• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    約束自適應(yīng)桁架優(yōu)化設(shè)計(jì)方法

    2015-06-12 12:42:40肖阿陽(yáng)王本利金耀初
    振動(dòng)與沖擊 2015年14期
    關(guān)鍵詞:桁架形狀約束

    肖阿陽(yáng), 王本利, 金耀初

    1. 哈爾濱工業(yè)大學(xué) 衛(wèi)星技術(shù)研究所,哈爾濱 150001; 2. 薩里大學(xué) 計(jì)算科學(xué)系,吉爾福德 GU2 7XH)

    ?

    約束自適應(yīng)桁架優(yōu)化設(shè)計(jì)方法

    肖阿陽(yáng)1, 王本利1, 金耀初2

    1. 哈爾濱工業(yè)大學(xué) 衛(wèi)星技術(shù)研究所,哈爾濱 150001; 2. 薩里大學(xué) 計(jì)算科學(xué)系,吉爾福德 GU2 7XH)

    為求解多峰值、高度非線性桁架尺寸及形狀優(yōu)化問(wèn)題,減少算法參數(shù)設(shè)置的盲目性,將Oracle罰函數(shù)與啟發(fā)式算法相結(jié)合,提出可自適應(yīng)處理約束列式的優(yōu)化算法Ω-CMA-ES。該算法在處理各類復(fù)雜桁架優(yōu)化問(wèn)題時(shí)僅需設(shè)置一個(gè)參數(shù)Ω。測(cè)試算例表明,該算法對(duì)參數(shù)Ω具有良好的魯棒性,可有效處理各類動(dòng)態(tài)約束;且在探索全局最優(yōu)解時(shí)體現(xiàn)出較高潛力,優(yōu)化質(zhì)量及收斂速度優(yōu)于既有結(jié)果。

    桁架優(yōu)化;Oracle罰函數(shù);啟發(fā)式算法;約束優(yōu)化問(wèn)題;Ω-CMA-ES

    結(jié)構(gòu)優(yōu)化設(shè)計(jì)因經(jīng)濟(jì)效益顯著一直是工程領(lǐng)域熱點(diǎn)問(wèn)題。桁架尺寸優(yōu)化設(shè)計(jì)是最先被研究的結(jié)構(gòu)優(yōu)化課題之一。在桁架尺寸優(yōu)化設(shè)計(jì)中,桿件截面積及截面形狀參數(shù)均可作為設(shè)計(jì)變量,而桿件長(zhǎng)度、桁架包絡(luò)、節(jié)點(diǎn)數(shù)及節(jié)點(diǎn)連接方式均已固定。桁架形狀優(yōu)化設(shè)計(jì)則致力于對(duì)桁架節(jié)點(diǎn)坐標(biāo)的優(yōu)化,而桁架本身拓?fù)洳蛔?。常認(rèn)為優(yōu)化桁架形狀較桁架尺寸更具效率[1]。

    因工程需要,桁架尺寸、形狀同步優(yōu)化設(shè)計(jì)[2-4]常被設(shè)定含約束的混合整數(shù)非線性規(guī)劃問(wèn)題(MINLPc)。同時(shí)引入尺寸、形狀變量會(huì)增加桁架優(yōu)化問(wèn)題難度,計(jì)算量增大。受制于計(jì)算機(jī)硬件性能及優(yōu)化算法性能,相關(guān)研究主要采用分層優(yōu)化法;但因桁架尺寸、形狀變量在優(yōu)化進(jìn)程中具有強(qiáng)耦合性,分層優(yōu)化法易丟失有價(jià)值的可行解,且會(huì)陷入局部最優(yōu),故諸多研究致力于應(yīng)用啟發(fā)式算法,通過(guò)單層優(yōu)化實(shí)現(xiàn)桁架尺寸及形狀優(yōu)化設(shè)計(jì)。

