• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    微波輔助加熱乙二醇法制備PtSn/CNT催化劑:pH值對其結(jié)構(gòu)和電氧化甲醇性能的影響

    2016-11-02 07:37:44黎海超陳水挾李啟漢劉風(fēng)雷
    新型炭材料 2016年3期
    關(guān)鍵詞:中山大學(xué)乙二醇碳納米管

    黎海超,陳水挾,2,李啟漢,劉風(fēng)雷

    (1.中山大學(xué) 化學(xué)與化學(xué)工程學(xué)院,聚合物復(fù)合材料與功能材料教育部重點實驗室,廣東 廣州510275;2.中山大學(xué) 材料科學(xué)研究所,廣東 廣州510275)

    ?

    微波輔助加熱乙二醇法制備PtSn/CNT催化劑:pH值對其結(jié)構(gòu)和電氧化甲醇性能的影響

    黎海超1,陳水挾1,2,李啟漢1,劉風(fēng)雷1

    (1.中山大學(xué) 化學(xué)與化學(xué)工程學(xué)院,聚合物復(fù)合材料與功能材料教育部重點實驗室,廣東 廣州510275;2.中山大學(xué) 材料科學(xué)研究所,廣東 廣州510275)

    采用微波輔助加熱乙二醇法制備了碳納米管(CNTs)負載的PtSn 雙組份催化劑。采用原子吸收光譜,X射線衍射儀和電子透射顯微鏡對產(chǎn)物進行了表征。結(jié)果表明,含金屬離子前驅(qū)體的乙二醇溶液的pH值對產(chǎn)物的金屬催化劑負載量、合金化程度和PtSn 粒子的形態(tài)有顯著的影響。在pH值為5時能得到組分配比為原始設(shè)計值的PtSn/CNT催化劑。在pH值2~7的范圍內(nèi)納米粒子的尺寸較小,隨著pH值的進一步提高,納米粒子直徑變大且發(fā)生團聚。電化學(xué)測試表明在pH值為5時得到的PtSn/CNT催化劑對甲醇電化學(xué)氧化具有最佳的催化作用。合適的金屬負載比例和良好的納米顆粒形狀和尺寸分布控制是得到優(yōu)異的催化性能的主要原因。

    微波輻照;碳納米管;PtSn催化劑;甲醇電化學(xué)氧化

    1 Introduction

    As the promising power sources for portable electronics,direct alcohol fuel cells (DAFCs) using methanol,ethanol,ethylene glycol (EG) and glycerol as fuels have drawn a great deal of attention owing to their high power density,low operation temperature,no corrosion problem and so on[1,2].As the anode catalysts for DAFCs,bimetallic Pt-based alloys,such as PtSn,PtRu,PtCo with modified Pt electronic properties and surface chemistry,have been of continuing interest owing to their higher activity as compared with Pt catalyst[3-12].Formation of electrocatalysts on carbon materials for DAFC applications is commonly realized by reductive deposition method.But this method based on wet impregnation and chemical reduction is usually time-consuming,while do not provide adequate control of particle shape,size and size distribution.Researchers have been devoted to find a simple,fast and efficient way to control the size of Pt catalysts.A colloid formation method based on microwave-assisted reduction of metal salts in polyol solution is mainly used to prepare metal particles with narrow size distribution and specific shape owing to its speediness and energy efficiency[13,14].

    PtSn catalyst for alcohol electrocatalytic oxidation has been extensively studied but few examinations investigated the pH influence on the PtSn catalyst.In this work,CNTs supported PtSn catalyst with a Pt/Sn atomic ratio of 3∶1 was prepared by intermittent microwave-assisted EG reduction method.PtSn/CNTs were synthesized at pH 2 to 12 in order to examine the influence of pH value.X-ray diffraction (XRD),transmission electron microscopy (TEM) and atomic absorption spectroscopy (AAS) were employed to characterize the structure and composition.The catalytic oxidation performance of this catalyst towards methanol was preliminary evaluated.

    2 Experimental

    2.1Materials

    All the chemical reagents employed in this study were of analytical grade.Chloroplatinic acid was purchased from ShenYang Jin Ke Chemical Factory,China.Stannous chloride dihydrate was supplied by Guanghua Chemical Factory,China.Mutiwalled carbon nanotubes (MWCNTs) with tube diameters of 40-60 nm were purchased from Shenzhen Nanotech Port Co.,Ltd.,in China.20 wt% Pt supported on Vulcan carbon black (Pt/C) catalyst was from Johnson Matthey Company and Nafion 5 wt% solution from Dupont.

    2.2Synthesis and characterization of the catalysts

    Oxidation treatment with concentrated HNO3and H2SO4was employed to purify the MWCNTs and introduce some oxygen-containing groups on the carbon surface.

    The 20 wt% PtSn/CNT with a Pt/Sn atomic ratio of 3∶1 was prepared by intermittent microwave-assisted EG reduction method.This catalyst was named as M-PtSn/CNT.The typical preparation procedure is as follows:1.12 mL of chloroplatinic acid in EG solution (3.7 mg Pt/mL EG) and 1.6 mg of stannous chloride dihydrate (SnCl2·2H2O) were quantitatively added into 40 mL of EG in a flask.20 mg of acid-treated MWCNTs were mixed with the solution of metallic precursors under ultrasonic treatment for 3 h.The synthesis solution pH was adjusted to 5 by adding 1.0 M NaOH EG solution.The microwave treatment was accomplished in a household microwave oven (Midea,PJ17C-M,2.45 GHz,700 W) for 3 times with 30 s irradiation on and 60 s irradiation off.The resulting suspension was filtered and the residue was washed thoroughly with deionized water.The solid product recovered as such was dried at 60 ℃ over night in a vacuum oven.As-prepared catalyst was denoted as PtSn/CNT.Four other such catalysts were prepared at the pH values of 2,7,9 and 12 to study the effect of pH value on the structure and electrocatalytic activity of PtSn/CNT catalysts.

