張承昊,金 瑛,范青洪,孫鵬鵬,吳術(shù)紅,劉 毅
(遵義醫(yī)學(xué)院附屬醫(yī)院 骨一科,貴州 遵義 563099)
基礎(chǔ)醫(yī)學(xué)研究
rBMSC和rLFs做為韌帶組織工程種子細(xì)胞的特性比較
張承昊,金 瑛,范青洪,孫鵬鵬,吳術(shù)紅,劉 毅
(遵義醫(yī)學(xué)院附屬醫(yī)院 骨一科,貴州 遵義 563099)
目的 比較大鼠骨髓間充質(zhì)干細(xì)胞(rBMSCs)和韌帶成纖維細(xì)胞(rLFs)做為韌帶組織工程種子細(xì)胞來(lái)源的價(jià)值。方法 采用密度梯度離心結(jié)合貼壁培養(yǎng)法獲得rBMSCs,通過(guò)組織消化法獲取培養(yǎng)rLFs。分別取第3代rBMSCs和rLFs,根據(jù)是否添加TGF-β1和bFGF-1生長(zhǎng)因子誘導(dǎo)分為誘導(dǎo)組和非誘導(dǎo)組(共4組)。用MTT法檢測(cè)細(xì)胞增殖情況,天狼猩紅和固綠檢測(cè)細(xì)胞總膠原蛋白量和總非膠原蛋白量,ELISA法檢測(cè)細(xì)胞內(nèi)外Ⅰ、Ⅲ型膠原蛋白濃度,實(shí)時(shí)熒光定量PCR檢測(cè)細(xì)胞韌帶特異性基因Tnc、Fn1、Mmp2的mRNA表達(dá)水平。結(jié)果 rBMSCs原代時(shí)的活性和增殖能力高于rLFs,第3代rBMSCs未誘導(dǎo)組的細(xì)胞活性明顯高于rLFs未誘導(dǎo)組(P<0.05),且rBMSCs誘導(dǎo)組也明顯高于rLFs誘導(dǎo)組(P<0.05),2種細(xì)胞誘導(dǎo)后的細(xì)胞活性均比誘導(dǎo)前提高。細(xì)胞總膠原分泌量誘導(dǎo)前后rLFs均高于同條件下rBMSCs。誘導(dǎo)后細(xì)胞內(nèi)Ⅰ、Ⅲ型膠原蛋白濃度rBMSCs增長(zhǎng)速度比rLFs快(P<0.05),但其Ⅰ型膠原蛋白增長(zhǎng)速度明顯高于Ⅲ型膠原蛋白(P<0.05),而rLFs兩者成比例增長(zhǎng)。誘導(dǎo)前后韌帶特異性基因mRNA表達(dá)量以rBMSCs增長(zhǎng)速度最快(P<0.05),但誘導(dǎo)后的表達(dá)量仍未超過(guò)誘導(dǎo)后rLFs的表達(dá)。結(jié)論 rBMSCs具有較高的細(xì)胞活性和增殖能力,對(duì)外界誘導(dǎo)反應(yīng)明顯高于rLFs,但其韌帶特異性基因的表達(dá)誘導(dǎo)前后均較rLFs低。
BMSC;LF;生長(zhǎng)因子;韌帶;組織工程
韌帶組織工程研究中采用的細(xì)胞來(lái)源較多,主要包括各種來(lái)源的間充質(zhì)干細(xì)胞、成熟體細(xì)胞和基因轉(zhuǎn)染細(xì)胞等。間充質(zhì)干細(xì)胞具有組織來(lái)源廣泛、免疫原性低、細(xì)胞擴(kuò)增能力強(qiáng)和易于誘導(dǎo)等優(yōu)勢(shì);成熟體細(xì)胞具有細(xì)胞成熟,可分泌多種因子和韌帶蛋白,不需要進(jìn)行太多調(diào)整即可滿(mǎn)足需要等特點(diǎn)。這兩類(lèi)來(lái)源細(xì)胞各有優(yōu)勢(shì)。本文從這2種來(lái)源細(xì)胞中各選取了1種細(xì)胞,即鼠源骨髓間充質(zhì)干細(xì)胞(rBMSCs)和韌帶成纖維細(xì)胞(rLFs),經(jīng)培養(yǎng)和誘導(dǎo)后進(jìn)行檢測(cè),比較2種來(lái)源細(xì)胞的活性,增殖,分泌特點(diǎn)及對(duì)誘導(dǎo)的反應(yīng),為今后選用2種細(xì)胞作為韌帶組織工程應(yīng)用研究的種子細(xì)胞來(lái)源提供有價(jià)值的實(shí)驗(yàn)依據(jù)。