    對(duì)桁架約束優(yōu)化問(wèn)題而言,約束列式處理非常重要。目前廣泛采用的包括靜態(tài)罰函數(shù)法、動(dòng)態(tài)罰函數(shù)法及自適應(yīng)罰函數(shù)法等。而所有罰函數(shù)法均應(yīng)正確權(quán)衡目標(biāo)函數(shù)及約束違反程度[5-6]。罰函數(shù)過(guò)大或過(guò)小時(shí)設(shè)計(jì)向量間僅基于罰函數(shù)或目標(biāo)函數(shù),會(huì)影響算法的尋優(yōu)廣度或深度。桁架優(yōu)化問(wèn)題中混合變量、復(fù)雜力學(xué)約束的存在使罰函數(shù)設(shè)置尤其關(guān)鍵。在桁架優(yōu)化中采用靜態(tài)罰函數(shù)會(huì)致全局最優(yōu)解丟失概率增大,甚至得不到可行解。

    本文試圖從約束自適應(yīng)處理及優(yōu)化算法性能提升角度,構(gòu)造高效率、自適應(yīng)桁架優(yōu)化設(shè)計(jì)方法。通過(guò)3個(gè)典型優(yōu)化算例顯示,所提Ω-CMA-ES算法對(duì)復(fù)雜約束的桁架尺寸、形狀優(yōu)化問(wèn)題適應(yīng)性較廣。

    1 桁架尺寸及形狀優(yōu)化模型

    結(jié)構(gòu)優(yōu)化宗旨即實(shí)現(xiàn)滿足約束條件的結(jié)構(gòu)輕量化設(shè)計(jì)。就桁架尺寸、形狀優(yōu)化而言,其設(shè)計(jì)變量主要包括桿件截面積(尺寸變量)及節(jié)點(diǎn)坐標(biāo)(形狀變量)。結(jié)構(gòu)重量極小化桁架尺寸及形狀優(yōu)化問(wèn)題可描述為

    (1)

    (2)

    (3)

    XA={A1A2…Ai…Ane}T∈ΔA

    (4)

    XG={G1G2…Gj…Gnj}T∈ΔG

    (5)

    X={XA,XG}T

    (6)

    2 Ω-CMA-ES算法

    含應(yīng)力或多階頻率約束,同時(shí)考慮尺寸、形狀變量桁架優(yōu)化設(shè)計(jì)為高度非線性非凸優(yōu)化問(wèn)題[7-8]。全局優(yōu)化算法如啟發(fā)式算法應(yīng)用為解決此類問(wèn)題的關(guān)鍵。自適應(yīng)協(xié)方差矩陣進(jìn)化策略(CMA-ES)作為新型啟發(fā)式算法,其出色的全局尋優(yōu)性能已獲廣泛認(rèn)可。而標(biāo)準(zhǔn)CMA-ES為無(wú)約束優(yōu)化問(wèn)題而設(shè)計(jì),因此本文運(yùn)用Oracle罰函數(shù)法[9]將含動(dòng)態(tài)約束桁架尺寸、形狀優(yōu)化問(wèn)題轉(zhuǎn)化為無(wú)約束優(yōu)化問(wèn)題。

    2.1 Oracle罰函數(shù)

    罰函數(shù)法核心即將約束優(yōu)化問(wèn)題改造為無(wú)約束優(yōu)化問(wèn)題。改造后的目標(biāo)函數(shù)F(X,C)由初始目標(biāo)函數(shù)f(X)、懲罰因子C及約束函數(shù)V(X)組成,即

    (7)

