• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Assimilating AMSU-A Radiance Data with the WRF Hybrid En3DVAR System for Track Predictions of Typhoon Megi(2010)

    2015-06-09 21:30:01SHENFeifeiandMINJinzhong
    Advances in Atmospheric Sciences 2015年9期

    SHEN Feifeiand MIN Jinzhong

    Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science&Technology,Nanjing 210044

    Assimilating AMSU-A Radiance Data with the WRF Hybrid En3DVAR System for Track Predictions of Typhoon Megi(2010)

    SHEN Feifei?and MIN Jinzhong

    Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science&Technology,Nanjing 210044

    The impact of assimilating radiances from the Advanced Microwave Sounding Unit-A(AMSU-A)on the track prediction of Typhoon Megi(2010)was studied using the Weather Research and Forecasting(WRF)model and a hybrid ensemble threedimensional variational(En3DVAR)data assimilation(DA)system.The influences of tuning the length scale and variance scale factors related to the static background error covariance(BEC)on the track forecast of the typhoon were studied. The results show that,in typhoon radiance data assimilation,a moderate length scale factor improves the prediction of the typhoon track.The assimilation of AMSU-A radiances using 3DVAR had a slight positive impact on track forecasts,even when the static BEC was carefully tuned to optimize its performance.When the hybrid DA was employed,the track forecast was significantly improved,especially for the sharp northward turn after crossing the Philippines,with the flow-dependent ensemble covariance.The flow-dependent BEC can be estimated by the hybrid DA and was capable of adjusting the position of the typhoon systematically.The impacts of the typhoon-specific BEC derived from ensemble forecasts were revealed by comparing the analysis increments and forecasts generated by the hybrid DA and 3DVAR.Additionally,for 24 h forecasts, the hybrid DA experiment with use of the full flow-dependent background error substantially outperformed 3DVAR in terms of the horizontal winds and temperature in the lower and mid-troposphere and for moisture at all levels.

    data assimilation,radiance,observation operator

    1.Introduction

    The accuracy of tropical cyclone(TC)track prediction is one of the most important tasks in weather forecasting,crucial for saving lives and property.Over the past two decades, significant improvements have been made in TC track forecasts due to the increased use of remote sensing data,other advanced observations,and improved numerical weather prediction(NWP)models(Houze et al.,2007;Singh et al.,2008; Rappaport et al.,2009;Cangialosi and Franklin,2011).However,great challenges remain,especially for recurving tracks (George and Gray,1977;Thu and Krishnamurti,1992;Holland and Wang,1995;Zhang et al.,2013b),because a recurving track of a TC involves more uncertainties than an nonrecurving one.As one of the most important types of observations for NWP,satellite radiance data can provide valuable temperature and humidity information,especially over areas where conventional observations are limited(Derber and Wu, 1998;English et al.,2000;McNally et al.,2000;Bouttier and Kelly,2001;Le Marshall et al.,2006;McNally et al.,2006). Satellite radiances can be assimilated into NWP models with retrieval assimilation or direct assimilation(DA)methods. With the retrieval assimilation method,the retrieved temperature and humidity information from radiances using physical or statistical retrieval methods(Goldberg,1999)are applied in a similar way as with conventional data.The DA method involves assimilating radiance observations directly into NWP models,and is considered superior to retrieval assimilation because the observational error statistics are more accurate(Eyre,1989;Andersson et al.,1994;Derber and Wu, 1998;English et al.,2000;Bouttier and Kelly,2001).Moreover,its rapid,real-time processing without the retrieval steps is an advantage for operational data usage,enabling the early introduction of the radiance data into operational systems.

    For most operational centers,a three-dimensional variational(3DVAR;e.g.,Parrish and Derber,1992;Lorenc et al., 2000;Barker et al.,2004)DA scheme is employed to obtain the initial conditions.In 3DVAR,observational information is spread to model grid points to correct the background field with the assumption of an isotropic,nearly homogeneous, static,time-invariant with flow-independent background error covariances(BECs).However,these assumptions cannot generally be used for TC assimilation applications due to thestrong vortical and nongeostrophic motions of TCs(Hamill and Snyder,2000);the true flow-dependent nature of the background errors is not captured.Recently,several studies have demonstrated that forecasts from ensemble-based DA can produce comparable or better forecasts than those from 3DVAR in a variety of weather applications(e.g.,Li and Liu, 2009;Torn and Hakim,2009;Hamill et al.,2011;Weng et al.,2011;Zhang et al.,2011;Dong and Xue,2012).

    Ensemble Kalman filter(EnKF)methods benefit from the use of flow-dependent BEC but suffer from rank deficiency due to the smaller ensemble members used.The covariance localization method is often adopted to alleviate this problem.The variational technique is quite efficient and able to process complex nonlinear observations and apply physical constraints,but it is lacking in terms of the inclusion of flow-dependent BECs.To reconcile the advantages and disadvantages of the variational and EnKF methods,increasing effort is being made to hybridize the two approaches,rather than settling for one particular method.A hybrid DA approach that couples the ensemble DA technique into the variational framework(e.g.,Hamill and Snyder,2000;Lorenc, 2003;Wang et al.,2008a;Zhang et al.,2009;Wang,2010; Schwartz et al.,2013)has shown great promise for weather applications.Many previous studies have shown that hybrid approaches yield comparable or better forecasts than those based purely on 3DVAR that do not incorporate ensemble BECs,and can outperform forecasts initialized by standalone EnKFs(e.g.,Buehner,2005;Buehner et al.,2010;Hamill et al.,2011;Wang,2011;Li et al.,2012;Zhang and Zhang, 2012;Schwartz et al.,2013;Wang et al.,2013;Zhang et al., 2013a;Pan et al.,2014;Schwartz and Liu,2014).