1.1 實(shí)驗(yàn)動(dòng)物、主要試劑及儀器 清潔級(jí)SD大鼠,雌雄不拘,體重180~220 g,由第三軍醫(yī)大學(xué)實(shí)驗(yàn)動(dòng)物中心提供。主要實(shí)驗(yàn)材料:Percoll分離液(Pharmacia公司),膠原酶(上海銘睿生物科技有限公司),rTGF-β1(Prime Gene Bio-tech Company),rbFGF-1(Prime Gene Bio-tech Company),天狼猩紅和固綠(寶信生物科技有限公司),ELISA Collagen type Ⅰ、Ⅲ試劑盒(均為上海銘睿生物科技有限公司產(chǎn)品),RNAisoPlus、逆轉(zhuǎn)錄試劑盒和SYBR?Premix Ex TaqtTM(均為大連TaKaRa公司產(chǎn)品)。主要實(shí)驗(yàn)儀器:流式細(xì)胞儀(FACS Calibur,Becton Dickinson,USA),逆轉(zhuǎn)錄儀(德國(guó)Eppendorf公司),核酸蛋白測(cè)量ND-1000(美國(guó)Nanodrop公司),實(shí)時(shí)熒光定量PCR儀(美國(guó)BIO-RAD公司)。
1.2 大鼠骨髓間充質(zhì)干細(xì)胞(rBMSCs)分離和培養(yǎng) 脫頸法處死大鼠,在無(wú)菌條件下取雙側(cè)股骨及脛骨,去除軟組織和肌肉,含雙抗的PBS溶液沖洗后再用含雙抗的DMEM培養(yǎng)液漂洗。咬骨鉗咬除干骺端,LG-DMEM培養(yǎng)液沖洗骨髓腔,收集骨髓細(xì)胞懸液,2000 rpm離心5 min,棄上清。加入LG-DMEM培養(yǎng)液吹打制成細(xì)胞懸液,貼壁輕輕加到Percoll分離液上層,2000 rpm離心20 min后,小心收集界面層細(xì)胞,添加PBS液離心洗滌2次,最后用含10%胎牛血清的LG-DMEM培養(yǎng)液重懸后接種到12.5 cm培養(yǎng)瓶中,37 ℃,5%CO2,飽和濕度的CO2孵箱中培養(yǎng)。3d后首次換液,此后每2~3天換液1次,傳至第3代。流式細(xì)胞術(shù)檢測(cè)rBMSCs表面抗原CD29、CD73、CD90、CD105、CD14、CD19、CD34、CD45表達(dá)情況。
1.3 大鼠韌帶成纖維細(xì)胞(rLFs)分離和培養(yǎng) 脫頸法處死大鼠,無(wú)菌條件下取大鼠膝關(guān)節(jié)雙側(cè)副韌帶(LCL,MCL)、前后交叉韌帶(ACL,PCL)。PBS液沖洗,剔除滑膜、脂肪等外周組織,PBS液沖洗,用眼科剪將韌帶剪成1 mm×1 mm×1 mm大小的組織塊。用DMEM溶解的膠原酶在37 ℃條件下震蕩消化2 h后,吹打見(jiàn)無(wú)肉眼可見(jiàn)組織,加入完全培養(yǎng)基終止消化,1000 rpm離心10 min,PBS洗滌2次,用含10%胎牛血清的完全培養(yǎng)基吹打成細(xì)胞懸液,接種于預(yù)涂有鼠尾膠原的培養(yǎng)瓶中,置于37 ℃、5%CO2培養(yǎng)箱內(nèi)培養(yǎng)。培養(yǎng)48~72 h后首次換液,以后每2~3天換液1次。
1.4 實(shí)驗(yàn)分組及細(xì)胞誘導(dǎo) 取第3代rBMSCs和rLFs細(xì)胞,根據(jù)有無(wú)生長(zhǎng)因子誘導(dǎo)分為非誘導(dǎo)組和誘導(dǎo)組,誘導(dǎo)組給予TGF-β1和bFGF-1各10 ng/mL的10%胎牛血清高糖DMEM培養(yǎng)液連續(xù)誘導(dǎo)培養(yǎng)12 d,每2~3天全量換液1次。實(shí)驗(yàn)分為rBMSCs未誘導(dǎo)組、rLFs未誘導(dǎo)組、rBMSCs誘導(dǎo)組、rLFs誘導(dǎo)組。