    有研究認(rèn)為,合理確定懲罰因子C的數(shù)值尺度為罰函數(shù)法難點(diǎn)。一般而言,在靜態(tài)罰函數(shù)中C為固定值;在動(dòng)態(tài)罰函數(shù)中C為關(guān)于優(yōu)化迭代次數(shù)的函數(shù);在自適應(yīng)罰函數(shù)中C則為特殊設(shè)計(jì)的自適應(yīng)懲罰因子,可自適應(yīng)地調(diào)整自身數(shù)值尺度。為確保搜索廣度,啟發(fā)式算法的初始種群隨機(jī)生成。因此,在優(yōu)化過(guò)程起始階段,種群中可行解比重較小,此時(shí)賦予非可行解較大懲罰因子C利于引導(dǎo)算法快速搜索到可行解。隨可行解在種群中的比重逐步提升,懲罰因子C應(yīng)隨之減小,從而利于算法對(duì)問(wèn)題可行域進(jìn)行深度搜索。

    (8)

    Subjectto:g0(X)=f(X)-Ω=0

    (9)

    gj(X)=0, (j=1,2,…,me)

    (10)

    gj(X)≥0,(j=me+1,…,m)

    (11)

    式中:Ω為Oracle參數(shù);me為等式約束個(gè)數(shù);m為所有約束個(gè)數(shù)。

    優(yōu)化進(jìn)程中,Ω采用更新機(jī)制以追蹤目標(biāo)函數(shù)值的變化情況,即

    (12)

    式中:i為第i次優(yōu)化迭代;res為剩余函數(shù),代表設(shè)計(jì)向量約束違反程度。當(dāng)且僅當(dāng)res(X)=0時(shí)X為可行解。

    Oracle罰函數(shù)的剩余函數(shù)res(X)、罰函數(shù)方程p(X)及自適應(yīng)系數(shù)α分別為

    (13)

    (14)

    (15)

    式(14)為改造后的無(wú)約束優(yōu)化問(wèn)題目標(biāo)函數(shù)。在初始目標(biāo)函數(shù)f(X)及剩余函數(shù)res(X)數(shù)值尺度差異未知情況下,Oracle罰函數(shù)法只需保證Ω的初始值為一較大值。隨機(jī)優(yōu)化初始階段,若Ω初始值足夠大,附加約束g0(X)≤0,由式(15)可知,自適應(yīng)系數(shù)α=0。此時(shí),式(14)中目標(biāo)函數(shù)p(X)的取值等同于剩余函數(shù)res(X),即設(shè)計(jì)向量之間的比較僅基于約束違反程度。優(yōu)化算法首次搜索到的可行解必為最優(yōu)解。此后優(yōu)化進(jìn)程中,式(12)可保證g0(X)始終為一小量?;谑?9)對(duì)初始目標(biāo)函數(shù)轉(zhuǎn)化,式(14)、(15)可實(shí)現(xiàn)在同一數(shù)值尺度上動(dòng)態(tài)權(quán)衡設(shè)計(jì)向量的初始目標(biāo)函數(shù)值f(X)及約束違反程度res(X)。

    2.2 自適應(yīng)協(xié)方差矩陣進(jìn)化策略

    CMA-ES為在進(jìn)化策略(ES)基礎(chǔ)上產(chǎn)生的高效率全局優(yōu)化算法[10]。其以符合正態(tài)分布N(X,σ)的個(gè)體突變?yōu)橹饕阕印F渲胁介L(zhǎng)σ為個(gè)體x的突變強(qiáng)度。在此基礎(chǔ)上ES引入旋轉(zhuǎn)角α以調(diào)整x突變方向。ES中旋轉(zhuǎn)角設(shè)定常取固定值并施以隨機(jī)擾動(dòng),但其中所含無(wú)效突變會(huì)提高整體計(jì)算成本。

    λ=4+floor(3log(N))

    (16)

    CMA-ES[11]基于歷史搜索路徑信息及相鄰兩代中μ個(gè)最佳個(gè)體(μ=floor(λ/2))間向量差更新協(xié)方差矩陣C,從而調(diào)整群體的突變方向。CMA-ES算法所有參數(shù)均無(wú)需用戶調(diào)節(jié),其自適應(yīng)機(jī)制可改進(jìn)算法收斂速度、提高算法的全局搜索能力。該算法已被證明在全局優(yōu)化方面均具有高可靠性及競(jìng)爭(zhēng)力。