    X-ray diffraction (XRD) patterns were obtained on a D8 ADVANCE (BRüCKNER Textile Technologies GmbH & Co.,KG) X-ray diffractometer using Cu Kαradiation (λ= 0.154 056 nm).The tube voltage was maintained at 40 kV and tube current at 40 mA.The 2θangles ranging from 20° to 70° were covered at a scan rate of 10(°)/min.Transmission electron microscopy (TEM) was performed on a JEOL JEM-2010HR operating at 200 kV.For the atomic absorption spectroscopy (AAS) analysis,PtSn/CNTs samples were immersed in aqua regia for 24 h to dissolve the PtSn particles.The undissolved CNTs were filtered by using a millipore membrane filter.The clear solution was then diluted to an appropriate concentration before the measurement.Zeta potential measurement was performed on a Zetaplus,Brookhaven Instruments Corp.Holtsville,NY.

    2.3Measurement of the electrochemical properties of the catalysts

    All electrochemical measurements were performed in a three-electrode electrochemical cell on an IM6ex electrochemical workstation (Zahner-Electrik,Germany) at room temperature.For the preparation of working electrodes,1 mg of catalyst and 0.5 mL of isopropyl aqueous solution (Visopropanol∶Vwater= 2∶1) were mixed ultrasonically.The well-mixed electrocatalyst ink (10 μL) was deposited onto the surface of a freshly polished glassy carbon disk (GC,3 mm in diameter and 0.070 65 cm2) and dried at 60 ℃ for 30 min.3 μL of Nafion solution was then sprayed on the PtSn/MWCNT catalyst surface to form a protective layer to avoid loss of catalyst during the test.A Pt foil and a saturated calomel electrode (SCE) were used as the counter and the reference electrodes,respectively.N2gas was purged for 30 min before the experiment.

    3 Results and discussion

    3.1Effect of pH value on metal loading of PtSn

    Metal catalyst loading is defined as the weight fraction of PtSn over the weights of the catalyst.The metal loading and compositions were analyzed by AAS (Table 1).It is found that the deposition efficiency and Pt/Sn weight ratio of the particles were sensitive to the pH values of EG solution.The initial composition based on precursors are 16.6 wt% and 3.4 wt% for Pt and Sn,respectively.Metal deposition efficiency could be over 95% for catalyst prepared at pH 5 and weight ratio of Pt/Sn of as-prepared catalyst was very close to the intended one.But catalysts prepared at pH 2,7 and 9 show deposition efficiencies of 60% to 90%,indicating that there were metals remained in the solution.And we found that metal loading on CNTs prepared at pH 12 is extremely low,only 1.6 wt% Pt and 0.15 wt% Sn.

    Table 1 Structure and compositions of PtSn/CNT and Pt/C catalysts.

    3.2Effect of pH value on structure of PtSn/CNT

    The X-ray diffraction patterns of PtSn/CNT electrocatalysts prepared in different pH values are shown in Fig.1.For the sake of comparison,the pattern of commercial Pt/C catalyst (Johnson Matthey,Pt:20 wt%) is also shown in the same figure.The peak at about 2θ= 25° was associated with C (200) plane.All the of the PtSn/CNTs catalysts,except the one prepared at the pH vuale of 12,showed peaks at approximate 2θ= 39°,45°,66° and 79°,which were the main characteristic peaks of crystalline Pt and Pt alloys.The absence of Pt diffraction peaks for the catalyst prepared at pH 12 (Fig.1f) may be attributed to a poor deposition efficiency.All these peaks shifted to lower 2θvalues for PtSn/CNTs electrocatalysts as compared with the commercial Pt/C catalyst,which is caused by the formation of an alloy due to incorporation of Sn atom into the Pt fcc structure,resulting in a lattice expansion[5].No distinct peaks of SnO2were detected possibly because the particles were amorphous or too small.It should be noted that as the pH value increased,the PtSn phase diffraction peaks shifted to high 2θangle,which revealed that the alloying degree of PtSn decreased.From literature data[21],a linear relationship of the lattice parameter and alloyed Sn atomic ratio xSnhas been proposed by the following equation.

    aPtSn=kxSn+aPt

    where aPt= 0.391 4 nm is the lattice parameter of Pt/C,aPtSnis the lattice parameter of PtSn,which can be evaluated according to the angular position of the Pt (220) peak,and k is a constant = 0.352.

    Table 1 clearly shows that alloyed Sn atomic ratio xSndecreased with the pH value.The average size of the catalysts was calculated from XRD data based on the broadening of the Pt (220) peak from the Scherrer equation[22].It was found that the PtSn/CNT catalysts had a crystallite size of around 3.6 nm.We could not obtain the information for the sample prepared at pH of 12 due to the absence of Pt diffraction peaks as lattice parameter,alloyed Sn atomic ratio and XRD mean particle size were calculated based on the AAS and XRD data.

    Fig.1 XRD patterns of (a) commercial Pt/C catalyst and PtSn/CNT prepared at different pH values: (b) 2,(c) 5,(d) 7,(e) 9 and (f) 12.

