| 一进一出好大好爽视频| 成熟少妇高潮喷水视频| 成人av一区二区三区在线看| 岛国在线免费视频观看| 少妇的逼水好多| 久久这里只有精品中国| 亚洲精品久久国产高清桃花| 观看免费一级毛片| 在线观看66精品国产| 成年人黄色毛片网站| 性欧美人与动物交配| 国产又黄又爽又无遮挡在线| 精品国内亚洲2022精品成人| 中文字幕av在线有码专区| 国产爱豆传媒在线观看| 亚洲欧美清纯卡通| 人妻制服诱惑在线中文字幕| 亚洲国产欧美人成| 淫妇啪啪啪对白视频| 亚洲成人精品中文字幕电影| 亚洲最大成人手机在线| 日本成人三级电影网站| 亚洲av一区综合| 国产色婷婷99| 在线免费观看的www视频| 国产精品久久久久久久久免 | a级毛片免费高清观看在线播放| 亚洲不卡免费看| av中文乱码字幕在线| 久久九九热精品免费| 欧美激情久久久久久爽电影| 国产精品女同一区二区软件 | av在线蜜桃| 91久久精品国产一区二区成人| 中文字幕av在线有码专区| 宅男免费午夜| 亚洲第一电影网av| 欧美bdsm另类| 国产v大片淫在线免费观看| 91久久精品电影网| 成年人黄色毛片网站| 伦理电影大哥的女人| 九九热线精品视视频播放| 真实男女啪啪啪动态图| 国产欧美日韩一区二区三| 亚洲成a人片在线一区二区| 精品一区二区三区人妻视频| 男人的好看免费观看在线视频| 99国产精品一区二区三区| 国产三级黄色录像| 99精品在免费线老司机午夜| 黄片小视频在线播放| 如何舔出高潮| 国产真实伦视频高清在线观看 | 免费一级毛片在线播放高清视频| 亚洲av美国av| 最近最新中文字幕大全电影3| 美女免费视频网站| 在线免费观看不下载黄p国产 | 久久精品影院6| 99久久成人亚洲精品观看| 美女大奶头视频| 午夜激情福利司机影院| 久久久久久九九精品二区国产| 亚洲精品影视一区二区三区av| 中文资源天堂在线| 哪里可以看免费的av片| 级片在线观看| 午夜a级毛片| 日本黄色片子视频| 男人舔奶头视频| 真人一进一出gif抽搐免费| 少妇高潮的动态图| 久久精品影院6| 嫁个100分男人电影在线观看| 国产免费av片在线观看野外av| 亚洲七黄色美女视频| 成熟少妇高潮喷水视频| 成年版毛片免费区| 久久精品久久久久久噜噜老黄 | 亚洲成人中文字幕在线播放| 18禁裸乳无遮挡免费网站照片| 99精品在免费线老司机午夜| 国产野战对白在线观看| 最近中文字幕高清免费大全6 | 99久久精品国产亚洲精品| 在线十欧美十亚洲十日本专区| 久久99热这里只有精品18| 麻豆成人午夜福利视频| 老司机深夜福利视频在线观看| 黄片小视频在线播放| 能在线免费观看的黄片| 亚洲一区二区三区色噜噜| 亚洲五月天丁香| 757午夜福利合集在线观看| 俄罗斯特黄特色一大片| 一本综合久久免费| 少妇裸体淫交视频免费看高清| 亚洲午夜理论影院| 最近视频中文字幕2019在线8| 尤物成人国产欧美一区二区三区| 国产爱豆传媒在线观看| 99国产精品一区二区三区| 一a级毛片在线观看| 日韩av在线大香蕉| 一级黄片播放器| 欧美绝顶高潮抽搐喷水| av国产免费在线观看| 国产精华一区二区三区| 国产精品电影一区二区三区| 欧美日本亚洲视频在线播放| 在线观看午夜福利视频| 午夜视频国产福利| av国产免费在线观看| 日韩亚洲欧美综合| 人妻制服诱惑在线中文字幕| 国产精品爽爽va在线观看网站| 亚洲国产精品久久男人天堂| av在线蜜桃| 亚洲七黄色美女视频| 国产在线精品亚洲第一网站| 人人妻人人澡欧美一区二区| 久久午夜福利片| 欧美高清成人免费视频www| 日本 av在线| 亚洲人成电影免费在线| 国产精品国产高清国产av| 久久精品综合一区二区三区| 亚洲不卡免费看| 精品人妻1区二区| 午夜免费激情av| 精品久久久久久久人妻蜜臀av| 