• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Turbulence Intensity and Turbulent Kinetic Energy Parameters over a Heterogeneous Terrain of Loess Plateau

    2015-06-09 21:30:01YUEPingZHANGQiangWANGRunyuanLIYaohuiandWANGSheng
    Advances in Atmospheric Sciences 2015年9期

    YUE Ping,ZHANG Qiang,WANG Runyuan,LI Yaohui,and WANG Sheng

    Key Laboratory of Arid Climatic Change and Reducing Deserter of Gansu Province,Institute of Arid Meteorology, China Meteorological Administration,Lanzhou 730020

    Turbulence Intensity and Turbulent Kinetic Energy Parameters over a Heterogeneous Terrain of Loess Plateau

    YUE Ping?,ZHANG Qiang,WANG Runyuan,LI Yaohui,and WANG Sheng

    Key Laboratory of Arid Climatic Change and Reducing Deserter of Gansu Province,Institute of Arid Meteorology, China Meteorological Administration,Lanzhou 730020

    A deep understanding of turbulence structure is important for investigating the characteristics of the atmospheric boundary layer,especially over heterogeneous terrain.In the present study,turbulence intensity and turbulent kinetic energy(TKE) parameters are analyzed for different conditions with respect to stability,wind direction and wind speed over a valley region of the Loess Plateau of China during December 2003 and January 2004.The purpose of the study is to examine whether the observed turbulence intensity and TKE parameters satisfy Monin–Obukhov similarity theory(MOST),and analyze the wind shear effect on,and thermal buoyancy function of,the TKE,despite the terrain heterogeneity.The results demonstrate that the normalized intensity of turbulence follows MOST for all stability in the horizontal and vertical directions,as well as the normalized TKE in the horizontal direction.The shear effect of the wind speed in the Loess Plateau region is strong in winter and could enhance turbulence for all stability conditions.During daytime,the buoyancy and shear effect together constitute the generation of TKE under unstable conditions.At night,the contribution of buoyancy to TKE is relatively small,and mechanical shearing is the main production form of turbulence.

    heterogeneous terrain,turbulence intensity,turbulent kinetic energy,Monin–Obukhov similarity function

    1.Introduction

    Turbulent transport is one of the most important characteristics of the atmospheric boundary layer.The exchange of momentum,heat,water and other substances between land and atmosphere mainly takes place in the form of turbulent diffusion(Louis,1979;Powell et al.,2003;Martins et al., 2009;Mahrt,2010).Therefore,the characteristics of the atmospheric turbulence near-surface layer become the important characterization parameters of the land–atmosphere interaction(Monin and Yaglom,1971;Louis,1979;Teixeira et al.,2008).An accurate description of the land–atmosphere turbulence exchange process depends on the understanding of the characteristics of atmospheric turbulence(Muschinski et al.,2004;Acevedo et al.,2007;Teixeira et al.,2008). However,it is clear that,for atmosphere turbulent flows,we cannot directly describe the exchange process(Massman and Lee,2002;Moraes et al.,2005).Instead,previous studies(Nieuwstadt,1984;Sorbjan,1987)have concentrated on understanding the statistical properties of atmosphere turbulence.

    As a globally unique and important geographical region, the Loess Plateau of China is an important part of the country’s arid and semi-arid landscape,and the heterogeneity of the land surface is obvious(Huang et al.,2008;Yue et al., 2011).The region features a gully–hilly crisscross pattern, and the underlying surface is highly undulating.Therefore, the turbulence characteristics of the region are complicated, while the turbulent transport is more typical(Huang et al., 2008;Yue et al.,2012;Zhang et al.,2013).There are significant differences in the resulting turbulence characteristics, even at the same observation station,when airflow from different directions passes the observation point.This is because of the different characteristics of the underlying surfaces and the“memories”they impose(Martins et al.,2009;Liu et al., 2012).

    In fact,the factors affecting the inhomogeneity of the underlying surface of the Loess Plateau are not only topographic;the complexity of the vegetation in the region is also regarded asa very importantnon-uniform factor(Zhang etal., 2013).However,changes in wind speed in the surface layer will also affect the structure and morphology of this kind of roughness element,even when the underlying surface conditions are exactly the same.Thus,the dynamic roughness size can change(Yue et al.,2013;Zhang et al.,2013),which makes it even more challenging to understand the regional characteristics of turbulent flow.To eliminate the influence of the underlying surface vegetation on the characteristics of turbulence,bare soil data for the winter season are used in the present study.To analyze the effects of topographic heterogeneity on the characteristics of turbulence,the wind direc-tion and wind speed at the observation site are classified,and verify the applicability of MOST in research on the complex underlying surface of the Loess Plateau.In addition,the effects of shear and buoyancy contribution on turbulent kinetic energy(TKE)are studied through the classification of wind directions.

    The remainder of the paper is structured as follows:First, the observational data and the parameterization of turbulence intensity are introduced in section 2.In section 3,the statistical characteristics of TKE and the contribution of shear and buoyancy to TKE are analyzed.Conclusions are presented in section 4.

    2.Material and Methods

    2.1.Observations

    The observations were made in a valley region of Dingxi, over the Loess Plateau in Northwest China[(35?35′N, 104?37′E),elevation:1896.7 m above sea level;Fig.1a maps the topography of the study area,and Fig.1b is a photograph of the flux observation station].The research area belongs to a semi-arid climate region,with an annual average temperature of 6.3?C,average annual precipitation of 419 mm, annual average wind speed of 1.8 m s?1,and average annual sunshine of 2500 hours.The maximum potential evaporation is greater than 1526 mm.

    The observational data for December 2003 to January 2004 provide half-hour records of velocity from a sonic anemometer(CSAT3,Campbell Scientific,USA)located at height z=2 m on the northern side ofa 20 m tower.The sonic anemometer is aligned with local gravity and its boom is directed north.The three wind velocity components and virtual temperature are sampled at 10 Hz.Basic quality control of the raw 10 Hz data involve the detection of“soft”and“hard”spikes(Vickers and Mahrt,1997;Schmid et al.,2003;Zuoet al.,2009;Liu et al.,2012).Half-hour records occurring during precipitation,and runs with frictional velocity(u?)of≤0.01 m s?1,are rejected(Song et al.,2010).Following the above screening process,we have available to us 320 simultaneous samples averaged for 30 min to stable stratification, and 445 samples averaged for 30 min to unstable atmospheric stratification.