    2.3 Ω-CMA-ES算法框架

    由于桁架尺寸、形狀優(yōu)化問(wèn)題中不含等式約束,且相關(guān)不等式約束形式均為gj(x)≤0。剩余函數(shù)res(X)可由式(13)轉(zhuǎn)化為

    res(x)=

    (17)

    綜合Oracle罰函數(shù)及CMA-ES算法的內(nèi)在機(jī)制,適用于桁架尺寸、形狀優(yōu)化問(wèn)題的Ω-CMA-ES的算法框架設(shè)計(jì)如下:

    步驟1:設(shè)置優(yōu)化問(wèn)題終止條件,初始化Oracle罰函數(shù)參數(shù)Ω;

    步驟3:找出當(dāng)前種群中剩余函數(shù)值res(X)=0的子種群,選取最優(yōu)個(gè)體,記錄目標(biāo)函數(shù)值f(X)為fi。設(shè)迭代次數(shù)i=i+1;

    步驟4:據(jù)式(12)更新罰函數(shù)參數(shù)Ω;

    步驟5:利用CMA-ES算法機(jī)制產(chǎn)生新種群;

    步驟6:重復(fù)執(zhí)行步驟3~5,直到滿足迭代終止條件,輸出最優(yōu)設(shè)計(jì)向量及目標(biāo)函數(shù)值。

    3 優(yōu)化算例

    用含平面、空間桁架的3個(gè)經(jīng)典算例測(cè)試Ω-CMA-ES的普適性及優(yōu)化效率。所用結(jié)構(gòu)力學(xué)分析方法為有限元法。Ω-CMA-ES種群規(guī)模由式(16)確定。在測(cè)試算例中,參數(shù)Ω均采用106,109兩種初始值。

    3.1 15桿平面桁架(算例1)

    15桿平面桁架初始結(jié)構(gòu)見圖1。桿單元許用應(yīng)力區(qū)間為[-172.369,172.369]MPa,垂直方向載荷作用于節(jié)點(diǎn)8,含23個(gè)設(shè)計(jì)變量,即尺寸變量Ai,(i=1,2,…,15);形狀變量x2=x6;x3=x7,y2,y3,y4,y6,y7,y8。材料參數(shù)、相關(guān)設(shè)計(jì)約束見文獻(xiàn)[2]。

    圖1 十五桿平面桁架初始結(jié)構(gòu)Fig.1 Schematic of the planar 15-bar truss

    有限元分析最大次數(shù)設(shè)為4 000。在兩種Ω參數(shù)初始值設(shè)置情況下,所得最優(yōu)設(shè)計(jì)見圖2。Ω參數(shù)自適應(yīng)變化曲線見圖3。由圖3看出,因第一代種群中已有可行解,Ω1取值迅速回到1 000以內(nèi)。本文方法與其它最優(yōu)解比較見表1。由表1看出,Ω-CMA-ES算法在約束控制上有不俗表現(xiàn),優(yōu)化所得結(jié)構(gòu)質(zhì)量最優(yōu),且結(jié)構(gòu)重分析次數(shù)最小。

    圖2 兩參數(shù)初始值設(shè)置下15桿平面桁架最優(yōu)布局設(shè)計(jì)Fig.2 Best solutions of the planar 15-bar truss layout under two different cases of parameter initial value