久久人人爽人人爽人人片va | 国产一区二区三区视频了| 岛国在线免费视频观看| 高潮久久久久久久久久久不卡| 一进一出抽搐gif免费好疼| 国产伦精品一区二区三区视频9| 久久久国产成人免费| 搡老熟女国产l中国老女人| 深夜精品福利| 人妻久久中文字幕网| 日本黄色视频三级网站网址| 欧美性猛交黑人性爽| 亚洲欧美精品综合久久99| 亚洲专区国产一区二区| 十八禁网站免费在线| 色精品久久人妻99蜜桃| 免费大片18禁| 精品无人区乱码1区二区| 久久久久久久亚洲中文字幕 | av中文乱码字幕在线| 欧美在线一区亚洲| 波多野结衣巨乳人妻| 国产欧美日韩一区二区三| 桃色一区二区三区在线观看| 激情在线观看视频在线高清| 波多野结衣高清作品| 狂野欧美白嫩少妇大欣赏| 精品福利观看| 日本a在线网址| 波多野结衣巨乳人妻| 久久久成人免费电影| 免费在线观看亚洲国产| 全区人妻精品视频| 搡老妇女老女人老熟妇| 精品一区二区三区av网在线观看| 国产av在哪里看| 亚洲五月婷婷丁香| 757午夜福利合集在线观看| 亚洲,欧美精品.| 九九久久精品国产亚洲av麻豆| 三级毛片av免费| 亚洲午夜理论影院| 日韩欧美三级三区| 别揉我奶头 嗯啊视频| 老熟妇仑乱视频hdxx| 老鸭窝网址在线观看| 又黄又爽又免费观看的视频| 国产伦人伦偷精品视频| 中文字幕av在线有码专区| 久久精品久久久久久噜噜老黄 | 午夜福利18| 毛片女人毛片| 欧美不卡视频在线免费观看| 黄色视频,在线免费观看| 国产在线精品亚洲第一网站| 精品人妻视频免费看| 如何舔出高潮| 香蕉av资源在线| 99热这里只有是精品50| 一二三四社区在线视频社区8| 丁香六月欧美| 中文字幕熟女人妻在线| 人妻制服诱惑在线中文字幕| 日韩欧美精品免费久久 | 欧美色欧美亚洲另类二区| 亚洲欧美日韩无卡精品| 中文字幕免费在线视频6| 午夜a级毛片| 国产在视频线在精品| 精品午夜福利在线看| 国产欧美日韩精品一区二区| 一级毛片久久久久久久久女| 婷婷精品国产亚洲av| 男插女下体视频免费在线播放| 全区人妻精品视频| 18禁黄网站禁片午夜丰满| 国产三级在线视频| 亚洲男人的天堂狠狠| 高清日韩中文字幕在线| 国产av麻豆久久久久久久| 舔av片在线| 亚洲最大成人中文| 成人无遮挡网站| 成人特级黄色片久久久久久久| 国产欧美日韩一区二区精品| 亚洲精品在线观看二区| 亚洲av不卡在线观看| 男女做爰动态图高潮gif福利片| 国产大屁股一区二区在线视频| 亚洲国产欧洲综合997久久,| 动漫黄色视频在线观看| 中亚洲国语对白在线视频| 国产亚洲精品久久久久久毛片| 久久午夜福利片| 国产午夜福利久久久久久| bbb黄色大片| 午夜福利18| 亚洲美女搞黄在线观看 | 国产午夜福利久久久久久| 99riav亚洲国产免费| 亚洲最大成人中文| 国产黄色小视频在线观看| 国产精品野战在线观看| 久久中文看片网| 内地一区二区视频在线| 少妇人妻一区二区三区视频| 18禁黄网站禁片午夜丰满| 身体一侧抽搐| 美女cb高潮喷水在线观看| 国产精品98久久久久久宅男小说| 亚洲七黄色美女视频| 国产伦一二天堂av在线观看| 亚洲狠狠婷婷综合久久图片| 中文字幕久久专区| 丰满人妻一区二区三区视频av| www.