    Figure 2 shows that the most frequent wind direction range are 105?–150?(southeast)and 285?–310?(westnorthwest).Houses with different low heights of 3–5 m are distributed about 100 m away from the southeast direction of the observation station.There is relatively flat open land to the northwest,with a length of about 500 m and width of 300 m,without tall buildings and trees.Table 1 presents the prevailing wind direction aerodynamic roughness length and friction velocity at the Dingxi site for different stability conditions.

    2.2.Turbulence flux source areas

    To analyze the effects of the inhomogeneity of the topography on the characteristics of turbulence,the Flux Source Area Model(FSAM)(Schmid,1994)is selected in the present study to calculate the distribution of the turbulent flux source areas of Dingxi under different stability conditions in the dominant wind directions(Fig.3).The location of the observation point is used as the origin.The direction opposite to the horizontal wind speed is used as the x-axis. The direction perpendicular to the x-axis direction is used as the y-axis.When the contribution of the flux source area at the observation height of 2 m at Dingxi station reaches 90%: (1)In the southeast direction,a,d,e and Xm(where Xmis the maximum source location,i.e.,the upwind distance of the surface element with the maximal effect on a given sensor;a is the distance from the near end of the area to the sensor;e is the distance from the far near end of the area to the sensor (Schmid,1994);and d is the maximum lateral half-width of the source area),under conditions of stable atmospheric stratification,are 9.9,22.8,71.4 m and 21.7 m,respectively. Under neutral conditions their values are 12.4,29.3,99.3 m and 27.9 m,respectively,and under unstable conditions they are 13.6,32.2,114.9 m and 31.4 m,respectively.(2)In the west-northwest direction,under conditions of stable atmospheric stratification,a,d,e and Xmare 10.1,20.4,75.0 m and22.4 m,respectively;under neutral conditions they are 12.8, 25.0,99.6 m and 28.6 m,respectively;and under unstable conditions they are 14.0,27.4,114.6 m and 28.6 m,respectively.This shows that the contributing ranges of flux source area in the dominant wind direction are as follows:stable conditions>neutral conditions>unstable conditions.At the same time,the tensile range in the crosswind direction of the flux source area in the direction of southeast wind is significantly greater than that in the west-northwest direction, and this difference is mainly caused by topography.

    Table 1.Aerodynamic roughness and friction velocity in different wind directions.

    3.Results

    3.1.Normalized standard deviation of the velocity fluctuations

    In theory,the difference in the topography of uniform terrain and the density and structure of the roughness length and other physical properties is very small,meaning the turbulence can be regarded as isotropic,and the impact of changes in wind direction on the characteristics of turbulence can be ignored(Zhang et al.,2013).However,observational results (Nieuwstadt,1984;Smedman,1988;Martins et al.,2009; Liu et al.,2012)indicate that the constant values of the normalized speed variances with z/L andφx(z/L)also have significant differences,because of the different underlying surface vegetation states,even under conditions of uniform terrain.For complex terrain,the effects of topography on turbulence characteristicscannotbe ignored(Panofsky etal.,1977; Founda et al.,1997;Martins et al.,2009).Figures 4 and 5 present the changes inσu/u?,σv/u?andσw/u?with z/L according to the southeast and west-northwest wind directions at Dingxi.Equations(1–3)and(4–6)are the optimal universal functions in the southeast and west-northwest directions, respectively:

    The observations indicate thatσu/u?,σv/u?andσw/u?in the semi-arid region of the Loess Plateau are functions of z/L under convective conditions and follow a 1/3 power law,and that the dispersion in the vertical direction is smaller than that in the horizontal direction.Founda et al.(1997),Al-Jiboori et al.(2001),Moraes et al.(2005),Martins et al.(2009)and Liu et al.(2012)reported that,under convective conditions, σw/u?behaves similarly to that over flat terrain.Zhang et al.(2001)also found that the values ofσw/u?tend to follow similarity relations,irrespective of the terrain,under unstable conditions.According to Panofsky and McCormick (1960),theσwis connected with the rates of shear and buoyant production of TKE.Because the turbulent exchange in the vertical direction is stronger and the turbulent adaptability is faster,the difference of the variance of velocityσw/u?in different wind directions is relatively small.The differences of the ratio in the horizontal direction are more obvious,which is mainly caused by the heterogeneity of the underlying surface atthe observation station.Panofsky and Dutton(1984)hypothesized that,over heterogeneous terrain,the vertical fluctuations near the surface layer are produced by small-scale eddies that rapidly adjust to the terrain changes, and their hypothesis was verified by Moraes et al.(2005)and Martins et al.(2009)for convective and weakly stable conditions.

    Recent studies show that,for stable conditions,σu/u?, σv/u?andσw/u?satisfy the 1/3 power law.Theoretically, the atmospheric turbulence will be restricted when the atmospheric stratification is stable,so the standard deviation of wind velocity will decrease with z/L increasing.However, many observational results have demonstrated that the standard deviation of wind velocity increases with the enhanced atmospheric stability(Ma et al.,2002;Yue et al.,2011).This is because intermittent turbulence and other movements may be triggered when the atmospheric stability of the boundary layer increases to a certain extent(Zeri and S′a,2011).The results reported by Al-Jiboori et al.(2001)and Moraes et al.(2005)showed that the ratio ofσw/u?,under stable conditions,increases slightly with stability—a finding laterverified by Martins et al.(2009),only for 0≤z/L≤1.5.

    Table 2.Aerodynamic roughness and normalized standard deviation of wind speed.

    Interestingly,the normalized standard deviation of vertical velocity of the Loess Plateau at Dingxi is very close to that of the observational results of the Qinghai–Tibetan Plateau(Ma et al.,2002)and the Mongolian Plateau(Yue et al.,2011).Al-Jiboori et al.(2001),Zhang et al.(2001)and Moraes et al.(2005)also showed the normalized standard deviation of vertical velocity over complex topography to beclose to that of uniform terrain for unstable conditions.Figures 4 and 5 present the function betweenσi/u?(i=v,v,w) and z/L of our dataset and the Qinghai–Tibetan Plateau and Mongolian Plateau for comparison purposes.The results show that theσu/u?andσv/u?of the Loess Plateau at Dingxi are less than those of the Qinghai Tibetan Plateau, but larger than those of the Mongolian Plateau,which agrees with the notion that the topographic effects on horizontal wind speed are substantial.From the general topographic characteristics of the Qinghai–Tibetan Plateau,the Loess Plateau and the Mongolia Plateau,the topographic relief of the Qinghai–Tibetan Plateau is more marked than that of the Loess Plateau,and the changes of the terrain on the Loess Plateau are more prominent to those of the relatively flat Mongolia Plateau(Ma et al.,2002;Yue et al.,2011).From the results of the two prevailing wind directions at Dingxi, the difference in the normalized standard deviation of horizontal velocity is significant.The wind velocity fluctuation in the horizontal direction is mainly produced by quasi horizontal turbulence with relatively large scale,and its typical scale is generally several hundred meters or more,meaning its adaptability to the changes in terrain is slow.