    The hybrid approach is popular for the following three reasons.First,the hybrid technique can be easily implemented in pre-existing variational DA frameworks(e.g., Wang et al.,2007b;Zhang et al.,2013a;Pan et al.,2014). Second,with a model-space covariance localization technique,the assimilation of non-local observations,such as satellite radiance data,may be more effective in hybrid frameworks than in EnKFs that use observation-space localization(Campbell et al.,2010).And third,the hybrid method can save computational cost by using the ensembles at a coarser resolution than deterministic hybrid analysis(e.g., Rainwater and Hunt,2013),and by producing similar results as EnKFs but with a smaller ensemble compared to the traditional EnKF.

    However,to the best of our knowledge,no study has yet been published that applies the Weather Research and Forecasting(WRF)Hybrid En3DVAR DA to the assimilation of radiance data from the Advanced Microwave Sounding Unit-A(AMSU-A)for improving TC track prediction.Accordingly,this preliminary study examines the potential benefits of this computationally efficient procedure for improving TC track forecasting when assimilating AMSU-A radiance data.

    More specifically,this study investigates the impacts of DA on TC track forecasting within the WRF Hybrid DA system(Barker et al.,2012),similar to in Wang(2011).However,this work differs from that of Wang(2011)in several important ways.First,this work investigates the effect of assimilating AMSU-A radiance observations on track predictions,while Wang(2011)did not assimilate any satellite radiance data.Second,in this study,each ensemble member is updated by running the hybrid analysis system multiple times with perturbed observations,whereas Wang(2011)used an ensemble transformation Kalman filter(ETKF)to generate the analysis ensemble.Moreover,we systematically examined the influence of the static BEC related length scale factor and variance scale factor on the prediction of the track of a typhoon for radiance DA.

    The remainder of this paper is organized as follows.In section 2,we provide a brief introduction to the WRF Hybrid DA system system,together with aspects on radiance data assimilation.An overview of Typhoon Megi(2010)and the experimental settings are described in section 3.Section 4 presents the main results.Conclusions and further discussion are provided in the last section.

    2.The WRF Hybrid En3DVAR DA system and radiance data assimilation

    2.1.The WRF Hybrid En3DVAR DA system

    2.2.AMSU-A radiance assimilation procedures

    The AMSU-A 1b radiance data are ingested into the WRF 3DVAR and WRF Hybrid DA system in this study.AMSU-A is a line-scanned microwave sensor with 15 sensitive channels,each with a 2343 km swath width.It measures 30 pixels in each swath,with an approximate 48 km diameter footprint at nadir.In this study,a subset of AMSU-A channels is chosen to be assimilated.Channels 1–2 and 15 are located in window regions and are thus not assimilated since they are sensitive to uncertain surface parameters,cloud and precipitation.Channels 3–14 are sensitive to temperature,among which only channels 5–7 are assimilated because they peak under the model top(20 hPa).

    The Community Radiative Transfer Model(CRTM;Han et al.,2006;Liu and Weng,2006)is coupled within the WRFDA system(Barker et al.,2012)described in section 2.1 as the observation operator for AMSU-A radiance.This is then used to calculate the simulated radiances with the temperature and moisture information from model states.Radiance data over mixed surfaces and observations with large scan angles are rejected.A radiance observation with large bias(the bias-corrected observation minus the CRTM modeled radiance),exceeding either 15 K or 5r is rejected,where r is the specified observation error standard deviation for brightness temperature.Following Liu et al.(2012),we use the full-sky AMSU-Aradiancesin thisstudy withoutany special cloud detection procedure.Better results for track forecasts are obtained when the thinning mesh is set to roughly 6–8 times the grid resolution for the Typhoon Megi(2010) case.Thus,we determine a 120 km thinning mesh as the first attempt to study assimilating AMSU-A radiances using hybrid methods.We correct the systematic biases from observed radiances before assimilation using the same method as in Liu et al.(2012)and Xu et al.(2013).The radiance bias is expressed inside a modified forward operator with a linear combination of several predictors(the scan position,the square and cube of the scan position,the 1000–300 hPa and 200–50 hPa layer thicknesses,surface skin temperature,and total column water vapor)and their coefficients.The coefficients are updated via a variational minimization process by including them in the cost function[Eq.(2)]as control variables(Derber and Wu,1998;Aulign′e et al.,2007;Dee and Uppala,2009).