    圖3 Ω參數(shù)變化曲線Fig.3 Variation curves of parameter Ω

    表1 十五桿平面桁架的布局優(yōu)化結(jié)果對(duì)比

    Tab.1 Comparison of optimized designs found for the planar 15-bar cantilever

    序號(hào)設(shè)計(jì)變量文獻(xiàn)[12]文獻(xiàn)[2]當(dāng)前解Ω0=106Ω0=1091A16.15486.15486.15486.15482A26.15483.47743.47743.47743A30.71611.41940.71611.41944A47.57426.15486.15486.15485A517.40003.47743.47743.47746A63.47741.41941.85161.41947A70.71610.71610.71610.71618A80.71610.71610.71610.71619A90.71611.85160.90971.741910A103.47742.83872.83872.838711A110.71612.83872.83872.838712A120.71611.41941.41941.419413A133.47741.41941.74191.419414A143.47741.74192.23871.419415A150.71611.41940.71611.741916x2354.7542292.0162257.8859259.505517x3560.5221627.4816611.5131602.948018y2293.9618319.8343338.7479340.380819y3270.4313282.1102306.2343307.291520y4134.6454148.0769151.8994165.892221y641.5595-44.6126-44.0047-41.552422y731.1379-14.7853-40.8976-14.842023y8110.970179.921193.5873127.6071最小重量/kg45.548534.298533.903833.6536最大應(yīng)力/MPa172.5165172.3642172.3593172.3394有限元分析次數(shù)8000800040004000

    注:設(shè)計(jì)變量單位分別為A/cm2,x/cm,y/cm。

    3.2 37桿平面桁架

    37桿平面桁架初始結(jié)構(gòu)見圖4。下弦自由節(jié)點(diǎn)均設(shè)有10 kg非結(jié)構(gòu)質(zhì)量。結(jié)構(gòu)前三階頻率約束為:f1≥20 Hz;f2≥40 Hz;f3≥60 Hz。為保持結(jié)構(gòu)對(duì)稱性,該問(wèn)題含19個(gè)設(shè)計(jì)變量,即尺寸變量A1=A27,A2=A26,A3=A24,A4=A25,A5=A23,A6=A21,A7=A22,A8=A20,A9=A18,A10=A19,A11=A17,A12=A15,A13=A16,A14;形狀變量y3=y19,y5=y17,y7=y15,y9=y13,y11。材料參數(shù)、尺寸、截面設(shè)計(jì)約束見文獻(xiàn)[3]。

    圖4 三十七桿平面桁架初始結(jié)構(gòu)Fig.4 Schematic of the planar 37-bar truss

    有限元分析最大次數(shù)設(shè)為8 000次。本文所得最優(yōu)設(shè)計(jì)見圖5。Ω參數(shù)自適應(yīng)變化曲線見圖6。圖6顯示,在兩種參數(shù)設(shè)置下算法分別于第15代、第26代首次搜索到可行解。表明該算例為高難度優(yōu)化問(wèn)題。本文方法與其它最優(yōu)解對(duì)比見表2。由表2看出,本文算法設(shè)計(jì)質(zhì)量最優(yōu)、計(jì)算代價(jià)最小。

    圖5 兩種參數(shù)初始值設(shè)置下37桿平面桁架最優(yōu)布局設(shè)計(jì)Fig.5 Best solutions of the planar 37-bar truss layout under two different cases of parameter initial value

    圖6 Ω參數(shù)變化曲線Fig.6 Variation curves of parameter Ω

    3.3 72桿空間桁架

    72桿空間桁架初始結(jié)構(gòu)見圖7。桿單元許用應(yīng)力區(qū)間[-172.369,172.369]MPa,節(jié)點(diǎn)許可位移區(qū)間[-0.6350,0.6350]cm。兩種工況下載荷分別作用于節(jié)點(diǎn)17與節(jié)點(diǎn)17、18、19、20。本文對(duì)經(jīng)典算例進(jìn)行拓展,分別采用兩種優(yōu)化方式處理,即僅考慮桿件截面、變量尺寸優(yōu)化問(wèn)題及同時(shí)考慮兩類設(shè)計(jì)變量尺寸、形狀同步優(yōu)化問(wèn)題。為保持結(jié)構(gòu)對(duì)稱性,該問(wèn)題含19個(gè)設(shè)計(jì)變量,即尺寸變量A1~A4,A5~A12,A13~A16,A17~A18,A19~A22,A23~A30,A31~A34,A35~A36,A37~A40,A41~A48,A49~A52,A53~A54,A55~A58,A59~A66,A67~A70,A71~A72;形狀變量y5~y8,y9~y12,y13~y16。材料參數(shù)及相關(guān)設(shè)計(jì)約束見文獻(xiàn)[4]。