    3.2.Effects of horizontal wind speed on normalized standard deviation

    Moraes et al.(2005)found that,for unstable conditions, there is good correlation betweenσu/u?andσv/u?and z/L, but only when the wind speed over the complex underlying surface is greater than a threshold(U>1 m s?1).Therefore, the variances of the horizontal wind components are influenced by large convective cells.Anfossi et al.(2005)found that there is a tendency for slightly higher values ofσv/u?with increasing stability for stable conditions over complex terrain.Figures 6 and 7 present the change of turbulent intensity with atmospheric stability in the southeast and westnorthwest wind directions under different wind speed conditions at the Dingxi site.There is a close connection between σu/u?,σv/u?andσw/u?with z/L for all stability conditions, and the variances of the turbulence intensity are affected by the horizontal wind speed.Under unstable conditions,the decreasing trend of turbulence intensity with stability increases more significantly under the conditions of high speed wind than low speed wind.Under stable conditions,the increasing trend of turbulence intensity with stability increases more significantly under the conditions of high speed wind than low speed wind.The characteristics are consistent with the results of Martins et al.(2009).

    3.3.Statistical characteristics of TKE

    TKE is a measure of turbulence intensity,and it is one of the most important variables in micrometeorology(Niu et al.,2012).TKE involves the transfer of momentum,heat and moisture in the whole boundary layer.Research on TKE should concentrate on trying to understand the statistical properties of turbulence.Due to the complex nonlinear nature of the atmosphere,unresolved scales can fundamentally influence the resolved larger scales.Since explicitly characterizing the unresolved processes in not feasible,the statistics need to be parameterized as a function of the unresolved flow (Teixeira et al.,2008).According to MOST,the TKE after its nondimensionalization by the friction velocity will follow the 1/3 power law

    Table 3.Standard deviation of the velocity over difference land surfaces for neutral stratification conditions.

    (here,e is TKE and u?is the friction velocity).

    Figure 8 shows the scatter relationship between the dimensionless TKE of the dominant wind direction and the atmospheric stability of the study area.Equations(7)and(8) are the optimal functions of the TKE in the southeast and west-northwest directions:

    It can be seen that dimensionless TKE of the near-surface at Dingxi follows MOST under convective and stable conditions.Notably,the values of the dimensionless turbulence intensity of the two prevailing wind directions are close to one another under neutral conditions,and the values are 11.1 and 10.5,respectively.Even when compared with the result of 12.85 for a city suburb under neutral conditions(Niu et al., 2012),the difference is relatively small,indicating that the constant coefficient a has certain universality.However,the differences between b and c values are relatively large,which reflects the effects of the heterogeneity of the near-surface on the turbulence intensity(Yue et al.,2010).

    3.4.Contribution of the shear effect and buoyancy on TKE

    Each item of the TKE budget equation describes a different part of the physical process of turbulent formation except the turbulence dissipation rate.Comparing the interactions among these parts helps to determine the ability of the airflow to maintain or change the turbulence flow.The coordinate system is selected to be consistent with the average wind direction.When assuming that the horizontal direction is uniform,and descent is ignored,a simplified form of the TKE equation can be obtained as

    When the stratification is unstable,there is a good correlation between TKE and mechanical shear and buoyancy effects(Figs.9a and b).Under conditions of significant levels of 0.1‰the fitting relationship equations in the southeast direction are

    respectively.In the west-northwest direction,the fitting formulas are

    The fitting formula in the west-northwest direction is

    4.Conclusions

    Turbulent transport is one of the basic characteristics of the atmospheric boundary layer.Detailed knowledge of turbulence characteristics is important for understanding atmospheric phenomena,especially over heterogeneous terrain. Turbulence intensity and TKE parameters are beneficial for describing the exchange of properties between the surface and atmosphere effectively.

    In this study,the standard deviations of velocities over the heterogeneous terrain of Dingxi are calculated for a valley region with the data for December 2003 to January 2004,and classified according to the wind direction and wind speed. The TKE is then also classified according to the wind direction.The applicability of MOST is investigated,and the results indicate that the normalized standard deviation of velocity fluctuations and TKE follow similar rules for the two prevailing wind directions.The ratio ofσw/u?is 1.3 and 1.4 in the southeast and west-northwest directions,respectively, and the values are close to those of flat terrain under neutral conditions.However,σu/u?andσv/u?are 3.7 and 3.3 in southeast direction,and 2.9 and 3.2 in west-northwest direction,respectively.The values of dimensionless turbulence intensity in the southeastand west-northwestdirections under neutral conditions are 11.1 and 10.5,respectively.

    Close correlation is found among the variances ofσu/u?, σv/u?andσw/u?with z/L over the Dingxi site under different wind speed conditions,for all stability conditions.The decreasing trend of the ratio with z/L increases more significantly under the conditions of high speed wind than low speed wind for unstable conditions.Under stable conditions, the increasing trend of the ratio with z/L increases slightly more under the conditions of high speed wind than low speed wind.

    Whether or not the conditions of stratification are stable, the shear effect of airflow enhances the turbulence,because the shear effect of the wind speed in winter over the Loess Plateau is strong.In the daytime,the buoyancy and shear effect of wind speed together constitute the production items of TKE under unstable stratification.At night,the mechanical shear becomes almost the only production form of turbulence.

    Acknowledgements.This work was supported by the National Basic Research Program of China(Grant No.2012CB955304), the National Natural Science Foundation of China(Grant Nos. 41075008 and 40830957),the Special Financial Grant of China Postdoctoral Science Foundation(Grant No.2013T60901),the Arid Meteorology Foundation of the Institute of Arid Meteorology of the China Meteorological Administration(Grant No.IAM201408),and the Ten Talents Program of Gansu Meteorology Bureau.