    3.Case description and experimental design

    3.1.Overview of Typhoon Megi(2010)

    Super Typhoon Megi(2010)—one of the most destructive TCs over the western North Pacific and South China Sea in 2010—was chosen for our experiments in this study.Megi (2010)was identified as a tropical disturbance by the Joint Typhoon Warning Center(JTWC)when it was about 600 km to the east of the Philippines at 0000 UTC 12 October 2010.Megi(2010)then developed quickly that same day. The JTWC classified the vortex as a tropical depression before 0900 UTC 13 October.Then,later,on 14 October,the Japan Meteorological Agency(JMA)upgraded Megi(2010) to a severe tropical storm and the JTWC upgraded it to a category-1 typhoon.On 15 October,Megi(2010)moved northwestwards and gradually intensified into a typhoon over the Pacific to the east of the Philippines.As shown in Figs.1 and 2,Megi(2010)initially moved northwestward,and then turned west-southwestward.It experienced a rapid intensification during 16–18 October,reaching its peak intensity at 1200 UTC 17 October,with minimum sea level pressure (MSLP)of 895 hPa and maximum surface wind(MSW)of up to 72 m s?1.Megi(2010)made landfall over Luzon Island as a super typhoon at 0425 UTC 18 October and became weaker after crossing the island.After that,it re-intensified rapidly from category-2 to category-4(MSLP:935 hPa)earlyon 19 October.At 0000 UTC 20 October,Megi(2010)experienced a sharp turn from westward to northward,an unusual track change that was not forecast by any of the leading operational centers.On 23 October,it made a second landfall as a tropical storm at Zhangpu in Fujian Province,and finally dissipated gradually the next day.

    3.2.WRF model configuration

    Table 1.List of experiments.

    The WRF model(Skamarock et al.,2008)was used to conduct all the experiments.WRF is a three-dimensional, compressible,non-hydrostatic atmospheric model using terrain-following,mass-based sigma coordinate levels;its governing equations are written in flux form.All experiments were conducted over the single domain with a 15 km horizontal grid spacing.There were 450×400 grid points horizontally and 43 vertical levels with the model top at 20 hPa.The following parameterizations were used:the WRF Single-Moment6-Class scheme(Hong etal.,2004);the Kain–Fritsch cumulus parameterization(Kain and Fritsch, 1990,1993;Kain,2004)with a modified trigger function (Ma and Tan,2009);the Yonsei University(YSU)boundary layer scheme(Noh et al.,2003);the 5-layer thermal diffusion model for land surface processes scheme;the RRTM longwave radiation scheme(Mlawer et al.,1997);and the MM5 shortwave radiation scheme(Dudhia,1989).

    3.3.Data assimilation setup

    Several initial experiments were configured to compare the fundamentaldifference in using flow-dependentand static BEC and to evaluate the impact of DA when assimilating AMSU-A data on the subsequent forecast of Typhoon Megi (2010).Table 1 summarizes the design of the experiments.

    To reduce spurious correlations caused by sampling error due to the limited ensemble member,a 750 km horizontal localization radius was applied to the ensemble covariance, and a standard vertical localization described in Wang et al. [2014,Eq.(12)]was applied.In all the DA experiments,all observations within±1.5 h were assumed to be valid at the analysis time.The static BEC statistics in the 3DVAR system were derived from the differences between the 24 h and 12 h forecasts valid at the same time,using the National Meteorological Center(NMC)method(Parrish and Derber,1992). These forecasts were generated using the WRF model on the same model grid for each day of September 2010,usingthe GFS(Global Forecast System)analyses as the initial and boundary conditions.The static BEC matrix was obtained using the WRFDA utility called CV5(Barker et al.,2012)for five control variables(stream function,unbalanced temperature,surface pressure and velocity potential,and relative humidity).Allexperiments were initialized at1800 UTC 17 October 2010(Fig.3),using the NCEP operational 0.5?×0.5?GFS analysis data as the initial and lateral boundary conditions.With the initial and lateral boundary conditions at this time,the initial ensemble was generated by taking Gaussian random draws with the static BECs and zero mean(Torn et al.,2006)and adding the perturbations to the GFS analysis. The deterministic and ensemble fields produced at 1800 UTC 17 October initialized the 6-h WRF forecasts,which served as backgrounds for the first 3DVAR,and hybrid analyses at 0000 UTC 18 October.A 120 h deterministic forecast was separately initialized at 0000 UTC 18 October by the analysis with 3DVAR and the hybrid con figurations.The 6 h cycling forecast-analysis experiments were carried out for all experiments until 0000 UTC 23 October.For the following cycles, the background was the previous cycle’s 6 h WRF forecast (initialized from the hybrid mean analysis).For those cycles, 24 h deterministic forecasts were carried out to evaluate the impact of cycling assimilation on forecasts.Digital filter initialization(DFI;Lynch and Huang,1992;Huang and Lynch, 1993)using a twice-DFI scheme and the Dolph filter(Lynch, 1997)with a 2 h backward integration were applied to all 120 h forecasts.Each ensemble member was updated by running the hybrid analysis system multiple times with perturbed observations.The covariance relaxation method of Zhang et al. (2004)wasemployed to maintain ensemble spread,where the final in flated ensemble perturbation is a weighted average of prior perturbation(as the background ensemble)and posterior perturbation(the ensemble analysis).In this study,the weight for the posterior perturbation was set to 0.8.

    4.Results and discussions

    In this section,we evaluate the analyses and forecasts of each of the DA experiments.The model predictions of Megi(2010)’s track were verified against the best-track analyses of the China Meteorological Administration(CMA)(Yu et al.,2007).Aspects of the ensemble spread performance were also examined since the key with ensemble-based DA is the use of an ensemble to estimate the flow-dependent forecast error.The differences in the analyses increments from 3DVAR and the hybrid DA are further diagnosed to evaluate how these differences contribute to the difference in the track forecasts.RMSE profiles of the 24-h forecasts are also displayed when using a set of conventional observations as reference.