1.5 MTT法檢測(cè)細(xì)胞生長(zhǎng)活性 4組細(xì)胞傳至第3代以每孔5×104個(gè)細(xì)胞/孔置于96孔板內(nèi)培養(yǎng),每孔加入500 μL培養(yǎng)液,每天換液,連續(xù)培養(yǎng)9 d,取5 mg/mL MTT溶液,每孔加入20 μL,避光孵育4 h,吸出培養(yǎng)液,每孔加入150 μL DMSO 溶液,震蕩溶解5 min,置酶標(biāo)儀檢測(cè)。
1.6 天狼猩紅和固綠染色檢測(cè)總膠原和總非膠原量 4組細(xì)胞傳至第3代以每孔5×104/孔置于96孔板內(nèi)培養(yǎng),加入200 μL培養(yǎng)液,每天換液,連續(xù)培養(yǎng)12d后,吸出培養(yǎng)基,PBS洗2次,每孔內(nèi)加入200 μL配好的含0.1%天狼星紅和0.1%固綠的飽和苦味酸溶液,避光、旋轉(zhuǎn)、振蕩30 min,洗板至洗液無(wú)色,200 μL 0.1%NaOH-甲醇加入板內(nèi)提色,吸光度540 nm及630 nm波長(zhǎng)測(cè)定OA值。
1.7 ELISA法檢測(cè)細(xì)胞內(nèi)外Ⅰ、Ⅲ型膠原蛋白濃度 取培養(yǎng)12 d細(xì)胞培養(yǎng)液和細(xì)胞,按照說(shuō)明制定標(biāo)準(zhǔn)曲線(xiàn),設(shè)置空白孔,加入樣本。按照說(shuō)明進(jìn)行加樣、溫育、洗板、加酶、溫育、洗板、顯色、終止、測(cè)定,完成檢測(cè)。
1.8 實(shí)時(shí)熒光定量PCR檢測(cè)細(xì)胞韌帶相關(guān)基因mRNA表達(dá) 取培養(yǎng)12 d細(xì)胞,RNAisoPLus提取總RNA,逆轉(zhuǎn)錄獲得cDNA,設(shè)定引物序列(見(jiàn)表1),按照定量PCR試劑盒說(shuō)明配制PCR反應(yīng)體系,擴(kuò)增條件為:預(yù)變性95 ℃,5 s;變性95 ℃,5 s、退火 Tenascin-C 57 ℃,F(xiàn)ibronection 63 ℃,MMP-2 65 ℃,β-actin 55 ℃、延伸 72 ℃ 15 s,40個(gè)循環(huán);以β-action做為內(nèi)參,通過(guò)2-ΔΔCt法進(jìn)行目標(biāo)基因表達(dá)的相對(duì)定量計(jì)算分析。
表1 引物序列
目的基因基因編號(hào)引物序列擴(kuò)增片段長(zhǎng)度(bp)Tenascin-CNM_053861.1上游引物:TTCAGTGTTGGAGATGCCAAGAG143下游引物:GCACAGTTGGTGATGGCTGAFibronectionNM_019143.2上游引物:CATCAGCCCGGATGTCAGAA91下游引物:GGCATTGTCGTTGAGCGTGTAMMP2NM_031054.2上游引物:TCCCGAGATCTGCAAGCAAG143下游引物:AGAATGTGGCCACCAGCAAGβ-actinNM_031144.2上游引物:GGAGATTACTGCCCTGGCTCCTA150下游引物:GACTCATCGTACTCCTGCTTGCTG
2.1 原代培養(yǎng)的rBMSCs與rLFs生長(zhǎng)特點(diǎn) 原代培養(yǎng)的rBMSCs生長(zhǎng)較rLFs快,大約取材后5 d rBMSCs開(kāi)始明顯加速,約生長(zhǎng)到第8天可鋪滿(mǎn)瓶底;而原代培養(yǎng)的rLFs第7天才開(kāi)始加快生長(zhǎng),12 d后才能鋪滿(mǎn)瓶底(見(jiàn)圖1)。