    REFERENCES

    Acevedo,O.C.,O.L.L.Moares,R.da Silva,V.Anabor,D.P. Bittencourt,H.R.Zinermann,R.O.Magnago,and G.A.Degrazia,2007:Surface-to-atmosphere exchange in a river valley environment.J.Appl.Meteor.,46,1169–1181.

    Al-Jiboori,M.H.,Y.M.Xu,and Y.F.Qian,2001:Turbulence characteristics over complex terrain in west China.Bound.-Layer Meteor.,101,109–126.

    Andreas,E.L.,and B.B.Hicks,2000:Comments on“Critical test of the validity of Monin-Obukhov similarity during convective conditions”.J.Atmos.Sci.,59,2605–2607.

    Anfossi,D.,D.Oettl,G.Degrazia,and A.Goulart,2005:An analysis of sonic anemometer observations in low wind speed conditions.Bound.-Layer Meteor.,114,179–203.

    Businger,J.A.,J.C.Wyngaard,Y.Izumi,and E.F.Bradley,1971: Flux–profile relationships in the atmospheric surface layer.J. Atmos.Sci.,28,181–189.

    Clark,I.,P.Assamoi,J.Bertrand,and F.Giorgi,2004:Characterization of potential zones of dust generation at eleven stations in the southern Sahara.Theor.Appl.Climatol.,77,173–184.

    Founda,D,M.Tombrou,D.P.Lalas,and D.N.Asimakopoulos, 1997:Some measurements of turbulence characteristics over complex terrain.Bound.-Layer Meteor.,83,221–245.

    Hammerle,A.,A.Haslwanter,M.Schmitt,M.Buhn,U.Tappeiner, A Cernusca,and G.Wohlfahet,2007:Eddy covariance measurements of carbon dioxide,latent and sensible energy fluxes above a meadow on a mountain slope.Bound.-Layer Meteor.,122,397–416.

    Huang,J.P.,and Coauthors,2008:An overview of the semi-arid climate and environment research observatory over the Loess Plateau.Adv.Atmos.Sci.,25(6),906–921,doi:10.1007/ s00376-008-0906-7.

    Kaimal,J.C.,1973:Turbulence spectra,length scales and structure parameters in the stable surface layer.Bound.-Layer Meteor.,4,289–309.

    Liu,H.Z.,Z.X.Hong,H.S.Zhang,J.Y.Chen,F.Hu,and H.Y. Chen,2003:The turbulent characteristics in the surface layer over dune at Naiman in Inner Mongolia.Chinese Journal of Atmospheric Sciences,27(3),389–398.(in Chinese)

    Li,J.,S.H.Liu,H.P.Liu,J.Chan,A.Y.S.Cheng,F.Hu,and H.Z. Liu,2003:Surface imbalance energy calculated and analyzed with the data of EBEX-2000.Acta Meteorologica Sinica,17, 448–464.

    Liu,L.,T.J.Wang,Z.H.Sun,Q.J.Wang,B.L.Zhuang,Y. Han,and S.Li,2012:Eddy covariance tilt corrections over a coastal mountain area in South-east China:Significance for near-surface turbulence characteristics.Adv.Atmos.Sci.,29(6),1264–1278,doi:10.1007/s00376-012-1052-9.

    Louis,J.F.1979:A parametric model of vertical eddy fluxes in the atmosphere.Bound.-Layer Meteor.17,187–202.

    Ma,Y.M.,W.Q.Ma,Z.Y.Hu,M.S.Li,J.M.Wang,H.Ishikawa, and O.Tsukamoto,2002:Similarity analysis of atmospheric turbulent intensity over grassland surface of Qinghai-Xizang plateau.Plateau Meteorology,21,514–517.(in Chinese)

    Mahrt,L.,2007:Weak-wind mesoscale meandering in the nocturnal boundary layer.Enviro.Fluid Mech.,7,331–347.

    Mahrt,L.,2010:Variability and maintenance of turbulence in thevery stable boundary.Bound.-Layer Meteor.,135,1–18.

    Mahrt,L.,J.J Sun,W.Blumen,T.Delany,and S.Oncley, 1998:Nocturnal boundary-layer regimes.Bound.-Layer Meteor.,88,255–278.

    Massman,W.J.,and X.Lee,2002:Eddy covariance flux corrections and uncertainties in long-term studies of carbon and energy exchanges.Agricultural and Forest Meteorology,113, 121–144.

    Martins,C.A.,L.L.Osvaldo,O.C.Acevedo,and G.A.Degrazia, 2009:Turbulence intensity parameters over a very complex terrain.Bound.-Layer Meteor.,133,35–45.

    Monin,A.S.,and A.M.Yaglom,1971:Statisticalfluid mechanics, Vol 1.The MIT Press,Cambridge,Mass,769 pp.

    Moraes,O.L.L.,Acevedo,O.C.Degrazia,G.A.,Anfossi,D.,Da Siliva,R.,Anabor,V,2005:Surface layer turbulence parameters over a complex terrain.Atmos.Eviron.,39,3103–3112.

    Moraes,O.L.L.,2000:Turbulence characteristics in the surface boundary layer over the South American Pampa.Bound.-Layer Meteor.,96,317–335.

    Muschinski,A.,R.G.Frehlich,and B.B.Balsley,2004:Smallscale and large-scale intermittency in the nocturnal boundary layer and the residual layer.J.Fluid Mech.,515,319–351.

    Nieuwstadt,F.T.M.,1984:The turbulent structure of the stable, nocturnal boundary layer.J.Atmos.Sci.,41,2202–2216.

    Niu,S.J.,L.J.Zhao,C.S.Lu,J.Yang,J.Wang,and W.W.Wang, 2012:Observational evidence for the Monin-Obukhov similarity under all stability conditions.Adv.Atmos.Sci.,29(2), 285–294,doi:10.1007/s00376-011-1112-6.

    Panofsky,H.A.,and R.A.McCormick,1960:The spectrum of vertical velocity near the surface.Quart.J.Roy.Meteor.Soc.,86,495–503.

    Panofsky,H.A.,and J.A.Dutton,1984:Atmospheric Turbulence. Wiley,New York,397 pp.