    3.3Effect of pH on morphology of PtSn/CNT

    Besides loading amount and composition,nanoparticle size,distribution and morphology are also vital to the electrochemical properties of the catalysts.Morphology of the CNT-supported PtSn catalysts observed by TEM was presented in Fig.2.The corresponding mean particle size of catalysts were also obtained by measuring over 100 particles from TEM and presented in Table 1.It can be seen that PtSn catalysts prepared at pH 5 and 7 showed the most satisfied distribution on CNTs,except for a slight particle agglomeration (Fig.2b and c).For the PtSn/CNT catalysts prepared at pH 2 and 9 (Fig.2a and d),nanoparticle agglomeration was easily observed.PtSn particles synthesized at pH 12 were rarely detected,and those located on the surface of the CNTs were large and agglomerated particles and as shown in the selected area (Fig.2e).A broader particle size distribution from 2.0 to 13.0 nm with a mean particle size of 7.6 nm was obtained.

    Fig.2 TEM images and corresponding particle size distribution histograms of PtSn/CNT prepared at different pH values:(a) 2; (b) 5; (c) 7; (d) 9 and (e) 12.

    3.4Insight into the reduction and deposition mechanism

    Fig.3 Zeta potential as a function of pH for acid-treated CNTs in EG solution.

    3.5Electrocatalytic properties

    The effect of pH values on the electrocatalytic activity of PtSn/CNT for methanol oxidation was examined by cyclic voltammetry and the result is presented in Fig.4.

    Fig.4 Catalytic activity of PtSn/CNT prepared at various pH values towards methanol electro-oxidation in 0.5 M H2SO4+ 1.0 M methanol with a sweep rate of 20 mV·s-1.

    The current values were normalized by the loading amount of Pt metal,taking account of the alcohol adsorption and dehydrogenation occurring on the Pt sites[29].Distinct changes in the peak currents for the catalysts prepared at different pH values were observed.The catalyst prepared at pH 5 showed the highest peak current density of 223 mA·mg-1Pt at 0.61 V.The mass activity decreased as the pH value increased.The peak currents were 191 and 153 mA·mg-1Pt for the catalysts prepared at pH 7 and 9,respectively.The catalyst prepared at pH 12 had nearly no activity.This result indicated that pH 5 is the optimum value for preparing the PtSn/CNT with a high electrocatalytic activity.

    4 Conclusions

    A microwave irradiation assisted EG reduction method was employed to prepare CNT-supported PtSn binary catalyst with high electrocatalytic activities for glycerol oxidation.It was found that pH value of the EG solution influenced significantly on the loading efficiency,compositions and morphology of as-prepared PtSn nanaparticles via influencing the adsorption condition of metallic precursors and stabilizing effect of glycolate.Desired catalyst with a composition close to the intended weight ratio of Pt to Sn of 16.6∶3.4 (wt/wt) was obtained by adjusting the pH value to about 5,near the IEP of the acid-treated CNTs.The PtSn nanoparticles displayed the most satisfying size distribution at pH 5 and 7.Overall the PtSn/CNT catalyst prepared at pH 5 exhibited the best catalytic activity for methanol electro-oxidation at room temperature mainly due to a high loading efficiency and adequate control of particle shape and size distribution.

    [1]Eileen Hao Yu,Xu Wang,Ulrike Krewer,et al.Direct oxidation alkaline fuel cells:from materials to systems[J].Energy Environ Sci,2012,5:5668-5680.

    [2]Kamarudin M Z F ,Kamarudin S K ,Masdar M S ,et al.Direct ethanol fuel cells[J].Int J Hydrogen Energ,2013,38(22):9438-9453.

    [3]Léger J M,Rousseau S,Coutanceau C,et al.How bimetallic electrocatalysts does work for reactions involved in fuel cells? Example of ethanol oxidation and comparison to methanol[J].Electrochim Acta,2005,50(25-26):5118-5125.

    [4]Antolini E.Catalysts for direct ethanol fuel cells[J].J Power Sources,2007,170(1):1-12.

    [5]Zheng L,Xiong L,Sun J,et al.Capping agent free synthesis of PtSn bimetallic nanoparticles with enhanced electrocatalytic activity and lifetime over methanol oxidation[J].Catal Commun,2008,9(5):624-629.

    [6]Seden Beyhan,Christophe Coutanceau.Promising anode candidates for direct ethanol fuel cell:Carbon supported PtSn-based trimetallic catalysts prepared by B?nnemann method[J].Int J Hydrogen Energ,2013,38(16):6830-6841.

    [7]Zhao S L,Yin H J,Du L,et al.Three dimensional N-doped graphene/PtRu nanoparticle hybrids as high performance anode for direct methanol fuel cells[J].J Mater Chem A,2014,2:3719-3724.

    [8]Yang C,Wang D,Hu X,et al.Preparation and characterization of multi-walled carbon nanotube (MWCNTs)-supported Pt-Ru catalyst for methanol electrooxidation[J].J Alloys Compd,2008,448(1-2):109-115.

    [9]Hsieh C T,Chou Y W,Chen W Y.Fabrication and electrochemical activity of carbon nanotubes decorated with PtRu nanoparticles in acid solution[J].J Alloys Compd,2008,466(466):233-240.

    [10]Okaya K,Yano H,Uchida H,et al.Control of particle size of Pt and Pt alloy electrocatalysts supported on carbon black by the nanocapsule method[J].ACS Appl Mater Interfaces,2010,2(2):888-895.

    [11]Nitul Kakati,Jatindranath Maiti,Seok Hee Lee,et al.Anode catalysts for direct methanol fuel cells in acidic media:Do we have any alternative for Pt or Pt-Ru?[J].Chem Rev,2014,114 (24):12397-12429.

    [12]Neto A O,Watanabe A Y,Brandalise M,et al.Preparation and characterization of Pt-Rare Earth/C electrocatalysts using an alcohol reduction process for methanol electro-oxidation[J].J Alloys Compd,2009,476(1-2):288-291.