    4.1.Sensitivity to the length scale

    4.2.Ensemble performance

    Since a high-quality prior ensemble is the key to successful hybrid analyses,it is important to evaluate the ensemble performance.Figure 6 shows the ensemble spread of windand temperature on the 19th model level after the 6 h forecast valid at 0000 UTC 18 October,when Typhoon Megi (2010)intensified.The 6 h forecast ensemble directly provides the flow-dependent background error in the hybrid system.Since there are more forecast uncertainties where the spread is large,observations in areas with large ensemble spread are most likely to have a large impact in the hybrid system.Likewise,observations are less likely to influence the analysesin areaswhere the spread issmaller.The patterns reflecting the features of the observation locations and meteo-rological conditions can be seen in Figs.6a and b.The spread was large over the Tibetan Plateau in the west,where few observations were available to constrain the model.Conversely, spread was smallest over Eastern China,where observations were plentiful.A local maximum of spread was obvious for wind and potential temperature in the northeast of the Philippines,where Typhoon Megi(2010)moved,reflecting the forecast uncertainty for a TC.The ensemble spread also suggests larger forecast uncertainties around Megi(2010)than in its environment.

    The ensemble spread can represent the ensemble mean forecast error in a well-calibrated system(Houtekamer et al., 2005).The forecast RMSEs,ensemble spread,and the static background error from the WRFDA(Wang et al.,2014)using the NMC method and the WRFDAmodeling are shown in Figs.7a and b.The forecast RMSEs were obtained by comparing the forecast ensemble mean with the GFS analyses. The static background error from the WRFDA modeling was estimated based on the ensemble perturbations using Gaussian random draws with the static BECs and zero mean.The ensemble mean RMSEs of wind were less than 3 m s?1and the temperature was less than 1 K at most levels.For winds, the static background error from the WRFDA modeling was largely underestimated,consistent with the results in Wang et al.(2014);whereas,the ensemble spread was much closer to the RMSEs compared to the static background error.For temperature,both the ensemble spread and the static background error were greater than the corresponding RMSEs between model level 34 and model level 41.For other levels, the ensemble spread was much closer to the RMSEs,while the static background error underestimated the forecast errors.Overall,the ensembles were reasonably well calibrated. The final background error from the hybrid system,as a mix of the flow-dependent and the static background error,plays an important role in the data assimilation procedure.

    4.3.TC track forecasts

    4.4.Forecast veri fication against conventional observations

    5.Summary and conclusions

    In this study,several experiments involving the assimilation of AMSU-A radiance data for Super Typhoon Megi (2010)were performed to investigate the effect of the hybrid DA approach on TC track forecasts.Instead of using an EnKF to update the ensemble,as in earlier studies,in this study each ensemble member was updated by running the hybrid analysis system multiple times with perturbed observations.Model predictions of Megi(2010)’s track were verified against the best-track analyses of the CMA.Further diagnostics were conducted to evaluate how the analyses increment differences contributed to the subsequent forecast differences.Aspects of the flow-dependent error covariance represented by the ensemble spread from the ensemble forecasts were examined.The 24 h forecasts were also verified against a set of conventional observations.The main findings from the experiments can be summarized as follows:

    (1)The tuning of length scale factor is a necessary task to optimize the performance of radiance data assimilation,even with the background error calculated locally using the NMC method.In the case of Typhoon Megi(2010),a moderate length scale factor with roughly 50%of the default value improved the prediction of the typhoon track,but how the forecast error depended on the variance scale factor was more mixed.

    (3)The increments for both the fields around the typhoon and the large-scale environment produced by the hybrid DA and 3DVAR were different.The hybrid DA is capable of systematically adjusting the position of the typhoon with the typhoon-specific BEC used.

    (4)For 24 h forecasts,the hybrid DA experiment with the use of full flow-dependent background error substantially outperformed 3DVAR in terms of the horizontal winds and temperature in the lower and mid-troposphere and for moisture at all levels,though we tuned the static BEC to optimize its performance.

    The findings of this study are encouraging and suggest that hybrid DA can initialize higher quality forecasts than the 3DVAR system.Given that any improvements in the typhoon intensity forecast were not obvious due to the limitations of NWP modeling related to aspects such as dynamics, physical parameterizations,and spatial resolution,only track forecasts are emphasized in this paper.Further investigations into the use of the hybrid radiance data assimilation system for improving typhoon intensity forecasts are ongoing.In this study,we used just one outer loop during the variational minimization process.In the future,we intend to focus on employing multiple outer loops in 3DVAR frameworks and retuning the scale length for the 3DVAR recursive filter to assess the relative contributions of the static and ensemble BECs.To understand the relative advantages and disadvantages of different techniques in typhoon forecasts,direct and thorough comparisons with other DA techniques such as the EnKF,4DVAR,and En-4DVAR are also planned.

    Acknowledgements.This research was primarily supported by the National Fundamental 973 Research Program of China (Grant No.OPPAC-2013CB430102),Natural Science Foundation of China(41375025),and the Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutions.The SGI Altix3700 BX2 supercomputers at Nanjing University of Information Science&Technology were used.

    REFERENCES

    Andersson,E.,J.Pailleux,J.N.Thepaut,J.Eyre,A.P.McNally, G.A.Kelly,and P.Courtier,1994:Use of cloud cleared radiances in three-four dimensional variation data assimilation. Quart.J.Roy.Meteor.Soc.,120,627–653.

    Aulign′e,T.,A.P.McNally,and D.P.Dee,2007:Adaptive bias correction for satellite data in a numerical weather prediction system.Quart.J.Roy.Meteor.Soc.,133,631–642.