    Panofsky,H.A.,H.Tennekes,D.H.Lenschow,and J.C.Wyngaard,1977:The characteristics of turbulent velocity components in the surface layer under convective conditions. Bound.-Layer Meteor.,11,355–361.

    Powell,M.D.,P.J.Vickery,and T.A.Reinhold,2003:Reduced drag coefficient for high wind speeds in tropical cyclones.Nature,422,279–283.

    Schmid,H.P.,H.B.Su,C.S.Vogel,and P.S.Curtis,2003: Ecosystem–atmosphere exchange of carbon dioxide over a mixed hardwood forest in northern lower Michigan.J. Geophys.Res.,108(D14),4417–4435,doi:10.1029/2002JD 003011.

    Schmid,H.P.,1994:Source areas for scalars and scalar fluxes. Bound.-Layer Meteor.,67,293–318.

    Smedman,A.S.,1988:Observations of a multi-level turbulence structure in a very stable atmospheric boundary layer.Bound.-Layer Meteor.,44,231–253.

    Song,X.Z.,H.S.Zhang,J.Y.Chen,and S.U.Park,2010:Fluxgradient relationships in the atmospheric surface layer over the Gobi desert in China.Bound.-Layer Meteor.,134,487–498.

    Sorbjan,Z.,1987:An examination of local similarity theory in the stably stratified boundary layer.Bound.-Layer Meteor.,38, 63–71.

    Teixeira,J.,and Coauthors,2008:Parameterization of the atmospheric boundary layer:A view from just above the inversion. Bull.Amer.Meteor.Soc.,89,453–458.

    Vickers,D.,and L.Mahrt,1997:Quality control and flux sampling problems for tower and aircraft data.J.Atmos.Oceanic Technol.,14,512–526.

    Wilson,J.D.,2008:Monin-Obukhov functions for standard deviations of velocity.Bound.-Layer Meteor.,129,353–369.

    Yue,P.,S.J.Niu,Y.Q.Hu,and Q.Zhang,2010:Turbulent intensity and its similarity function over an Inner Mongolian grassland during spring.Science China Earth Sciences,53(5), 733–780.

    Yue,P.,Q.Zhang,S.J.Niu,J.H.Yang,S.Wang,J.Z.Zhang, and X.L.Liu,2011:Statistical characteristic of atmospheric turbulence in clear and dust weather conditions in Inner Mongolian grassland during spring.Plateau Meteorology,30(5), 1180–1188.(in Chinese)

    Yue,P.,Y.H.Li,Q.Zhang,and L.Zhang,2012:Surface Energy-Balance closure in a gully region of the Loess Plateau at SACOL on eastern Edge of Tibetan Plateau.J.Meteor.Soc. Japan,90C,173–184.

    Yue,P.,Q.Zhang,Y.H.Li,R.Y.Wang,S.Wang,and X.Y.Sun, 2013:Bulk transfer coefficients of momentum and sensible heat over semiarid grassland surface and their parameterization scheme.Acta Physica Sinica,62,099202-1–9.(in Chinese)

    Zeri,M.,and L.D.A.S′a,2011:Horizontal and vertical turbulent fluxes forced by a gravity wave event in the nocturnal atmospheric surface layer over the Amazon forest.Bound.-Layer Meteor.,138,413–431.

    Zhang,H.S.,J.Y.Chen,and S.U.Park,2001:Turbulence structure in unstable conditions over various surfaces.Bound.-Layer Meteor.,100,243–261.

    Zhang,Q.,T.Yao,P.Yue,L.Y.Zhang,and J.Zeng,2013: The influences of thermodynamic characteristics on aerodynamic roughness length over land surface.Acta Meteorologica Sinica,27(2),249–262.

    Zuo,J.Q.,J.P.Huang,J.M.Wang,W.Zhang,J.R.Bi,G.Y. Wang,W.J.Li,and P.J.Fu,2009:Surface turbulent flux measurements over the Loess Plateau for a semi-arid climate change study.Adv.Atmos.Sci.,24(4),679–691,doi:10.1007/ s00376-009-8188-2.

    :Yue,P.,Q.Zhang,R.Y.Wang,Y.H.Li,and S.Wang,2015:Turbulence intensity and turbulent kinetic energy parameters over a heterogeneous terrain of the Loess Plateau,China.Adv.Atmos.Sci.,32(9),1291–1302,

    10.1007/s00376-015-4258-9.