    [13]Yin S,Shen P K,Song S,et al.Functionalization of carbon nanotubes by an effective intermittent microwave heating-assisted HF/H2O2treatment for electrocatalyst support of fuel cells[J].Electrochimica Acta,2009,54(27):6954-6958.

    [14]Chen W,Jie Z,Lee J Y,et al.Microwave heated polyol synthesis of carbon nanotubes supported Pt nanoparticles for methanol electrooxidation[J].Mater Chem Phys,2005,91(1):124-129.

    [15]Ahmadi T S,Wang Z L,Green T C,et al.Shape-controlled synthesis of colloidal Platinum nanoparticles[J].Science,1996,272(5270):1924-1926.

    [16]Christina B,Chantal P,Martin C,et al.Size-selected synthesis of PtRu nano-catalysts:Reaction and size control mechanism[J].J Am Chem Soc,2004,126(25):8028-8037.

    [17]Li X,Chen W X,Zhao J,et al.Microwave polyol synthesis of Pt/CNTs catalysts:Effects of pH on particle size and electrocatalytic activity for methanol electrooxidization[J].Carbon,2005,43(10):2168-2174.

    [18]Dong H,Wang D,Sun G,et al.Assembly of metal nanoparticles on electrospun nylon 6 nanofibers by control of interfacial hydrogen-bonding interactions[J].Chem Mater,2008,20(21):6627-6632.

    [19]Xu Y,Xie X,Guo J,et al.Effects of annealing treatment and pH on preparation of citrate-stabilized PtRu/C catalyst[J].J Power Sources,2006,162(1):132-140.

    [20]Jeng K T,Chien C C,Hsu N Y,et al.Performance of direct methanol fuel cell using carbon nanotube-supported Pt-Ru anode catalyst with controlled composition[J].J Power Sources,2006,160(1):97-104.

    [21]Li H,Sun G,Lei C,et al.Comparison of different promotion effect of PtRu/C and PtSn/C electrocatalysts for ethanol electro-oxidation[J].Electrochimica Acta,2007,52(24):6622-6629.

    [22]Hui X H,Shui X C,Yuan C.Platinum nanoparticles supported on activated carbon fiber as catalyst for methanol oxidation[J].J Power Sources,2008,175(175):166-174.

    [23]Rodríguez-Reinoso F.The role of carbon materials in heterogeneous catalysis[J].Carbon,1998,36(3):159-175.

    [24]Radovic L R,Rodriguez-Reinoso F.In Chemistry and Physics of Carbon[M].Thrower P A,E Marcel Dekker Inc,New York,1996,25:243-360.

    [25]Yu R Q,Chen L W,Liu Q P,et al.Platinum deposition on carbon nanotubes via chemical modification[J].Chem Mater,1998,10(3):718-722.

    [26]Leon C A L Y,Solar J M,Calemma V,et al.Evidence for the protonation of basal plane sites on carbon[J].Carbon,1992,30(5):797-811.

    [27]Du H Y,Wang C H,Hsu H C,et al.Controlled platinum nanoparticles uniformly dispersed on nitrogen-doped carbon nanotubes for methanol oxidation[J].Diamond Relat Mater,2008,17(4-5):535-541.

    [28]Jiang L,Lian G.Modified carbon nanotubes:An effective way to selective attachment of gold nanoparticles[J].Carbon,2003,41(15):2923-2929.

    [29]Neto A O,Dias R R,Tusi M M,et al.Electro-oxidation of methanol and ethanol using PtRu/C,PtSn/C and PtSnRu/C electrocatalysts prepared by an alcohol-reduction process[J].J Power Sources,2007,166(1):87-91.

    Effect of the pH of the preparation medium on the microstructure and electrocatalytic activity of carbon nanotubes decorated with PtSn nanoparticles for use in methanol oxidation

    LI Hai-chao1,CHEN Shui-xia1,2,LI Qi-han1,LIU Feng-lei1

    (1.PCFM Lab,School of Chemistry and Chemical Engineering,Sun Yat-Sen University,Guangzhou510275,China;2.Materials Science Institute,Sun Yat-Sen University,Guangzhou510275,China)

    Carbon nanotubes (CNTs) decorated with PtSn nanoparticles (PtSn/CNT) were prepared by the microwave-assisted ethylene glycol reduction method and characterized by atomic adsorption spectroscopy,X-ray diffraction and transmission electron microscopy.Results indicated that the loading efficiency of the metal catalyst,and the degree of alloying and morphology of the PtSn nanoparticles were significantly affected by the solution pH value of the metallic ions in the ethylene glycol.The required composition of the PtSn/CNT catalysts could be obtained by adjusting the pH value to about 5,which is almost the isoelectric point of the acid-treated CNTs.The size of the PtSn nanoparticles decreased with the pH value in the range 2 to 7,but they became large and agglomerated when the pH value was greater than 7.Electrocatalytic activity tests indicated that the PtSn-CNTs prepared at pH 5 had the best catalytic performance towards methanol oxidation.The improvement in catalytic activity was mainly attributed to a high loading efficiency and control of particle shape and size distribution.

    Microwave irradiation; Carbon nanotubes; PtSn catalyst; Methanol electro-oxidation.

    date:2016-05-07;Revised date:2016-06-05

    National Natural Science Foundation of China (50373053); Science and Technology Project of Guangdong Province (2012B091000080).

    CHEN Shui-xia.E-mail:cescsx@mail.sysu.edu.cn

    1007-8827(2016)03-0293-08

    TB333

    A

    國家自然科學(xué)基金(50373053);廣東省科技計劃項目(2012B091000080).