A:rBMSCs原代細(xì)胞;B:rLFs原代細(xì)胞。
2.2 培養(yǎng)的rBMSCs表型特點(diǎn) 第3代rBMSCs經(jīng)流式細(xì)胞儀檢測(cè)其表型特征為表達(dá)CD29、CD73、CD90和CD105,不表達(dá)CD14、CD19、CD34、CD45(見(jiàn)圖2)。
2.3 MTT法檢測(cè)細(xì)胞活性 MTT檢測(cè)4組細(xì)胞OD值分別為rBMSCs未誘導(dǎo)組:0.41±0.013,rLFs未誘導(dǎo)組:0.33±0.011,rBMSCs誘導(dǎo)組:0.50±0.008,rLFs誘導(dǎo)組:0.45±0.020。rBMSCs未誘導(dǎo)組明顯高于rLFS未誘導(dǎo)組,rBMSCs誘導(dǎo)組明顯高于rLFs誘導(dǎo)組,且2種細(xì)胞比較誘導(dǎo)組均高于非誘導(dǎo)組,差異均有統(tǒng)計(jì)學(xué)意義(P均<0.05)。
2.4 天狼猩紅和固綠染色結(jié)果 誘導(dǎo)后2種細(xì)胞總膠原蛋白量和總非膠原蛋白量均提高,其中rBMSCS誘導(dǎo)組相對(duì)于rBMSCS未誘導(dǎo)組分別提高36.1%和27.3%,rLFs誘導(dǎo)組相對(duì)于rLFs未誘導(dǎo)組分別提高6%和3.3%,且rLFs誘導(dǎo)組仍高于rBMSCs誘導(dǎo)組,差異有統(tǒng)計(jì)學(xué)意義(P均<0.05),見(jiàn)圖3。
2.5 ELSIA法檢測(cè)細(xì)胞內(nèi)外Ⅰ、Ⅲ型膠原蛋白濃度 未誘導(dǎo)組中除細(xì)胞外Ⅰ型膠原蛋白rLFS未誘導(dǎo)組低于rBMSCS未誘導(dǎo)組,其他3項(xiàng)均高于rBMSCS未誘導(dǎo)組。誘導(dǎo)組與非誘導(dǎo)組比rLFS誘導(dǎo)組均高于rLFS未誘導(dǎo)組,rBMSCS誘導(dǎo)組均高于rBMSCS未誘導(dǎo)組,但除細(xì)胞內(nèi)Ⅰ型膠原蛋白外,rLFS誘導(dǎo)組均高于rBMSCS誘導(dǎo)組,差異有統(tǒng)計(jì)學(xué)意義(P均<0.05),結(jié)果見(jiàn)表2。
2.6 實(shí)時(shí)熒光定量PCR檢測(cè)4組細(xì)胞內(nèi)韌帶特異性基因 誘導(dǎo)組和非誘導(dǎo)組,除Tenascin-C基因rLFS誘導(dǎo)前后均低于rBMSCS組外,其他基因均以rLFs細(xì)胞表達(dá)量高,差異有統(tǒng)計(jì)學(xué)意義(P均<0.05),見(jiàn)圖4。
圖2 rBMSCs表型的流式細(xì)胞術(shù)分析直方圖
表2 ELISA檢測(cè)細(xì)胞內(nèi)外Ⅰ、Ⅲ型膠原蛋白濃度
組別細(xì)胞內(nèi)液I型膠原濃度細(xì)胞內(nèi)液III型膠原濃度細(xì)胞外液I型膠原濃度細(xì)胞外液III型膠原濃度rBMSCS未誘導(dǎo)組5.75±0.00684.90±0.02505.05±0.02924.55±0.0335rLFS未誘導(dǎo)組6.35±0.00525.30±0.02094.80±0.05705.20±0.0711rBMSCS誘導(dǎo)組6.60±0.0083#5.25±0.0065#5.25±0.0337#4.90±0.0203#rLFS誘導(dǎo)組6.60±0.0104?5.60±0.0528?5.35±0.0158?5.55±0.0067?