    19 November 2014;revised 02 March 2015;accepted 17 March 2015)

    ?Corresponding author:YUE Ping

    Email:jqyueping@126.com

    视频区图区小说| 自拍欧美九色日韩亚洲蝌蚪91 | tube8黄色片| 有码 亚洲区| 国产极品天堂在线| 不卡视频在线观看欧美| 特大巨黑吊av在线直播| 2021少妇久久久久久久久久久| 久久99热这里只频精品6学生| 免费观看无遮挡的男女| 深爱激情五月婷婷| 久久久久久久精品精品| 日本色播在线视频| 直男gayav资源| 在线观看三级黄色| 中文字幕av成人在线电影| 国产成人freesex在线| 亚洲人成网站在线观看播放| 中文字幕亚洲精品专区| 视频区图区小说| 亚洲精品日韩av片在线观看| 肉色欧美久久久久久久蜜桃 | av网站免费在线观看视频| 午夜免费男女啪啪视频观看| 国产综合懂色| 久久久久精品性色| 日日撸夜夜添| 日韩av在线免费看完整版不卡| 免费av观看视频| 亚洲成人一二三区av| 欧美zozozo另类| 2018国产大陆天天弄谢| 婷婷色综合大香蕉| 亚洲经典国产精华液单| 岛国毛片在线播放| 80岁老熟妇乱子伦牲交| 亚洲美女搞黄在线观看| 成人无遮挡网站| 日韩精品有码人妻一区| 亚洲欧美精品专区久久| 麻豆久久精品国产亚洲av| 五月开心婷婷网| 免费av观看视频| 丝袜喷水一区| 免费看av在线观看网站| 国产黄色视频一区二区在线观看| 王馨瑶露胸无遮挡在线观看| 噜噜噜噜噜久久久久久91| 亚洲综合色惰| 午夜福利在线在线| 国产男女超爽视频在线观看| 久久精品国产亚洲av天美| 免费黄色在线免费观看| 日韩亚洲欧美综合| av卡一久久| 亚洲欧美日韩卡通动漫| 嫩草影院精品99| 国产精品秋霞免费鲁丝片| 国产乱人视频| 国产有黄有色有爽视频| 一级爰片在线观看| 午夜爱爱视频在线播放| 毛片女人毛片| 日韩免费高清中文字幕av| 国产精品女同一区二区软件| 久久久精品欧美日韩精品| 亚洲精品国产成人久久av| 久久99精品国语久久久| 欧美xxⅹ黑人| 亚洲经典国产精华液单| 日韩在线高清观看一区二区三区| 又爽又黄a免费视频| 久久精品久久久久久久性| 亚洲av免费高清在线观看| 国精品久久久久久国模美| 啦啦啦在线观看免费高清www| 亚洲欧美日韩无卡精品| 边亲边吃奶的免费视频| 永久网站在线| 一级毛片黄色毛片免费观看视频| 可以在线观看毛片的网站| 特大巨黑吊av在线直播| 干丝袜人妻中文字幕| 男人和女人高潮做爰伦理| 亚洲欧美日韩东京热| 亚洲成色77777| 国产欧美另类精品又又久久亚洲欧美| 亚洲精品,欧美精品| 亚洲欧美精品自产自拍| a级毛片免费高清观看在线播放| 九九在线视频观看精品| 五月开心婷婷网| 免费黄色在线免费观看| 好男人视频免费观看在线| 听说在线观看完整版免费高清| 大码成人一级视频| 亚洲精品亚洲一区二区| 国产精品.久久久| 久久久久久久亚洲中文字幕| 日本一二三区视频观看| 久久午夜福利片| 性插视频无遮挡在线免费观看| 综合色丁香网| 国产黄a三级三级三级人| 国产伦精品一区二区三区视频9| 亚洲欧美精品专区久久| 久久久亚洲精品成人影院| 女人久久www免费人成看片| 肉色欧美久久久久久久蜜桃 | 少妇人妻精品综合一区二区| 大片电影免费在线观看免费| 亚洲成人精品中文字幕电影| 黄色视频在线播放观看不卡| 国产成人a∨麻豆精品| 日本爱情动作片www.在线观看| 欧美国产精品一级二级三级 | 老司机影院成人| av国产精品久久久久影院| 一级毛片电影观看| 日韩大片免费观看网站| 精品国产三级普通话版| 午夜激情福利司机影院| 国产亚洲精品久久久com| 久久人人爽人人片av| 久久精品国产亚洲网站| 久久久久久久国产电影| 丝袜喷水一区| 亚洲在久久综合| 精品熟女少妇av免费看| 成人毛片a级毛片在线播放| 亚洲精品日韩在线中文字幕| 亚洲精品日韩av片在线观看| 国产成年人精品一区二区| 又大又黄又爽视频免费| 99久久中文字幕三级久久日本| 国产亚洲午夜精品一区二区久久 | 久久精品熟女亚洲av麻豆精品| 免费大片黄手机在线观看| 交换朋友夫妻互换小说| 国产女主播在线喷水免费视频网站| 国产精品无大码| 少妇人妻久久综合中文| 午夜激情久久久久久久| 嫩草影院精品99| 亚洲av.av天堂| 久久久久久国产a免费观看| av国产精品久久久久影院| 能在线免费看毛片的网站| 日本一二三区视频观看| 国产乱来视频区| 丝瓜视频免费看黄片| 亚洲丝袜综合中文字幕| 久久精品国产亚洲av涩爱| 国产老妇女一区| 亚洲av日韩在线播放| 国产极品天堂在线| 亚洲精品,欧美精品| 精品国产乱码久久久久久小说| 成人国产麻豆网| 欧美bdsm另类| 亚洲成人精品中文字幕电影| 国产精品av视频在线免费观看| 日韩大片免费观看网站| 亚洲最大成人av| 在线观看国产h片| av在线播放精品| 男人爽女人下面视频在线观看| 中文字幕免费在线视频6| 久久久久久久久久久丰满| 国产亚洲91精品色在线| av在线蜜桃| 亚洲av二区三区四区| 一级毛片aaaaaa免费看小| 精品久久久噜噜| 日韩欧美一区视频在线观看 | 永久免费av网站大全| 身体一侧抽搐| 亚洲精品亚洲一区二区| 久久久午夜欧美精品| freevideosex欧美| 国产精品国产三级专区第一集| 免费高清在线观看视频在线观看| 亚洲精品,欧美精品| 日本wwww免费看| 国产男人的电影天堂91| 国产一区二区亚洲精品在线观看| 夫妻午夜视频| 97在线视频观看| 日韩av免费高清视频| 国产亚洲最大av| 男女边吃奶边做爰视频| 色哟哟·www| 久久久久久久午夜电影| 国产精品女同一区二区软件| 18禁在线播放成人免费| 最近中文字幕高清免费大全6| 少妇裸体淫交视频免费看高清| 亚洲精品色激情综合| 国产精品国产三级国产av玫瑰| 国产国拍精品亚洲av在线观看| 综合色av麻豆| 国产亚洲最大av| 综合色丁香网| 一个人观看的视频www高清免费观看| 亚洲婷婷狠狠爱综合网| 亚洲av免费高清在线观看| 简卡轻食公司| 日韩亚洲欧美综合| 91精品伊人久久大香线蕉| 美女内射精品一级片tv| 一级黄片播放器| 夜夜爽夜夜爽视频| 九草在线视频观看| 国产男女超爽视频在线观看| 色网站视频免费| 欧美日韩一区二区视频在线观看视频在线 | 亚洲精品久久午夜乱码| 欧美性感艳星| 国产免费视频播放在线视频| 亚洲欧美清纯卡通| 天天躁日日操中文字幕| 欧美日韩国产mv在线观看视频 | 亚洲色图综合在线观看| 在线观看免费高清a一片| 最近手机中文字幕大全| 国产精品久久久久久精品电影小说 | 亚洲av中文av极速乱| 日本与韩国留学比较| av在线观看视频网站免费| 少妇丰满av| www.