    陳水挾,教授.E-mail:cescsx@mail.sysu.edu.cn

    English edition available online ScienceDirect (http:www.sciencedirect.comsciencejournal18725805 ).

    10.1016/S1872-5805(16)60014-8

    猜你喜歡
    中山大學(xué)乙二醇碳納米管
    新型裝配式CO2直冷和乙二醇載冷冰場的對比研究
    冰雪運動(2021年2期)2021-08-14 01:54:20
    我國最大海洋綜合科考實習(xí)船“中山大學(xué)號”下水
    軍事文摘(2020年22期)2021-01-04 02:16:46
    中山大學(xué)歷史地理信息系統(tǒng)(SYSU-HGIS)實驗室簡介
    乙二醇:需求端內(nèi)憂外患 疫情期亂了節(jié)奏
    廣州化工(2020年5期)2020-04-01 01:24:58
    一擊止“痛”!450余水產(chǎn)人聚焦第九屆中山大學(xué)水產(chǎn)飼料技術(shù)創(chuàng)新大會,教你從百億到百年
    努力把乙二醇項目建成行業(yè)示范工程——寫在中鹽紅四方公司二期30萬噸/年乙二醇項目建成投產(chǎn)之際
    碳納米管陣列/環(huán)氧樹脂的導(dǎo)熱導(dǎo)電性能
    中山大學(xué)點滴回憶
    廣州文博(2016年0期)2016-02-27 12:49:15
    聚賴氨酸/多壁碳納米管修飾電極測定大米中的鉛
    拓撲缺陷對Armchair型小管徑多壁碳納米管輸運性質(zhì)的影響
    高清视频免费观看一区二区| 精品少妇久久久久久888优播| 91精品国产国语对白视频| 国产 精品1| 精品人妻一区二区三区麻豆| 欧美区成人在线视频| 哪个播放器可以免费观看大片| 国产精品免费大片| 在现免费观看毛片| 中文在线观看免费www的网站| 精品少妇黑人巨大在线播放| 国产 一区精品| 多毛熟女@视频| 欧美日韩国产mv在线观看视频| 国产精品久久久久久久久免| 成年人免费黄色播放视频 | 大片免费播放器 马上看| 国产69精品久久久久777片| 久热这里只有精品99| 日本免费在线观看一区| 国产成人91sexporn| av在线播放精品| 狂野欧美白嫩少妇大欣赏| 国产日韩欧美在线精品| 日本黄大片高清| 少妇人妻 视频| 最近中文字幕高清免费大全6| 少妇人妻精品综合一区二区| 秋霞伦理黄片| 汤姆久久久久久久影院中文字幕| 狂野欧美激情性xxxx在线观看| 国产精品熟女久久久久浪| 又爽又黄a免费视频| 久久久久久久久久久免费av| 我的女老师完整版在线观看| 国产在视频线精品| 十八禁高潮呻吟视频 | 老司机亚洲免费影院| 日日啪夜夜爽| 免费观看在线日韩| 精品久久国产蜜桃| 简卡轻食公司| 蜜桃在线观看..| 美女大奶头黄色视频| 国产一区亚洲一区在线观看| 欧美精品亚洲一区二区| 亚洲丝袜综合中文字幕| 婷婷色麻豆天堂久久| 午夜久久久在线观看| 男人和女人高潮做爰伦理| 国产无遮挡羞羞视频在线观看| kizo精华| 精华霜和精华液先用哪个| 天堂8中文在线网| 麻豆精品久久久久久蜜桃| 少妇被粗大的猛进出69影院 | 亚洲丝袜综合中文字幕| 免费人妻精品一区二区三区视频| 国产日韩一区二区三区精品不卡 | 国产精品伦人一区二区| 久久久国产精品麻豆| 少妇丰满av| 亚洲,一卡二卡三卡| 少妇人妻精品综合一区二区| 一个人看视频在线观看www免费| 久久99精品国语久久久| 亚洲欧美日韩卡通动漫| 国产乱人偷精品视频| 波野结衣二区三区在线| 免费不卡的大黄色大毛片视频在线观看| 亚洲国产最新在线播放| 免费少妇av软件| 精品熟女少妇av免费看| 2018国产大陆天天弄谢| 免费在线观看成人毛片| 国产成人freesex在线| 黄片无遮挡物在线观看| 高清不卡的av网站| 老女人水多毛片| 人体艺术视频欧美日本| 在线观看三级黄色| 久久人人爽人人片av| 国产在线男女| 国产午夜精品久久久久久一区二区三区| 中国国产av一级| 国产精品国产三级国产专区5o| 欧美老熟妇乱子伦牲交| 最新中文字幕久久久久| videossex国产| 新久久久久国产一级毛片| 欧美区成人在线视频| 日韩大片免费观看网站| 简卡轻食公司| 内射极品少妇av片p| 亚洲天堂av无毛| 91久久精品国产一区二区成人| 精品99又大又爽又粗少妇毛片| 国产白丝娇喘喷水9色精品| 精品国产乱码久久久久久小说| 91精品国产国语对白视频| 亚洲不卡免费看| 夫妻性生交免费视频一级片| 一本—道久久a久久精品蜜桃钙片| 美女cb高潮喷水在线观看| 少妇精品久久久久久久| 人妻夜夜爽99麻豆av| 国产国拍精品亚洲av在线观看| 成年人午夜在线观看视频| 久久婷婷青草| 国产精品无大码| 中国国产av一级| 亚洲精品中文字幕在线视频 | 男女边吃奶边做爰视频| 免费看日本二区| av有码第一页| 最近最新中文字幕免费大全7| 婷婷色综合www| 男女无遮挡免费网站观看| 亚洲精品乱码久久久久久按摩| av天堂久久9| 亚洲精品456在线播放app| 国产精品.