    Barker,D.M.,W.Huang,Y.-R.Guo,A.J.Bourgeois,and Q.N. Xiao,2004:A three-dimensional variational data assimilation system for MM5:Implementation and initial results.Mon. Wea.Rev.,132,897–914.

    Barker,D.M.,and Coauthors,2012:The Weather Research and Forecasting(WRF)model’s community variational/ensemble data assimilation system:WRFDA.Bull.Amer.Meteor.Soc.,93,831–843.

    Bouttier,F.,and G.Kelly,2001:Observing-system experiments in the ECMWF 4D-Var data assimilation system.Quart.J.Roy. Meteor.Soc.,127,1469–1488.

    Buehner,M.,2005:Ensemble-derived stationary and flowdependent background error covariances:Evaluation in a quasi-operational NWP setting.Quart.J.Roy.Meteor.Soc.,131,1013–1043.

    Buehner,M.,P.L.Houtekamer,C.Charette,H.L.Mitchell,and B.He,2010:Intercomparison of variational data assimilation and the ensemble Kalman filter for global deterministic NWP. Part II:One-month experiments with real observations.Mon. Wea.Rev.,138,1567–1586.

    Campbell,W.F.,C.H.Bishop,and D.Hodyss,2010:Vertical covariance localization for satellite radiances in ensemble Kalman filters.Mon.Wea.Rev.,138,282–290.

    Cangialosi,J.P.,and J.L.Franklin,2011:2010 National Hurricane Center Forecast Verification Report.National Hurricane Center,77 pp.

    Daley,R.,1991:Atmospheric Data Analysis.Cambridge University Press,457 pp.

    Dee,D.P.,and S.M.Uppala,2009:Variational bias correction of satellite radiance data in the ERA-Interim reanalysis.Quart. J.Roy.Meteor.Soc.,135,1835–1841.

    Derber,J.C.,and W.S.Wu,1998:The use of TOVS cloud-cleared radiances in the NCEP SSI analysis system.Mon.Wea.Rev.,126,2287–2299.

    Dong,J.,and M.Xue,2012:Coastal WSR-88D radar data assimilation with ensemble Kalman filterforanalysis and forecastof Hurricane Ike(2008).Quart.J.Roy.Meteor.Soc.,139,467–487.

    Dudhia,J.,1989:Numerical study of convection observed during the winter monsoon experiment using a mesoscale,twodimensional model.J.Atmos.Sci.,46,3077–3107.

    English,S.J.,R.J.Renshaw,P.C.Dibben,A.J.Smith,P.J.Rayer, C.Poulsen,F.W.Saunders,and J.R.Eyre,2000:A comparison of the impact of TOVS and ATOVS satellite sounding data on the accuracy of numerical weather forecasts.Quart. J.Roy.Meteor.Soc.,126,2911–2931.

    Etherton,B.J.,and C.H.Bishop,2004:Resilience of hybrid ensemble/3DVAR analysis schemes to model error and ensemble covariance error.Mon.Wea.Rev.,132,1065–1080.

    Eyre,J.R.,1989:Inversion of cloudy satellite sounding radiances by nonlinear optimal estimation.I:Theory and simulation for TOVS.Quart.J.Roy.Meteor.Soc.,115,1001–1026.

    George,J.E.,and W.M.Gray,1977:Tropical cyclone recurvature and nonrecurvature as related to surrounding wind-height fields.J.Appl.Meteor.,16,34–42.

    Goldberg,M.D.,1999:Generation of retrieval products from AMSU-A:Methodology and validation.Proceedings of the 10th International TOVS Study Conference,Boulder,Colorado,219–229.

    Gu,J.F.,Q.N.Xiao,Y.-H.Kuo,D.M.Barker,J.S.Xue,and X. X.Ma,2005:Assimilation and simulation of Typhoon Rusa (2002)using the WRF system.Adv.Atmos.Sci.,22,415–427, doi:10.1007/BF02918755.

    Guo,Y.-R.,H.-C.Lin,X.X.Ma,X.-Y.Huang,C.T.Terng,and Y.-H.Kuo,2006:Impact of WRF-Var(3DVar)background error statistics on typhoon analysis and forecast.7th WRF Users’Workshop,Boulder,CO,NCAR,19–22 June 2006.

    Hamill,T.M.,and C.Snyder,2000:A hybrid ensemble Kalman filter-3D variational analysis scheme.Mon.Wea.Rev.,128, 2905–2919.

    Hamill,T.M.,J.S.Whitaker,D.T.Kleist,M.Fiorino,and S.G. Benjamin,2011:Predictions of 2010’s tropical cyclones using the GFS and ensemble-based data assimilation methods. Mon.Wea.Rev.,139,3243–3247.

    Han,Y.,P.V.Delst,Q.H.Liu,F.Z.Weng,B.H.Yan,R.Treadon, and J.Derber,2006:JCSDA Community Radiative Transfer Model(CRTM)—Version 1.NOAA Tech.Rep.NESDIS,No. 122,33 pp.

    Holland,G.J.,and Y.Q.Wang,1995:Baroclinic dynamics of simulated tropical cyclone recurvature.J.Atmos.Sci.,52,410–426.

    Hong,S.-Y.,J.Dudhia,and S.-H.Chen,2004:A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation.Mon.Wea.Rev.,132,103–120.

    Houtekamer,P.L.,H.L.Mitchell,G.Pellerin,M.Buehner,M. Charron,L.Spacek,and B.Hansen,2005:Atmospheric data assimilation with an ensemble Kalman filter:Results with real observations.Mon.Wea.Rev.,133,604–620.