色视频.com| 夫妻午夜视频| 六月丁香七月| 又爽又黄无遮挡网站| 波多野结衣巨乳人妻| 欧美精品一区二区大全| 国产淫语在线视频| 97超碰精品成人国产| 成人高潮视频无遮挡免费网站| 国产女主播在线喷水免费视频网站| 只有这里有精品99| av免费在线看不卡| 久久久久久久久久久免费av| 91午夜精品亚洲一区二区三区| 亚洲av成人精品一二三区| 国产高清国产精品国产三级 | 爱豆传媒免费全集在线观看| 久久97久久精品| 久久久久国产精品人妻一区二区| 99热这里只有精品一区| 秋霞伦理黄片| 三级经典国产精品| 欧美日韩在线观看h| 噜噜噜噜噜久久久久久91| 欧美日韩国产mv在线观看视频 | 超碰av人人做人人爽久久| 国产成人a∨麻豆精品| 久久精品夜色国产| 欧美成人午夜免费资源| 久久久欧美国产精品| 一个人看的www免费观看视频| 亚洲精品亚洲一区二区| 18禁裸乳无遮挡动漫免费视频 | 联通29元200g的流量卡| 熟女电影av网| 亚洲精品日韩在线中文字幕| 男女下面进入的视频免费午夜| 国产视频首页在线观看| 日韩 亚洲 欧美在线| 亚洲国产精品国产精品| 国产伦精品一区二区三区四那| 九草在线视频观看| 久久久久久九九精品二区国产| 日韩精品有码人妻一区| 大片电影免费在线观看免费| 国产成人免费无遮挡视频| 51国产日韩欧美| 观看免费一级毛片| 日韩在线高清观看一区二区三区| 精品国产露脸久久av麻豆| 国产精品国产三级专区第一集| 久久99热这里只有精品18| 综合色丁香网| 黄色视频在线播放观看不卡| 97在线人人人人妻| 99re6热这里在线精品视频| 日本黄大片高清| 亚洲av成人精品一二三区| 男男h啪啪无遮挡| 久久久a久久爽久久v久久| 身体一侧抽搐| 久久综合国产亚洲精品| 国产精品蜜桃在线观看| 精品国产一区二区三区久久久樱花 | 18禁裸乳无遮挡免费网站照片| 性色av一级| 国产成人精品一,二区| 免费观看av网站的网址| 久久久久精品久久久久真实原创| 少妇裸体淫交视频免费看高清| 男人和女人高潮做爰伦理| 亚洲人成网站高清观看| 亚洲精品一区蜜桃| 99热6这里只有精品| 精品少妇黑人巨大在线播放| 欧美日韩视频精品一区| 菩萨蛮人人尽说江南好唐韦庄| 色哟哟·www| 嫩草影院入口| 久热久热在线精品观看| 国产一区二区亚洲精品在线观看| 国精品久久久久久国模美| 亚洲成人久久爱视频| 国产成人精品一,二区| 大话2 男鬼变身卡| 视频区图区小说| 日韩强制内射视频| 在现免费观看毛片| 久久精品国产鲁丝片午夜精品| 不卡视频在线观看欧美| 国产永久视频网站| 日日撸夜夜添| 一区二区三区四区激情视频| 少妇熟女欧美另类| 成人欧美大片| 你懂的网址亚洲精品在线观看| 2021天堂中文幕一二区在线观| 亚洲一级一片aⅴ在线观看| 一级毛片久久久久久久久女| 久久国内精品自在自线图片| 亚洲av不卡在线观看| 免费av观看视频| 麻豆久久精品国产亚洲av| 久久精品久久久久久噜噜老黄| 日本猛色少妇xxxxx猛交久久| 最近手机中文字幕大全| 成人欧美大片| 国产精品偷伦视频观看了| av一本久久久久| 国产精品蜜桃在线观看| 欧美日韩一区二区视频在线观看视频在线 | 成人高潮视频无遮挡免费网站| 黄片wwwwww| 午夜亚洲福利在线播放| 国产精品久久久久久久久免| 一个人看视频在线观看www免费| 神马国产精品三级电影在线观看| 亚洲欧洲日产国产| 成人二区视频| 一级毛片黄色毛片免费观看视频| 亚洲欧美精品专区久久| 亚洲国产欧美人成| 少妇熟女欧美另类| 日韩欧美一区视频在线观看 | 舔av片在线| 乱系列少妇在线播放| 国产日韩欧美在线精品| 边亲边吃奶的免费视频| 国产男女内射视频| 水蜜桃什么品种好| 欧美老熟妇乱子伦牲交| 国产极品天堂在线| 少妇猛男粗大的猛烈进出视频 | 国产真实伦视频高清在线观看| 久久久久久久午夜电影| 亚洲精品成人av观看孕妇| 联通29元200g的流量卡| 国产免费一级a男人的天堂| 精品一区二区免费观看| 好男人视频免费观看在线| 国产久久久一区二区三区| 国产精品一区二区在线观看99| 精品久久久久久久久亚洲| 日本爱情动作片www.在线观看| 国产91av在线免费观看| 高清午夜精品一区二区三区| 爱豆传媒免费全集在线观看| 国产精品熟女久久久久浪| 观看免费一级毛片| 亚洲精品自拍成人| 国产成人a∨麻豆精品| 少妇的逼水好多| 免费播放大片免费观看视频在线观看| 一级av片app| 国产探花极品一区二区| 亚洲精品日韩在线中文字幕| 久久影院123| 国产美女午夜福利| 日日摸夜夜添夜夜添av毛片| 久久久亚洲精品成人影院| 又大又黄又爽视频免费| 春色校园在线视频观看| 中文字幕制服av| 老女人水多毛片| 欧美区成人在线视频| 免费不卡的大黄色大毛片视频在线观看| 青青草视频在线视频观看| 一区二区三区免费毛片| 美女视频免费永久观看网站| 中文在线观看免费www的网站| 精品国产一区二区三区久久久樱花 | 精品国产露脸久久av麻豆| 精品一区二区免费观看| 好男人视频免费观看在线| 狠狠精品人妻久久久久久综合| 亚洲成人av在线免费| 国产精品久久久久久精品电影| 