熟女人妻精品国产| 久久精品久久久久久噜噜老黄 | 久久性视频一级片| 97碰自拍视频| 亚洲男人的天堂狠狠| 88av欧美| 91狼人影院| 丝袜美腿在线中文| 1000部很黄的大片| 一级av片app| 国产精品av视频在线免费观看| 久久久精品大字幕| 在线观看美女被高潮喷水网站 | 最近中文字幕高清免费大全6 | 麻豆久久精品国产亚洲av| 欧美成人a在线观看| 欧美日韩中文字幕国产精品一区二区三区| 久久久久性生活片| 12—13女人毛片做爰片一| 亚洲黑人精品在线| 久久久久久久久中文| 天堂√8在线中文| 脱女人内裤的视频| 国产主播在线观看一区二区| 一进一出抽搐动态| 成人av一区二区三区在线看| 在现免费观看毛片| 小说图片视频综合网站| 丝袜美腿在线中文| 婷婷亚洲欧美| 丝袜美腿在线中文| 亚洲av五月六月丁香网| 日韩av在线大香蕉| 激情在线观看视频在线高清| 久久6这里有精品| 搡老熟女国产l中国老女人| 极品教师在线免费播放| 91九色精品人成在线观看| 在线观看美女被高潮喷水网站 | 国产午夜福利久久久久久| 国产亚洲精品久久久com| 精品国产亚洲在线| 亚洲最大成人手机在线| 每晚都被弄得嗷嗷叫到高潮| av女优亚洲男人天堂| 精品一区二区三区视频在线观看免费| 18禁裸乳无遮挡免费网站照片| 国产精品98久久久久久宅男小说| 久久亚洲真实| 国产精品1区2区在线观看.| 色精品久久人妻99蜜桃| 亚洲专区国产一区二区| 中国美女看黄片| 日韩中文字幕欧美一区二区| 国产亚洲av嫩草精品影院| 91字幕亚洲| 色综合欧美亚洲国产小说| 亚洲自偷自拍三级| 国产精品亚洲美女久久久| 国产成人影院久久av| 国产极品精品免费视频能看的| 午夜精品久久久久久毛片777| 国产高潮美女av| 国内精品久久久久久久电影| 国产野战对白在线观看| 中出人妻视频一区二区| 免费av毛片视频| 国产精品人妻久久久久久| 国产精品久久视频播放| 久久欧美精品欧美久久欧美| www.熟女人妻精品国产| 嫩草影院精品99| 国产精品亚洲一级av第二区| 国产视频内射| 亚洲激情在线av| 在线观看舔阴道视频| 一本久久中文字幕| 日韩成人在线观看一区二区三区| 九色国产91popny在线| 乱人视频在线观看| 一区二区三区激情视频| 首页视频小说图片口味搜索| 美女高潮喷水抽搐中文字幕| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲欧美日韩高清专用| 五月伊人婷婷丁香| 国产欧美日韩精品一区二区| a级毛片a级免费在线| 免费av观看视频| 国产亚洲精品综合一区在线观看| 五月伊人婷婷丁香| 久久伊人香网站| 精品一区二区免费观看| 国产aⅴ精品一区二区三区波| 天堂动漫精品| 免费观看精品视频网站| 亚洲最大成人av| 久久精品国产亚洲av涩爱 | av在线天堂中文字幕| 伦理电影大哥的女人| av女优亚洲男人天堂| 日本 av在线| 小蜜桃在线观看免费完整版高清| 午夜老司机福利剧场| 午夜影院日韩av| 国内精品久久久久精免费| 亚洲aⅴ乱码一区二区在线播放| 精品人妻偷拍中文字幕| av黄色大香蕉| 性色av乱码一区二区三区2| 日本黄大片高清| 成人亚洲精品av一区二区| 丰满乱子伦码专区| 小说图片视频综合网站| 久久久国产成人精品二区| 亚洲熟妇熟女久久| 成年版毛片免费区| 国产日本99.免费观看| 五月玫瑰六月丁香| 婷婷亚洲欧美| 国产日本99.免费观看| 日本精品一区二区三区蜜桃| 亚洲国产精品合色在线| 精品人妻熟女av久视频| 亚洲av.av天堂| 亚洲va日本ⅴa欧美va伊人久久| 日韩有码中文字幕| 亚洲av.av天堂| 亚洲va日本ⅴa欧美va伊人久久| 精品人妻熟女av久视频| 欧美午夜高清在线| 一本综合久久免费| 国产真实乱freesex| 欧美午夜高清在线| 亚洲va日本ⅴa欧美va伊人久久| 18禁黄网站禁片午夜丰满| 宅男免费午夜| 国内精品一区二区在线观看| 亚洲成人久久爱视频| 久久中文看片网| 国产毛片a区久久久久| 能在线免费观看的黄片| 色吧在线观看| 日韩精品中文字幕看吧| aaaaa片日本免费| 长腿黑丝高跟| 小说图片视频综合网站| 如何舔出高潮| 噜噜噜噜噜久久久久久91| 不卡一级毛片| 99热6这里只有精品|