久久久| 日本vs欧美在线观看视频 | 日韩av不卡免费在线播放| 国产精品一区二区三区四区免费观看| 亚洲精华国产精华液的使用体验| 自线自在国产av| 少妇 在线观看| 99久国产av精品国产电影| 午夜福利影视在线免费观看| 综合色丁香网| 亚洲高清免费不卡视频| 亚洲综合精品二区| videossex国产| 亚洲欧美中文字幕日韩二区| 国产无遮挡羞羞视频在线观看| 九九爱精品视频在线观看| 国产无遮挡羞羞视频在线观看| 天堂俺去俺来也www色官网| 久久精品国产亚洲网站| 久久精品久久久久久久性| 久久久久久久国产电影| 亚洲人成网站在线观看播放| 欧美+日韩+精品| 午夜免费男女啪啪视频观看| 青春草视频在线免费观看| 老女人水多毛片| 欧美97在线视频| 精品少妇黑人巨大在线播放| av免费在线看不卡| 97精品久久久久久久久久精品| 色5月婷婷丁香| 久久99蜜桃精品久久| 国产欧美另类精品又又久久亚洲欧美| 日韩三级伦理在线观看| 十分钟在线观看高清视频www | 看非洲黑人一级黄片| 久久精品久久久久久噜噜老黄| 18禁在线播放成人免费| 下体分泌物呈黄色| 国产精品蜜桃在线观看| 妹子高潮喷水视频| 免费看日本二区| 国产一级毛片在线| 三上悠亚av全集在线观看 | 99九九线精品视频在线观看视频| 成人特级av手机在线观看| 伦理电影免费视频| 久久青草综合色| 国模一区二区三区四区视频| 极品教师在线视频| 女性生殖器流出的白浆| 成人特级av手机在线观看| 美女视频免费永久观看网站| 国产毛片在线视频| 免费观看在线日韩| 欧美日韩综合久久久久久| 一级毛片黄色毛片免费观看视频| 久久久久久久久久人人人人人人| 久久久久久久久久人人人人人人| 日韩欧美 国产精品| 多毛熟女@视频| 欧美日韩av久久| 久久久久久久大尺度免费视频| 日韩 亚洲 欧美在线| 亚洲精品第二区| 丝袜在线中文字幕| 久久久久久久大尺度免费视频| 国产一区有黄有色的免费视频| 国产免费福利视频在线观看| 偷拍熟女少妇极品色| 久久精品国产a三级三级三级| 亚洲欧美一区二区三区黑人 | 免费人成在线观看视频色| 80岁老熟妇乱子伦牲交| 人妻一区二区av| 亚洲电影在线观看av| 桃花免费在线播放| 国产视频内射| 永久网站在线| 成人18禁高潮啪啪吃奶动态图 | 午夜影院在线不卡| 岛国毛片在线播放| 国产亚洲5aaaaa淫片| 一区二区三区精品91| 亚洲av中文av极速乱| 久久久午夜欧美精品| 亚洲美女视频黄频| 欧美性感艳星| 国产日韩欧美视频二区| 成人亚洲欧美一区二区av| 美女主播在线视频| 激情五月婷婷亚洲| 天堂中文最新版在线下载| 岛国毛片在线播放| 欧美亚洲 丝袜 人妻 在线| 欧美另类一区| 春色校园在线视频观看| a级毛色黄片| 久久国产精品男人的天堂亚洲 | 综合色丁香网| 日日爽夜夜爽网站| 日韩欧美精品免费久久| 最近2019中文字幕mv第一页| 久久精品国产a三级三级三级| 少妇被粗大的猛进出69影院 | 国产亚洲精品久久久com| 另类亚洲欧美激情| 成人黄色视频免费在线看| 噜噜噜噜噜久久久久久91| 一区二区三区乱码不卡18| 免费在线观看成人毛片| 高清在线视频一区二区三区| 在线观看一区二区三区激情| 欧美老熟妇乱子伦牲交| 性高湖久久久久久久久免费观看| 精品人妻偷拍中文字幕| 亚洲国产av新网站| 国产成人免费无遮挡视频| 国产欧美日韩一区二区三区在线 | 成年人午夜在线观看视频| 日本欧美国产在线视频| 纯流量卡能插随身wifi吗| 99久久精品一区二区三区| 久久人妻熟女aⅴ| 久久久久久久久大av| av国产久精品久网站免费入址| 国产精品久久久久久精品古装| 国产无遮挡羞羞视频在线观看| 精品久久久噜噜| 欧美高清成人免费视频www| 99精国产麻豆久久婷婷| 欧美日韩视频精品一区| 亚洲欧洲精品一区二区精品久久久 | 免费播放大片免费观看视频在线观看| 国产欧美另类精品又又久久亚洲欧美| 少妇裸体淫交视频免费看高清| 国产精品一区www在线观看| 久久久欧美国产精品| 三级国产精品欧美在线观看| av播播在线观看一区| 人人妻人人澡人人看| 最近最新中文字幕免费大全7| 色视频在线一区二区三区| 欧美日韩av久久| 国产色爽女视频免费观看| 久久99一区二区三区| 一边亲一边摸免费视频| 久久国产亚洲av麻豆专区| 一本大道久久a久久精品| a级毛色黄片| 中文字幕人妻熟人妻熟丝袜美| 一个人看视频在线观看www免费| 