    表2 37桿平面桁架布局優(yōu)化結(jié)果對(duì)比

    注:設(shè)計(jì)變量單位為A/cm2、y/m。

    有限元分析最大次數(shù)設(shè)為8 000次。在兩種Ω參數(shù)初始值設(shè)置情況下,分別求解尺寸優(yōu)化、尺寸與形狀同步優(yōu)化時(shí),Ω參數(shù)的自適應(yīng)變化曲線見圖8、圖9。本文方法與其它最優(yōu)解比較見表3。由表3看出,無(wú)論求解尺寸優(yōu)化或尺寸與形狀同步優(yōu)化問(wèn)題,Ω-CMA-ES算法在獲得更優(yōu)設(shè)計(jì)的同時(shí),均能極大減少結(jié)構(gòu)重分析次數(shù)。

    圖7 72桿空間桁架初始結(jié)構(gòu)及桿節(jié)點(diǎn)編號(hào)Fig.7 Geometry and element definitions of the spatial 72-bar truss: node numbering scheme and element numbering pattern

    圖8 Ω參數(shù)變化曲線Fig.8 Variation curves of parameter Ω

    圖9 Ω參數(shù)變化曲線Fig.9 Variation curves of parameter Ω

    表3 七十二桿空間桁架的優(yōu)化結(jié)果對(duì)比

    Tab.3 Comparison of optimized designs found for the spatial 72-bar cantilever

    序號(hào)設(shè)計(jì)變量文獻(xiàn)[14]文獻(xiàn)[15]文獻(xiàn)[16]文獻(xiàn)[4]當(dāng)前解當(dāng)前解Ω0=106Ω0=109Ω0=106Ω0=109尺寸優(yōu)化尺寸與形狀優(yōu)化1A1-A411.812011.693011.985011.848011.929012.736012.566012.75902A5-A123.23683.24973.26393.23933.41293.27813.16583.11683A13-A160.65610.64520.64520.64520.64580.64520.64520.64524A17-A180.66970.64520.64520.64770.64520.64520.64580.64585A19-A227.85038.73938.04908.07877.86268.21938.68268.83106A23-A302.73163.28323.39933.24773.31683.26393.21483.19297A31-A340.65480.64520.64520.64650.64520.64520.64650.64528A35-A360.64900.64520.65290.64650.64520.64520.64710.64589A37-A403.89293.46643.36063.69683.27423.27424.76004.736110A41-A483.54193.30523.33683.54773.42193.29683.21233.223211A49-A520.68320.64520.64770.64840.64520.64520.64580.645212A53-A540.64580.64520.64840.64580.64580.64580.65810.658713A55-A580.99941.00711.00971.01681.01101.01160.64520.645214A59-A664.17223.56713.55293.36903.53873.49873.56133.696115A67-A702.71482.75482.53032.81032.62062.53352.86582.786416A71-A723.90003.66643.82063.85293.50193.91553.73743.072317y5-y8------130.5588136.838918y9-y12------262.8435272.993919y13-y16------408.0970409.5308最大應(yīng)力/MPa168.9747172.2663172.1339171.4092172.3669172.3538172.3387172.3580最大位移/cm0.63500.63470.63500.63470.63500.63500.63500.6350最小重量/kg174.7253172.5334172.4475172.7279172.4448172.4415169.6467169.6504有限元分析次數(shù)150004000019621190848000800080008000

    注:設(shè)計(jì)變量單位分別為A/cm2,y/cm。

    4 結(jié) 論

    由于桁架優(yōu)化問(wèn)題數(shù)值尺度及約束類型的多樣性,對(duì)每個(gè)問(wèn)題尋找最合理算法參數(shù)值會(huì)得不償失,不具備實(shí)際工程意義。本文所提Ω-CMA-ES算法具有的兩特點(diǎn)為:

    (1) 該算法僅一個(gè)Ω參數(shù)需人工設(shè)置。人工參數(shù)設(shè)置少并不等同于算法的可變參數(shù)少,而是算法能自動(dòng)識(shí)別問(wèn)題尺度,可在優(yōu)化進(jìn)程中自適應(yīng)調(diào)整相關(guān)算法參數(shù),避免經(jīng)驗(yàn)參數(shù)設(shè)置的盲目性。

    (2) 該算法具有較強(qiáng)的全局尋優(yōu)能力,且對(duì)Ω參數(shù)具備魯棒性。含平面桁架及空間桁架的3測(cè)試算例表明,Ω-CMA-ES算法可顯著降低有限元分析次數(shù)、有效提高設(shè)計(jì)質(zhì)量,兩種Ω參數(shù)設(shè)置下最終優(yōu)化指標(biāo)接近,且均優(yōu)于已有結(jié)果。

    [1] 王棟. 結(jié)構(gòu)優(yōu)化設(shè)計(jì)-探索與進(jìn)展[M]. 北京: 國(guó)防工業(yè)出版社, 2013.

    [2] Miguel L F F, Lopez R H, Miguel L F F. Multimodal size, shape, and topology optimisation of truss structures using the Firefly algorithm[J]. Advances in Engineering Software, Elsevier, 2013, 56: 23-37.

    [3] Kaveh A, Zolghadr A. Shape and size optimization of truss structures with frequency constraints using enhanced charged system search algorithm[J]. Asian Journal of Civil Engineering (Building and Housing), 2011, 12(4):487-509.

    [4] Kaveh A, Khayatazad M. Ray optimization for size and shape optimization of truss structures[J]. Computers & Structures, 2013, 117: 82-94.

    [5] Runarsson T P, Yao X. Stochastic ranking for constrained evolutionary optimization[J]. Evolutionary Computation, IEEE Transactions on, 2000, 4(3): 284-294.

    [6] Coello C A. Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art[J]. Computer Methods in Applied Mechanics and Engineering, 2002, 191(11): 1245-1287.

    [7] Bendsoe M P, Sigmund O. Topology optimization: theory, methods and applications [M]. Berlin:Springer, 2003.

    [8] 程耿東, 顧元憲. 序列二次規(guī)劃在結(jié)構(gòu)動(dòng)力優(yōu)化中的應(yīng)用[J]. 振動(dòng)與沖擊, 1986, 5(1): 12-20. CHENG Geng-dong, GU Yuan-xian. Applications of SAP to structural dynamic optimization[J]. Journal of Vibration and Shock, 1986, 5(1): 12-20.

    [9] Schlüter M, Gerdts M. The oracle penalty method [J]. Journal of Global Optimization, 2010, 47(2): 293-325.

    [10] Jin Y, Olhofer M, Sendhoff B. A framework for evolutionary optimization with approximate fitness functions[J]. Evolutionary Computation, IEEE Transactions on, 2002,6(5):481-494.

    [11] Hansen N, Ostermeier A. Completely derandomized self-adaptation in evolution strategies[J]. Evolutionary Computation, 2001, 9(2): 159-195.

    [12] 唐文艷, 袁清珂. 改進(jìn)的遺傳算法求解桁架的形狀優(yōu)化[J]. 力學(xué)學(xué)報(bào), 2006, 38(6): 843-849. TANG Wen-yan, YUAN Qing-ke. Improved genetic algorithm for shape optimization of truss structures[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(6): 843-849.