    Houze,R.A.Jr.,S.S.Chen,B.F.Smull,W.-C.Lee,and M.M. Bell,2007:Hurricane intensity and eyewall replacement.Science,315,1235–1239.

    Huang,X.-Y.,and P.Lynch,1993:Diabatic digital filter initialization:Application to the HIRLAM model.Mon.Wea.Rev.,121,589–603.

    Kain,J.S.,2004:The Kain-Fritsch convective parameterization: An update.J.Appl.Meteor.,43,170–181.

    Kain,J.S.,and J.M.Fritsch,1990:A one-dimensional entraining/detraining plume model and its application in convective parameterization.J.Atmos.Sci.,47,2784–2802.

    Kain,J.S.,and J.M.Fritsch,1993:Convective parameterization for mesoscale models:The Kain–Fritsch scheme.The Representation of Cumulus Convection in Numerical Models,Vol. 24,Meteor.Monogr.,Amer.Meteor.Soc.,165–170.

    Kieu,C.,N.M.Truong,H.T.Mai,and T.Ngo-Duc,2012:Sensitivity of the track and intensity forecasts of Typhoon Megi (2010)to satellite-derived atmospheric motion vectors with the ensemble Kalman filter.J.Atmos.Oceanic Technol.,29, 1794–1810.

    Le Marshall,J.,and Coauthors,2006:Improving global analysis and forecasting with AIRS.Bull.Amer.Meteor.Soc.,87, 891–894.

    Lee,M.S.,D.M.Barker,and Y.-H.Kuo,2006:Background error statistics using WRF ensembles generated by randomized control variables.Journal of the Korean Meteorological Society,42,153–167.

    Li,J.,and H.Liu,2009:Improved hurricane track and intensity forecast using single field-of-view advanced IR sounding measurements.Geophys.Res.Lett.,36,L11813,doi: 10.1029/2009GL038285.

    Li,Y.,X.Wang,and M.Xue,2012:Assimilation of radar radial velocity data with the WRF ensemble-3DVAR hybrid system for the prediction of Hurricane Ike(2008).Mon.Wea.Rev.,140,3507–3524.

    Liu,Q.,and F.Weng,2006:Advanced doubling-adding method for radiative transfer in planetary atmosphere.J.Atmos.Sci.,63,3459–3465.

    Liu,Z.,C.S.Schwartz,C.Snyder,and S.Y.Ha,2012:Impact of assimilating AMSU-A radiances on forecasts of 2008 Atlantic tropical cyclones initialized with a limited-area ensemble Kalman filter.Mon.Wea.Rev.,140,4017–4034.

    Lorenc,A.C.,2003:The potential of the ensemble Kalman filter for NWP—A comparison with 4D-VAR.Quart.J.Roy.Meteor.Soc.,129,3183–3203.

    Lorenc,A.C.,and Coauthors,2000:The Met.Office global threedimensional variational data assimilation scheme.Quart.J. Roy.Meteor.Soc.,126,2991–3012.

    Lynch,P.,1997:The Dolph-Chebyshev window:A simple optimal filter.Mon.Wea.Rev.,125,655–660.

    Lynch,P.,and X.-Y.Huang,1992:Initialization of the HIRLAM model using a digital filter.Mon.Wea.Rev.,120,1019–1034.

    Ma,L.-M.,and Z.-M.Tan,2009:Improving the behaviorofthe cumulus parameterization for tropical cyclone prediction:convection trigger.Atmos.Res.,92,190–211.

    McNally,A.P.,J.C.Derber,W.Wu,and B.B.Katz,2000:The use of TOVS level-1b radiances in the NCEP SSI analysis system. Quart.J.Roy.Meteor.Soc.,126,689–724.

    McNally,A.P.,P.D.Watts,J.A.Smith,R.Engelen,G.A.Kelly, J.N.Thepaut,and M.Matricardi,2006:The assimilation of AIRS radiance data at ECMWF.Quart.J.Roy.Meteor.Soc.,132,935–957.

    Mlawer,E.J.,S.J.Taubman,P.D.Brown,M.J.Iacono,and S.A. Clough,1997:Radiative transfer for inhomogeneous atmospheres:RRTM,a validated correlated-k model for the longwave.J.Geophys.Res.,102,16663–16682.

    Noh,Y.,W.G.Cheon,S.Y.Hong,and S.Raasch,2003:Improvement of the K-profile model for the planetary boundary layer based on large eddy simulation data.Bound.-Layer Meteor.,107,401–427.

    Pan,Y.,K.Zhu,M.Xue,X.Wang,J.S.Whitaker,S.G.Benjamin,S.S.Weygandt,and M.Hu,2014:A regional GSI-based EnKF-variational hybrid data assimilation system for the Rapid Refresh configuration:Results with a single,reduced resolution.Mon.Wea.Rev.(in press)

    Parrish,D.F.,and J.C.Derber,1992:The National Meteorological Center’s spectral statistical-interpolation analysis system. Mon.Wea.Rev.,120,1747–1763.

    Rainwater,S.,and B.Hunt,2013:Mixed resolution ensemble data assimilation.Mon.Wea.Rev.,141,3007–3021.

    Rappaport,E.N.,and Coauthors,2009:Advances and challenges at the National Hurricane Center.Wea.Forecasting,24,395–419.

    Schwartz,C.S.,and Z.Liu,2014:Convection-permitting forecasts initialized with continuously cycling limited-area 3DVAR, ensemble Kalman filter,and“hybrid”variational–ensemble data assimilation systems.Mon.Wea.Rev.,142,716–738.