国产成人精品久久久久久| 亚洲国产欧美人成| 精品亚洲乱码少妇综合久久| 国产永久视频网站| 天天躁日日操中文字幕| 精品久久国产蜜桃| 精品人妻一区二区三区麻豆| 亚洲精品,欧美精品| 午夜爱爱视频在线播放| 国产伦理片在线播放av一区| 中国三级夫妇交换| 特大巨黑吊av在线直播| 欧美区成人在线视频| 亚洲色图综合在线观看| 国产伦精品一区二区三区四那| 欧美日韩亚洲高清精品| 国产成人精品福利久久| 国产国拍精品亚洲av在线观看| 在线亚洲精品国产二区图片欧美 | 久久久久久久精品精品| 黑人高潮一二区| 国产视频内射| 亚洲电影在线观看av| 国产综合精华液| 色播亚洲综合网| 老司机影院成人| 网址你懂的国产日韩在线| 少妇被粗大猛烈的视频| 欧美3d第一页| 国产精品福利在线免费观看| 欧美xxxx性猛交bbbb| 国产精品国产av在线观看| 视频区图区小说| 最近的中文字幕免费完整| 另类亚洲欧美激情| 少妇人妻 视频| 久久久色成人| av天堂中文字幕网| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲精品成人久久久久久| 少妇裸体淫交视频免费看高清| 在线 av 中文字幕| 欧美变态另类bdsm刘玥| 亚洲真实伦在线观看| 亚洲欧美日韩卡通动漫| av黄色大香蕉| 中文天堂在线官网| 久久久精品欧美日韩精品| 国产精品蜜桃在线观看| 最近中文字幕2019免费版| 一级a做视频免费观看| 性色av一级| 亚洲经典国产精华液单| 日韩不卡一区二区三区视频在线| 毛片女人毛片| 久久亚洲国产成人精品v| 又大又黄又爽视频免费| 亚洲精品国产av成人精品| 午夜视频国产福利| 欧美日韩精品成人综合77777| 日韩免费高清中文字幕av| 人妻 亚洲 视频| eeuss影院久久| 国产亚洲精品久久久com| 小蜜桃在线观看免费完整版高清| 午夜日本视频在线| 一个人观看的视频www高清免费观看| 国产免费又黄又爽又色| 成人黄色视频免费在线看| 男男h啪啪无遮挡| 精品一区二区三卡| 亚洲自拍偷在线| 久久午夜福利片| 久久精品国产亚洲av涩爱| 一级毛片电影观看| tube8黄色片| 国产真实伦视频高清在线观看| 国产免费一区二区三区四区乱码| 大又大粗又爽又黄少妇毛片口| 日日啪夜夜撸| 美女内射精品一级片tv| 免费人成在线观看视频色| 日本与韩国留学比较| 丰满少妇做爰视频| 国产午夜精品一二区理论片| 免费播放大片免费观看视频在线观看| 好男人在线观看高清免费视频| 亚洲无线观看免费| 一级毛片 在线播放| 午夜激情福利司机影院| 网址你懂的国产日韩在线| 亚洲国产欧美人成| 亚洲美女搞黄在线观看| 国产爱豆传媒在线观看| 色播亚洲综合网| 久久这里有精品视频免费| 国产一区二区三区av在线| 一本久久精品| 国产伦在线观看视频一区| 丝袜美腿在线中文| av在线app专区| 日韩av在线免费看完整版不卡| 性插视频无遮挡在线免费观看| 可以在线观看毛片的网站| 黄片wwwwww| 亚洲成人久久爱视频| 欧美最新免费一区二区三区| 美女xxoo啪啪120秒动态图| 新久久久久国产一级毛片| 中文字幕av成人在线电影| 精品久久久久久久末码| 国产成人午夜福利电影在线观看| eeuss影院久久| 亚洲人与动物交配视频| 在线a可以看的网站| av在线天堂中文字幕| 精品久久久噜噜| 搡女人真爽免费视频火全软件| 国产黄色视频一区二区在线观看| 国产精品一区二区在线观看99| 91久久精品国产一区二区三区| 欧美高清性xxxxhd video| 婷婷色麻豆天堂久久| 日韩欧美精品免费久久| 在线精品无人区一区二区三 | 99精国产麻豆久久婷婷| 中国国产av一级| 成人美女网站在线观看视频| av播播在线观看一区| 一本一本综合久久| 99久久九九国产精品国产免费| 亚洲精品国产色婷婷电影| 国产 一区 欧美 日韩| 久久99蜜桃精品久久| 久久久色成人| 久久女婷五月综合色啪小说 | 男人和女人高潮做爰伦理| 白带黄色成豆腐渣| 亚洲av电影在线观看一区二区三区 | 亚洲在线观看片| 少妇人妻 视频| 久久精品久久久久久久性| 日韩一本色道免费dvd| 国产精品久久久久久av不卡| 80岁老熟妇乱子伦牲交| 亚洲一级一片aⅴ在线观看| 中文字幕亚洲精品专区| 亚洲精品久久久久久婷婷小说| 亚洲综合精品二区| 久久鲁丝午夜福利片| av一本久久久久| 午夜精品一区二区三区免费看| 国产精品秋霞免费鲁丝片| 免费看av在线观看网站| 亚洲精品亚洲一区二区| 热99国产精品久久久久久7| 成年版毛片免费区| 国产综合精华液| 国产在线男女| 一本色道久久久久久精品综合| 别揉我奶头 嗯啊视频| 哪个播放器可以免费观看大片| 99热6这里只有精品| 国产爱豆传媒在线观看| 日本欧美国产在线视频| 久久久久久久久久人人人人人人| 日本爱情动作片www.在线观看| 97超碰精品成人国产| 日韩av免费高清视频| 99热这里只有是精品50| 国产成人91sexporn| 亚洲久久久久久中文字幕| av免费观看日本| a级毛色黄片| 午夜日本视频在线| 美女高潮的动态| 亚洲天堂av无毛| 亚洲精品第二区| 久久热精品热| 麻豆乱淫一区二区| 久久久久精品久久久久真实原创| 久久精品国产鲁丝片午夜精品| 看非洲黑人一级黄片| 中文字幕免费在线视频6| 日韩制服骚丝袜av| 亚洲精品一区蜜桃| 国产成人91sexporn| videos熟女内射| 我的女老师完整版在线观看| 高清在线视频一区二区三区| 免费av毛片视频| 亚洲av不卡在线观看| 美女主播在线视频| 蜜桃亚洲精品一区二区三区| 亚洲自拍偷在线| 国产精品久久久久久精品古装| 91aial.com中文字幕在线观看| 国产69精品久久久久777片| 中文欧美无线码| 蜜桃亚洲精品一区二区三区| 成人黄色视频免费在线看| 国产精品久久久久久精品古装| 国产精品成人在线| 亚洲成人一二三区av| 最新中文字幕久久久久| 内地一区二区视频在线| 搡女人真爽免费视频火全软件| 中文在线观看免费www的网站|