與rLFS未誘導(dǎo)組、rBMSCS誘導(dǎo)組比較,*P<0.05,與rBMSCS未誘導(dǎo)組比較,#P<0.05。
與rBMSCS未誘導(dǎo)組比較,*P<0.05,與rLFS未誘導(dǎo)組、rBMSCS誘導(dǎo)組比較# P<0.05。
與rLFS未誘導(dǎo)組、rBMSCS誘導(dǎo)組比較,*P<0.05,與rBMSCS未誘導(dǎo)組比較,# P<0.05,與rLFS未誘導(dǎo)組、rLFS誘導(dǎo)組比較Δ P<0.05,與rLFS未誘導(dǎo)組比較ΔΔ P<0.05。
種子細(xì)胞是韌帶組織工程學(xué)的主要組成部分,它除需具備可在支架上生存并增殖,以此逐漸替代支架結(jié)構(gòu),還需具備分泌韌帶相關(guān)蛋白等的能力,以最終重建受損的韌帶組織。目前,作為韌帶組織工程種子細(xì)胞來(lái)源研究中,已涉及多種干細(xì)胞、成熟體細(xì)胞以及基因修飾干細(xì)胞的研究報(bào)道[1-4],這些采用不同發(fā)育分化階段細(xì)胞,不同技術(shù)策略的韌帶損傷細(xì)胞治療研究均獲得了一定的療效,但有關(guān)的治療機(jī)制仍不清楚,且采用何種細(xì)胞更為合理也有待繼續(xù)深入研究探討。
本文選用了骨髓間充質(zhì)干細(xì)胞和韌帶成纖維細(xì)胞2個(gè)細(xì)胞來(lái)源代表進(jìn)行比較研究,為今后韌帶組織工程種子細(xì)胞選擇提供實(shí)驗(yàn)研究依據(jù)。骨髓間充質(zhì)干細(xì)胞具有來(lái)源廣泛,取材比較方便,體外擴(kuò)增能力強(qiáng),免疫原性低,適宜條件下可多系分化的特點(diǎn)而應(yīng)用前景廣闊[5-7]。韌帶成纖維細(xì)胞作為韌帶內(nèi)成熟的體細(xì)胞,能夠分泌多種因子調(diào)節(jié)韌帶組織代謝,修復(fù)重建韌帶損傷,是良好的韌帶組織損傷修復(fù)細(xì)胞選擇[8-9]。在細(xì)胞活性和增殖能力比較中本實(shí)驗(yàn)發(fā)現(xiàn),rBMSCs從原代開(kāi)始細(xì)胞活性和增殖能力高于rLFs,原代rBMSCs進(jìn)入對(duì)數(shù)期生長(zhǎng)比rLFs提前2 d,第3代rBMSCs的OD值要比rLFs高24.2%。在細(xì)胞外液韌帶特異性蛋白分泌比較中,培養(yǎng)12 d后第3代rLFs比rBMSCs分泌總膠原蛋白高出58.8%,總非膠原蛋白也高28.3%。細(xì)胞內(nèi)Ⅰ、Ⅲ型膠原蛋白合成rLFs比rBMSCs分別高10.4%和8.2%。韌帶特異性基因,Tenascin-C rBMSCs比rLFs高2.9倍,而MMP-2和Fibronectin的mRNA rLFs分別比rBMSCs高3.7倍和1.35倍。由于rBMSCs粘附性高,Tenascin-C是分布于細(xì)胞表面的粘附蛋白,其mRNA合成量要高于rLFs[10-11]。而MMP-2做為調(diào)節(jié)韌帶組織膠原蛋白遷移和沉積的特殊因子[12-13],F(xiàn)ibronectin做為構(gòu)建韌帶網(wǎng)絡(luò)狀結(jié)構(gòu)的特殊蛋白,rBMSCs的基因表達(dá)明顯低于rLFs[14-15]。
未誘導(dǎo)條件下rBMSCs具有較好的活性及增殖能力,而rLFs分泌韌帶特異性蛋白的能力較rBMSCs高,可根據(jù)支架材料的不同特點(diǎn)選取細(xì)胞,也可以根據(jù)選用的細(xì)胞調(diào)節(jié)細(xì)胞周?chē)奈h(huán)境,對(duì)細(xì)胞進(jìn)行誘導(dǎo)和分化,調(diào)整細(xì)胞特性。