    [13] 薛運(yùn)虎,韋凌云,趙玫,等. 基于演化算法的帶頻率約束的桁架結(jié)構(gòu)形狀和尺寸優(yōu)化[J]. 振動(dòng)與沖擊,2010,29(12):13-17. XUE Yun-hu, WEI Ling-yun, ZHAO Mei, et al. Truss optimization on shape and sizing with frequency constraints based on evolutionary algorithms[J]. Journal of Vibration and Shock, 2010, 29(12): 13-17.

    [14] 孟艷,趙洪波,茹忠亮,等. GEP在桁架結(jié)構(gòu)優(yōu)化中的應(yīng)用[J]. 工程力學(xué), 2013, 30(1): 236-241. MENG Yan, ZHAO Hong-bo, RU Zhong-liang, et al. The application of GEP in truss structure optimization[J]. Engineering Mechanics, 2013, 30(1): 236-241.

    [15] 李峰,唐和生,許銳,等. 桁架結(jié)構(gòu)優(yōu)化設(shè)計(jì)的免疫克隆選擇算法[J]. 同濟(jì)大學(xué)學(xué)報(bào):自然科學(xué)版,2010,38(9):1261-1265. LI Feng, TANG He-sheng, XU Rui, et al. Immune clonal selection algorithm for truss structure optimal design[J]. Journal of Tongji University:Natural Science, 2010,38(9): 1261-1265.

    [16] Camp C V. Design of space trusses using big bang-big crunch optimization[J]. Journal of Structural Engineering, 2007, 133(7): 999-1008.

    Novel constraint adaptive truss optimization approach

    XIAO A-yang1, WANG Ben-li1, JIN Yao-chu2

    1. Research Centre of Satellite Technology, Harbin Institute of Technology, Harbin 150001, China;2. Department of Computing, University of Surrey, Guildford GU2 7XH, United Kingdom)

    A novel optimization algorithm by name Ω-CMA-ES, combining Oracle penalty function and metaheurastic algorithm was proposed to solve a typical multi-modal and highly non-linear problem, that is, the truss size and shape optimization. The algorithm can alleviate the cumbersome burden of parameters setting, and thus adaptively handle the constraints in truss design. Only one parameter Ω needs to be set manually while this algorithm is applied to handle various complex truss optimization problems. Numerical examples show the robustness of the proposed algorithm with respect to parameter Ω, for the algorithm can effectively handle various types of dynamic constrains, and the potential of the proposed algorithm in finding global optimal solution, for the relevant performance indicators are better than the results published in the literature.

    truss optimization; Oracle penalty function; metaheurastic; constrained optimization; Ω-CMA-ES

    2014-05-15 修改稿收到日期:2014-08-29

    肖阿陽(yáng) 男,博士生,1986年生

    王本利 男,教授,1944年生

    V414.19;TU323.4

    A

    10.13465/j.cnki.jvs.2015.14.033

    猜你喜歡
    桁架形狀約束
    桁架式吸泥機(jī)改造
    挖藕 假如悲傷有形狀……
    “碳中和”約束下的路徑選擇
    約束離散KP方程族的完全Virasoro對(duì)稱
    擺臂式復(fù)合桁架機(jī)器人的開發(fā)
    你的形狀
    Loader軸在雙機(jī)桁架機(jī)械手上的應(yīng)用
    看到的是什么形狀
    矮寨特大懸索橋鋼桁架安裝
    適當(dāng)放手能讓孩子更好地自我約束
    人生十六七(2015年6期)2015-02-28 13:08:38
    蕉岭县| 双辽市| 楚雄市| 固原市| 清河县| 比如县| 合水县| 湘西| 黔西| 景宁| 三都| 沙河市| 康保县| 馆陶县| 恭城| 合水县| 临清市| 南充市| 连州市| 石渠县| 湖南省| 中超| 长宁县| 韶山市| 井研县| 瑞昌市| 治多县| 三门峡市| 新宁县| 清原| 旺苍县| 仪征市| 凤庆县| 龙泉市| 乌兰县| 乐平市| 沿河| 盘山县| 阿鲁科尔沁旗| 马龙县| 左权县|