    Schwartz,C.S.,Z.Liu,X.-Y.Huang,Y.-H.Kuo,and C.-T. Fong,2013:Comparing limited-area 3DVAR and hybrid variational-ensemble data assimilation methods for typhoon track forecasts:Sensitivity to outer loops and vortex relocation.Mon.Wea.Rev.,141,4350–4372.

    Singh,R.,P.K.Pal,C.M.Kishtawal,and P.C.Joshi,2008:The impact of variational assimilation of SSM/I and QuikSCAT satellite observations on the numerical simulation of Indian Ocean tropical cyclones.Wea.Forecasting,23,460–476.

    Skamarock,W.C.,and Coauthors,2008:A description of the advanced research WRF version 3.NCAR Tech.Note NCAR/ TN-475+STR,113 pp.

    Thu,T.V.,and T.N.Krishnamurti,1992:Vortex initialization for typhoon track prediction.Meteor.Atmos.Phys.,47,117–126.

    Torn,R.D.,G.J.Hakim,and C.Snyder,2006:Boundary conditions for a limited-area ensemble Kalman filter.Mon.Wea. Rev.,134,2490–2502.

    Torn,R.D.,and G.J.Hakim,2009:Initial condition sensitivity of western-Pacific extratropical transitions determined using ensemble-based sensitivity analysis.Mon.Wea.Rev.,137, 3388–3406.

    Wang,H.L.,X.-Y.Huang,J.Z.Sun,D.M.Xu,M.Zhang,S.Y. Fan,and J.Q.Zhong,2014:Inhomogeneous background error modeling for WRF-Var using the NMC method.Journal of Applied Meteorology and Climatology,53,2287–2309.

    Wang,X.,2010:Incorporating ensemble covariance in the gridpoint statistical interpolation(GSI)variational minimization: A mathematical framework.Mon.Wea.Rev.,138,2990–2995.

    Wang,X.,2011:Application of the WRF Hybrid ETKF-3DVAR data assimilation system for hurricane track forecasts.Wea. Forecasting,26,868–884.

    Wang,X.,C.Snyder,and T.M.Hamill,2007b:On the theoretical equivalence of differently proposed ensemble/3D-Var hybrid analysis schemes.Mon.Wea.Rev.,135,222–227.

    Wang,X.,T.M.Hamill,J.S.Whitaker,and C.H.Bishop,2007a: A comparison of hybrid ensemble transform Kalman filter-OI and ensemble square-root filter analysis schemes.Mon.Wea. Rev.,135,1055–1076.

    Wang,X.G.,D.Barker,C.Snyder,and T.M.Hamill,2008a:A hybrid ETKF–3DVAR data assimilation scheme for the WRF model.Part I:Observing system simulation experiment.Mon. Wea.Rev.,136,5116–5131.

    Wang,X.G.,D.M.Barker,C.Snyder,and T.M.Hamill,2008b:A hybrid ETKF–3DVAR data assimilation scheme for the WRF model.PartII:Realobservation experiments.Mon.Wea.Rev.,136,5132–5147.

    Wang,X.,D.F.Parrish,D.T.Kleist,and J.S.Whitaker,2013: GSI 3DVAR-based ensemble-variational hybrid data assimilation for NCEP Global Forecast System:Single-resolution experiments.Mon.Wea.Rev.,141,4098–4117.

    Weng,Y.H.,M.Zhang,and F.Q.Zhang,2011:Advanced data assimilation for cloud-resolving hurricane initialization and prediction.Computing in Science and Engineering,13,40–49.

    Xu,D.,Z.Liu,X.-Y.Huang,J.Min,and H.Wang,2013:Impact ofassimilating IASIradiance observations on forecasts oftwo tropical cyclones.Meteor.Atmos.Phys.,122,1–18.

    Yu,H.,C.M.Hu,and L.Y.Jiang,2007:Comparison of three tropicalcyclone intensity datasets.Acta Meteorologica Sinica,21, 121–128.

    Zhang,F.,C.Snyder,and J.Sun,2004:Impacts of initial estimate and observations on the convective-scale data assimilation with an ensemble Kalman filter.Mon.Wea.Rev.,132, 1238–1253.

    Zhang,F.Q.,M.Zhang,and J.A.Hansen,2009:Coupling ensemble Kalman filter with four-dimensional variational data assimilation.Adv.Atmos.Sci.,26,1–8,doi:10.1007/s00376-009-0001-8.

    Zhang,F.,M.Zhang,and J.Poterjoy,2013a:E3DVar:Coupling an ensemble Kalman filter with three-dimensional variational data assimilation in a limited-area weather prediction model and comparison to E4DVar.Mon.Wea.Rev.,141,900–917.

    Zhang,M.,and F.Zhang,2012:E4DVar:Coupling an ensemble Kalman filter with four-dimensional variational data assimilation in a limited-area weather prediction model.Mon.Wea. Rev.,140,587–600.

    Zhang,M.,F.Zhang,X-Y.Huang,and X.Zhang,2011:Intercomparison of an ensemble Kalman filter with three-and four-dimensional variational data assimilation methods in a limited-area model over the month of June 2003.Mon.Wea. Rev.,139,566–572.

    Zhang,W.,Y.Leung,and J.C.L.Chan,2013b:The analysis of tropical cyclone tracks in the western north pacific through data mining.Part I:Tropical cyclone recurvature.Journal of Applied Meteorology and Climatology,52,1394–1416.