大部分可獲得的細(xì)胞大多不能完全達(dá)到韌帶組織工程學(xué)的要求,研究者們需要通過(guò)多種方法對(duì)細(xì)胞進(jìn)行誘導(dǎo)和修飾。不同細(xì)胞對(duì)于誘導(dǎo)的反應(yīng)也不相同,需要比較相同處理?xiàng)l件下各種細(xì)胞的變化及處理后的特點(diǎn)。
本實(shí)驗(yàn)選用能夠促進(jìn)細(xì)胞分泌膠原蛋白,向韌帶方向分化的TGF-β1[16-17],和有較強(qiáng)的促進(jìn)細(xì)胞增殖的能力的bFGF-1[18-20]。應(yīng)用2種生長(zhǎng)因子誘導(dǎo)細(xì)胞提高細(xì)胞活性和細(xì)胞外基質(zhì)合成。在細(xì)胞活性和增殖能力比較,誘導(dǎo)后2種細(xì)胞的增殖能力均提高,以rBMSCs提高明顯,第9天時(shí)提高了21.9%。比誘導(dǎo)后的rLFs高11.1%。在韌帶特意性蛋白分泌比較,誘導(dǎo)后rBMSCs總膠原蛋白量提高了41.1%,rLFs只提高了6.2%比rBMSCs高19.4%。誘導(dǎo)后rBMSCs細(xì)胞內(nèi)Ⅰ、Ⅲ型膠原蛋白提高了14.7%和7.1%,rLFs分別提高了3.9%和5.7%。rLFs的Ⅲ型膠原蛋白量提高明顯,rBMSCs出現(xiàn)Ⅰ膠原蛋白提高程度明顯高于Ⅲ型膠原蛋白,而在韌帶構(gòu)建中Ⅲ型膠原蛋白起到了促進(jìn)膠原及細(xì)胞網(wǎng)絡(luò)化,產(chǎn)生抗張力結(jié)構(gòu)的作用。誘導(dǎo)后韌帶相關(guān)基因Tenascin-C、MMP-2、Fibronectin均提高,雖然rLFs的mRNA提高幅度沒(méi)有rBMSCs高,但是其mRNA濃度均高于rBMSCs。
生長(zhǎng)因子處理下rBMSCs對(duì)于的反應(yīng)更明顯,兩種細(xì)胞韌帶特異性蛋白均得到了提高,rBMSCs提高較rLFs明顯,但其總膠原蛋白和Ⅲ型膠原蛋白量的量仍低于rLFs,Tenascin-C、MMP-2、Fibronectin的mRNA濃度也低于rLFs。顯示了rLFs作為成熟體細(xì)胞的優(yōu)勢(shì),也提示rBMSCs的易于誘導(dǎo)的特性。
通過(guò)比較2種細(xì)胞,為其今后在韌帶組織工程學(xué)應(yīng)用提供了一些數(shù)據(jù)基礎(chǔ), rBMSCs的高活性和易被誘導(dǎo)的特點(diǎn),可以相應(yīng)的應(yīng)用于對(duì)細(xì)胞要求較高的支架或韌帶培養(yǎng)環(huán)境中,rLFs對(duì)于韌帶特異性蛋白的合成能力使其可以應(yīng)用于對(duì)韌帶特異性蛋白要求較高的環(huán)境中。
針對(duì)細(xì)胞不同的特性也可以選用不同的帶生長(zhǎng)因子的支架材料,根據(jù)實(shí)驗(yàn)結(jié)果我們?cè)趹?yīng)用生長(zhǎng)因子處理細(xì)胞是應(yīng)根據(jù)細(xì)胞特性進(jìn)行誘導(dǎo),如針對(duì)性不強(qiáng)則達(dá)不到預(yù)期效果。對(duì)于BMSCs應(yīng)主要進(jìn)行韌帶特異性的分化誘導(dǎo),而LFs則在細(xì)胞活性和增殖方面進(jìn)行調(diào)節(jié)。隨著基因工程的發(fā)展,針對(duì)2種細(xì)胞不同的特性進(jìn)行基因修飾或調(diào)整,也可大幅度的改變細(xì)胞特性,使細(xì)胞更好的應(yīng)用于韌帶組織工程學(xué)。
[1] Arthur A, Zannettino A,Gronthos S. The therapeutic applications of multipotential mesenchymal/stromal stem cells in skeletal tissue repair[J].J Cell Physiol,2009,218(2):237-245.