国产黄色免费在线视频| 国产日韩一区二区三区精品不卡 | 99热国产这里只有精品6| 少妇人妻 视频| 国产国拍精品亚洲av在线观看| 插阴视频在线观看视频| 香蕉精品网在线| 日日摸夜夜添夜夜添av毛片| 亚洲精品自拍成人| 久久ye,这里只有精品| 99九九在线精品视频 | 伦精品一区二区三区| 国产成人精品久久久久久| 一级毛片 在线播放| 高清不卡的av网站| 内地一区二区视频在线| 久久女婷五月综合色啪小说| 午夜日本视频在线| 国产精品人妻久久久影院| 免费观看无遮挡的男女| 一区二区av电影网| 狂野欧美激情性xxxx在线观看| 亚洲精品成人av观看孕妇| 亚洲丝袜综合中文字幕| 天天操日日干夜夜撸| 人人澡人人妻人| 大又大粗又爽又黄少妇毛片口| 国产精品成人在线| 国精品久久久久久国模美| 国产成人aa在线观看| 久久国产精品男人的天堂亚洲 | 久久久国产一区二区| 啦啦啦中文免费视频观看日本| 国产一级毛片在线| 全区人妻精品视频| 嫩草影院新地址| 极品少妇高潮喷水抽搐| av福利片在线观看| 国产真实伦视频高清在线观看| 丰满乱子伦码专区| 久久久久精品性色| 日韩欧美一区视频在线观看 | 中国国产av一级| 人妻系列 视频| 欧美xxⅹ黑人| 热re99久久国产66热| 一个人免费看片子| 成人亚洲欧美一区二区av| 亚洲av国产av综合av卡| 亚洲精品乱久久久久久| 国产成人免费无遮挡视频| 晚上一个人看的免费电影| 久久久久国产网址| 成人国产麻豆网| 中文字幕精品免费在线观看视频 | 插阴视频在线观看视频| 亚洲国产成人一精品久久久| 精品一品国产午夜福利视频| 大陆偷拍与自拍| 亚洲怡红院男人天堂| 99久久综合免费| 国产精品蜜桃在线观看| 欧美日韩综合久久久久久| 国产黄片视频在线免费观看| 亚洲三级黄色毛片| 婷婷色麻豆天堂久久| 男女边吃奶边做爰视频| 能在线免费看毛片的网站| 99久久人妻综合| 成人免费观看视频高清| 精品国产一区二区久久| 中文字幕av电影在线播放| 在线免费观看不下载黄p国产| 精品一区二区三卡| 在线观看av片永久免费下载| 成年人午夜在线观看视频| 在线天堂最新版资源| 国产视频首页在线观看| 男人狂女人下面高潮的视频| 欧美高清成人免费视频www| 国产免费一级a男人的天堂| 在线观看三级黄色| 成人无遮挡网站| 午夜影院在线不卡| 亚洲国产精品一区二区三区在线| 国产精品免费大片| 丝袜在线中文字幕| 日本免费在线观看一区| 欧美日韩视频高清一区二区三区二| 狠狠精品人妻久久久久久综合| 男女免费视频国产| 91久久精品国产一区二区三区| 黄色欧美视频在线观看| 一边亲一边摸免费视频| 久久狼人影院| 午夜久久久在线观看| 青春草视频在线免费观看| 国产精品人妻久久久影院| 一个人免费看片子| 在线观看三级黄色| 亚洲三级黄色毛片| 夫妻午夜视频| 蜜桃在线观看..| 亚洲精品国产色婷婷电影| 久久久精品免费免费高清| 久久久国产一区二区| 成人综合一区亚洲| 精品久久国产蜜桃| 尾随美女入室| 久久6这里有精品| 女人久久www免费人成看片| 少妇猛男粗大的猛烈进出视频| 三级经典国产精品| 夜夜骑夜夜射夜夜干| 欧美三级亚洲精品| 国产 精品1| 亚洲av中文av极速乱| a级毛色黄片| 国产真实伦视频高清在线观看| 91精品国产九色| 久久99精品国语久久久| 女性被躁到高潮视频| 少妇高潮的动态图| 亚洲欧洲日产国产| 国产伦精品一区二区三区四那| 成人特级av手机在线观看| 蜜桃在线观看..| 亚洲情色 制服丝袜| 国产成人freesex在线| 中文字幕av电影在线播放| 色94色欧美一区二区| 一级毛片我不卡| 日本-黄色视频高清免费观看| 亚洲精品日本国产第一区| 精品人妻偷拍中文字幕| 啦啦啦啦在线视频资源| 国内揄拍国产精品人妻在线| 久久久a久久爽久久v久久| 日韩三级伦理在线观看| 国产乱人偷精品视频| 欧美bdsm另类| 婷婷色av中文字幕| 精品国产露脸久久av麻豆| 成人18禁高潮啪啪吃奶动态图 | 欧美 亚洲 国产 日韩一| 五月开心婷婷网| 久久午夜福利片| 免费观看在线日韩| 最近2019中文字幕mv第一页| 欧美精品一区二区免费开放| 精品99又大又爽又粗少妇毛片| 色婷婷av一区二区三区视频| 亚洲av成人精品一区久久| 九色成人免费人妻av| 国产色婷婷99| 狂野欧美激情性xxxx在线观看| av播播在线观看一区| 大香蕉97超碰在线| 永久免费av网站大全| 国模一区二区三区四区视频| 天天操日日干夜夜撸| 夜夜骑夜夜射夜夜干| 丝瓜视频免费看黄片| 亚洲美女搞黄在线观看| 欧美精品一区二区免费开放| 人妻系列 视频| 成人黄色视频免费在线看| 色视频www国产| 少妇丰满av| 精品人妻一区二区三区麻豆| 99久久精品热视频| 少妇精品久久久久久久| av一本久久久久| 99久久精品一区二区三区| 