[2] Bi Y, Ehirchiou D, Kilts T M, et al. Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche[J].Nat Med,2007,13(3):1219-1227.
[3] Caplan I.Adult mesenchymal stem cells for tissue engineering versus regenerative medicine[J].J Cell Physiol,2007, 213(2): 341-347.
[4] Shang S H, Zhang Y F, Shi B,et al.Construction and identification of recombinant human platelet-derived growth factor-B adenoviral vector and transfection into periodontal ligament stem cells[J].Chinese Journal of Stomatology,2008,43(10):584-588.
[5] 李 毅, 陳槐卿 , 成 敏,等.骨髓基質(zhì)干細(xì)胞BMP-2和bFGF基因的聯(lián)合修飾[J].細(xì)胞與分子免疫學(xué)雜志,2006, 22( 2):133-136.
[6] Ren C C, Ren R F, Zhao B,et al. Study on oriented differentiation of bone marrow mesenchymal stem cells by fibroblast in rat uterine ligament with mechanical stretch [J].Chinese Journal of Obstetrics and Gynecology,2011,46(7):527-532.
[7] Wu X, Ren J, Li J. Fibrin glue as the cell-delivery vehicle for mesenchymal stromal cells in regenerative medicine[J].Cytotherapy,2012,14(5):555-562.
[8] 陳鴻輝,唐毅,李斯明.膝關(guān)節(jié)韌帶成纖維細(xì)胞的培養(yǎng)及其生物學(xué)特性分析[J].中華骨科雜志,2002,22(1):40-44.
[9] 張蕾,陳槐卿,Wang Xiong,等.與韌帶成纖維細(xì)胞間接共培養(yǎng)對(duì)大鼠骨髓間充質(zhì)干細(xì)胞膠原蛋白和韌粘素-c表達(dá)的影響[J].生物醫(yī)學(xué)工程雜志,2007,24(4):846-851.
[10] Geffrotin C, Garrido J J, Tremet L, et al. Distinct tissue distribution in pigs of tenascin-X and tenascin-C transcripts[J]. Eur J Biochem,1995,231(1):83-92.
[11] Chockalingam P S, Glasson S S, Lohmander L S. Tenascin-C levels in synovial fluid are elevated after injury to the human and canine joint and correlate with markers of inflammation and matrix degradation[J]. Osteoarthritis Cartilage,2013, 21(2):339-345.
[12] Wang Y, Tang Z, Xue R,et al. Combined effects of TNF-α, IL-1β, and HIF-1α on MMP-2 production in ACL fibroblasts under mechanical stretch: an in vitro study[J]. J Orthop Res,2011 , 29(7):1008-1014.
[13] Shimonishi M, Takahashi I, Terao F,et al. Induction of MMP-2 at the interface between epithelial cells and fibroblasts from human periodontal ligament[J]. J Periodontal Res,2010 ,45(3):309-316.
[14] Zhu Q D, Liu L, Yang Y L. Effect of tensile stress on fibronectin-integrins- cytoskeleton in cultured human periodontal ligament fibroblasts[J].Shanghai Journal of Stomatology,2010,19(6):601-606.
[15] Dai R, Iwama A, Wang S, et al. Disease-associated fibronectin matrix fragments trigger anoikis of human primary ligament cells: p53 and c-myc are suppressed[J]. Apoptosis,2005,10(3):503-512.
[16] Wang Y, Tang Z, Xue R,et al. TGF-β1 promoted MMP-2 mediated wound healing of anterior cruciate ligamentfibroblasts through NF-κB[J]. Connect Tissue Res,2011,52(3):218-225.
[17] Xie J, Wang C, Huang D Y,et al.TGF-beta1 induces the different expressions of lysyl oxidases and matrix metalloproteinases in anterior cruciate ligament and medial collateral ligament fibroblasts after mechanical injury[J].J Biomech,2013,46(5):890-898.
[18] Silverio-Ruiz K G, Martinez A E, Garlet G P,et al. Opposite effects of bFGF and TGF-beta on collagen metabolism by human periodontal ligament fibroblasts[J]. Cytokine,2007,39(2):130-137.
[19] Feng D F, Wang C Y, Wang H,et al. bFGF-induced human periodontal ligament fibroblasts proliferation through T-type voltage-dependent calcium channels[J]. Acta Odontol Scand,2013,71(1):9-14.
[20] Saiga K, Furumatsu T, Yoshida A,et al. Combined use of bFGF and GDF-5 enhances the healing of medial collateralligament injury[J]. Biochem Biophys Res Commun,2010,402(2):329-334.
[收稿2014-06-03;修回2014-11-02]
(編輯:王福軍)
Comparison of rat BMSCs and LFs as cell source for ligaments tissue engineering
ZhangChenghao,JinYing,FanQinghong,SunPengpeng,WuShuhong,LiuYi
(Department of Orthopedics,The Affiliated Hospital of Zunyi Medical University,Zunyi Guizhou 563099, China)
Objective To compare cellular activities, proliferation and extracellular matrix synthesis between rat bone mesenehymal stem cells (rBMSCs) and fibroblasts (rLFs) as cell source for ligament tissue engineering.Methods rBMSCs were isolated and separated by explants method. rLFs were isolated and separated by digestion method. Primary cell activities and proliferation were observed by inverted microscope. The third generation cells with and without the application of TGF-β1and bFGF-1 were divided into the induced and the non-induced groups. After 12-day culture, cells activities and proliferation were observed by MTT assay. Intracellular and extracellular collagen type Ⅰand type Ⅲ concentration were determined by ELISA. Quantification of collagen and total extracellular matrix proteins were analyzed by selective binding of Sirius Red and Fast Green FCF. The mRNA expressions of Fibronectin, Tenasein-C and MPP-2 were analyzed by real-time RT-PCR.Results rBMSCs had much higher activities and proliferation ability than rLFs at prime generation. The third generation cell activity in non-induced rBMSCs group and induced rBMSCs group was higher than that in non-induced rLFs group and induced rLFs group, respectively, in which the cell activity in the induced group was higher than that in the non-induced group. The total collagen in the induced and non-induced rLFs group was more than that in the induced and non-induced rBMSCs group. The density of collagen type Ⅰ and type Ⅲin rBMSCs group induced by growth factor was increased faster than that in induced rLFs group, where the density of collagen type Ⅰin rBMSCs group was increased higher than that of collagen type Ⅲ and the density of collagen type Ⅰ and type Ⅲ in rLFs group was increased proportionally. Ligament-related gene mRNA expressions in rBMSCs group were increased faster than that in rLFs group, while the level of gene mRNA expressions in rBMSCs group was lower than that in rLFs group.Conclusion As the cell source of ligament tissue engineering, rBMSC has higher cellular activities and proliferation ability and better reaction to the induction than rLFs and rLFs has a better ligament character and higher ligament-related gene expressions than rBMSC.
BMSC; LF; growth factor; ligament; tissue engineering
貴州省科學(xué)技術(shù)基金資助項(xiàng)目(NO:黔科合SY字[2010]2091)。
劉毅,男,教授,碩士生導(dǎo)師,研究方向:韌帶組織工程學(xué)與運(yùn)動(dòng)醫(yī)學(xué),E-mail:13308529536@163.com。
R686.5
A
1000-2715(2015)01-0054-06