久久久久久久久久成人| 国产视频首页在线观看| 国产成人精品福利久久| 国产综合精华液| 在线播放无遮挡| 中国国产av一级| 18+在线观看网站| 狂野欧美激情性xxxx在线观看| 国产免费又黄又爽又色| 偷拍熟女少妇极品色| 国产一区有黄有色的免费视频| 国产成人免费观看mmmm| videos熟女内射| 久久久国产一区二区| 国产成人精品一,二区| 91久久精品国产一区二区三区| av专区在线播放| 国产亚洲欧美精品永久| 国产精品国产av在线观看| 人人澡人人妻人| 免费av不卡在线播放| 精品一区二区三区视频在线| 亚洲真实伦在线观看| 久久久久久人妻| 日韩伦理黄色片| 欧美精品高潮呻吟av久久| 精品久久久久久电影网| 秋霞伦理黄片| 欧美少妇被猛烈插入视频| 国产伦在线观看视频一区| 一级毛片久久久久久久久女| 夫妻性生交免费视频一级片| 午夜福利影视在线免费观看| 亚洲精品自拍成人| 久久人人爽人人片av| 国产欧美日韩综合在线一区二区 | 美女中出高潮动态图| 午夜激情久久久久久久| 色5月婷婷丁香| 欧美日韩视频高清一区二区三区二| .国产精品久久| 国模一区二区三区四区视频| 一级,二级,三级黄色视频| 最近的中文字幕免费完整| 亚洲av中文av极速乱| 人妻系列 视频| 日韩av不卡免费在线播放| 日韩一区二区三区影片| 极品人妻少妇av视频| 国产色爽女视频免费观看| 搡老乐熟女国产| 日韩成人伦理影院| 一级毛片我不卡| 插逼视频在线观看| 国产精品国产三级国产专区5o| 亚洲一区二区三区欧美精品| 熟妇人妻不卡中文字幕| 国产成人91sexporn| 国产av一区二区精品久久| 国产精品三级大全| 国产一区二区三区综合在线观看 | 一区二区三区精品91| 超碰97精品在线观看| 久久久久久久久久久久大奶| 精品99又大又爽又粗少妇毛片| 午夜av观看不卡| 亚洲国产毛片av蜜桃av| 午夜激情久久久久久久| 免费看光身美女| 亚洲欧美日韩卡通动漫| 交换朋友夫妻互换小说| 免费在线观看成人毛片| 国产成人免费观看mmmm| 精品一区二区三卡| 国产av国产精品国产| 久久久国产精品麻豆| 国产精品99久久99久久久不卡 | 国产免费福利视频在线观看| 国内精品宾馆在线| 久久99精品国语久久久| 99热这里只有是精品在线观看| freevideosex欧美| 一本大道久久a久久精品| 亚洲av欧美aⅴ国产| 亚洲国产精品成人久久小说| 国产有黄有色有爽视频| 国产精品久久久久久精品电影小说| 永久免费av网站大全| 国产精品99久久99久久久不卡 | 人人妻人人澡人人爽人人夜夜| 欧美日韩av久久| 日产精品乱码卡一卡2卡三| av黄色大香蕉| 日韩中文字幕视频在线看片| 国产精品99久久久久久久久| 啦啦啦视频在线资源免费观看| 午夜福利网站1000一区二区三区| 一级黄片播放器| 亚洲国产av新网站| 精品久久久噜噜| av国产精品久久久久影院| 亚洲经典国产精华液单| 免费在线观看成人毛片| 美女主播在线视频| 秋霞伦理黄片| 大片免费播放器 马上看| 亚洲av国产av综合av卡| 在线观看人妻少妇| 色视频在线一区二区三区| 久久99一区二区三区| 国产视频内射| 亚洲精品色激情综合| 国产在线视频一区二区| 国产免费视频播放在线视频| 亚洲精品自拍成人| 男人爽女人下面视频在线观看| 精品人妻偷拍中文字幕| 久久精品国产亚洲网站| av播播在线观看一区| 女性被躁到高潮视频| 高清午夜精品一区二区三区| 午夜福利影视在线免费观看| 亚洲精品日韩av片在线观看| 国产乱人偷精品视频| 人人澡人人妻人| 国产在线免费精品| 亚洲欧美日韩另类电影网站| 自拍偷自拍亚洲精品老妇| 成人美女网站在线观看视频| 精品久久国产蜜桃| 成人亚洲欧美一区二区av| 精品一区二区三区视频在线| 草草在线视频免费看| 成人美女网站在线观看视频| 91精品国产国语对白视频| 欧美精品一区二区大全| 日本黄色片子视频| 亚洲自偷自拍三级| 日韩在线高清观看一区二区三区| 性色avwww在线观看| 高清黄色对白视频在线免费看 | 亚洲精品日韩在线中文字幕| 在线观看人妻少妇| 国产精品免费大片| 最近中文字幕2019免费版| 国产片特级美女逼逼视频| 国产极品粉嫩免费观看在线 | 99热这里只有精品一区| 成人特级av手机在线观看| 一个人看视频在线观看www免费| 水蜜桃什么品种好| 亚洲精品乱码久久久久久按摩| 女的被弄到高潮叫床怎么办| 亚洲精品国产成人久久av| 精品国产一区二区三区久久久樱花| 少妇人妻精品综合一区二区| 亚洲精品色激情综合| 五月开心婷婷网| 亚洲国产色片| 亚洲av.av天堂| 欧美变态另类bdsm刘玥| av国产久精品久网站免费入址| 少妇人妻一区二区三区视频| 乱人伦中国视频| 午夜免费鲁丝| 亚洲精品亚洲一区二区| 纯流量卡能插随身wifi吗| 久久影院123|