    :Shen,F.F.,and J.Z.Min,2015:Assimilating AMSU-A radiance data with the WRF hybrid En3DVAR system for track predictions of Typhoon Megi(2010).Adv.Atmos.Sci.,32(9),1231–1243,

    10.1007/s00376-014-4239-4.

    28 October 2014;revised 12 December 2014;accepted 29 December 2014)

    ?Corresponding author:SHEN Feifei

    Email:ffshen.nuist@gmail.com

    免费人成在线观看视频色| 夜夜看夜夜爽夜夜摸| 精品久久久久久久人妻蜜臀av| 欧美97在线视频| 亚洲在线自拍视频| 亚洲无线观看免费| 一个人看的www免费观看视频| 亚洲欧美日韩无卡精品| 高清日韩中文字幕在线| 国模一区二区三区四区视频| 能在线免费观看的黄片| 波多野结衣巨乳人妻| 我的老师免费观看完整版| 日韩人妻高清精品专区| 狂野欧美激情性xxxx在线观看| 亚洲国产色片| 精品久久久久久久人妻蜜臀av| 两个人的视频大全免费| 久久精品国产自在天天线| 亚洲av一区综合| 国产视频内射| 国产一区二区三区综合在线观看 | 看免费成人av毛片| 国产午夜精品久久久久久一区二区三区| 亚洲精品视频女| 麻豆国产97在线/欧美| 在现免费观看毛片| 国产欧美日韩精品一区二区| 国产高潮美女av| 亚洲自偷自拍三级| 能在线免费观看的黄片| 久久久精品免费免费高清| 日本黄大片高清| 国产欧美另类精品又又久久亚洲欧美| 亚洲欧美中文字幕日韩二区| 大又大粗又爽又黄少妇毛片口| 日本-黄色视频高清免费观看| 国产精品久久久久久精品电影| 色播亚洲综合网| 久热久热在线精品观看| 网址你懂的国产日韩在线| 日韩伦理黄色片| 69av精品久久久久久| 中文字幕亚洲精品专区| 最近中文字幕2019免费版| 婷婷六月久久综合丁香| 午夜福利在线观看吧| 日本三级黄在线观看| 国产精品.久久久| 欧美日韩精品成人综合77777| 搡老妇女老女人老熟妇| 亚洲成人一二三区av| 国产伦在线观看视频一区| 亚洲乱码一区二区免费版| 中国国产av一级| 欧美xxxx性猛交bbbb| a级一级毛片免费在线观看| 久久久久久九九精品二区国产| 2018国产大陆天天弄谢| 少妇熟女欧美另类| 亚洲最大成人中文| 亚洲精品成人久久久久久| 免费观看性生交大片5| 国产v大片淫在线免费观看| 久久鲁丝午夜福利片| 亚洲精品日韩av片在线观看| 成人午夜高清在线视频| 亚洲久久久久久中文字幕| 白带黄色成豆腐渣| 日韩三级伦理在线观看| 能在线免费观看的黄片| 内射极品少妇av片p| 国产真实伦视频高清在线观看| 亚洲最大成人av| 一区二区三区免费毛片| 色播亚洲综合网| 亚洲在久久综合| 少妇高潮的动态图| 国产精品久久久久久久电影| 午夜福利在线在线| 又粗又硬又长又爽又黄的视频| 亚洲av男天堂| 一个人免费在线观看电影| 青春草国产在线视频| 国产在线男女| 亚洲av日韩在线播放| 国产三级在线视频| 日韩三级伦理在线观看| or卡值多少钱| 久久久久久国产a免费观看| 午夜福利视频精品| 男人爽女人下面视频在线观看| 精品一区二区三区视频在线| 少妇熟女欧美另类| 久久精品国产亚洲网站| 久久精品国产亚洲网站| 美女高潮的动态| 国产一区二区亚洲精品在线观看| 亚洲最大成人av| 国产一区亚洲一区在线观看| 黄片无遮挡物在线观看| 免费观看av网站的网址| 在线观看av片永久免费下载| 亚洲综合色惰| 亚洲激情五月婷婷啪啪| 日韩一本色道免费dvd| 欧美三级亚洲精品| 午夜福利在线观看免费完整高清在| 国内精品一区二区在线观看| 亚洲欧美成人精品一区二区| 精品国产露脸久久av麻豆 | 国产精品无大码| 亚洲av二区三区四区| 少妇的逼水好多| 国产乱人视频| 色综合站精品国产| 亚洲内射少妇av| 久久午夜福利片| 免费大片18禁| 最近手机中文字幕大全| 日日干狠狠操夜夜爽| 一本久久精品| 51国产日韩欧美| 亚洲精品国产av蜜桃| 国产大屁股一区二区在线视频| 国产av码专区亚洲av| 亚洲av国产av综合av卡| 日本wwww免费看| 国产黄片视频在线免费观看| 嘟嘟电影网在线观看| 亚洲最大成人中文| 中文欧美无线码| 最近中文字幕高清免费大全6| 三级毛片av免费| 国产成人精品一,二区| 看免费成人av毛片| 亚洲av国产av综合av卡| 一级a做视频免费观看| 亚洲av免费高清在线观看| 免费少妇av软件| 国产白丝娇喘喷水9色精品| 亚洲av国产av综合av卡| 91久久精品国产一区二区三区| 免费观看无遮挡的男女| a级毛色黄片| 日韩欧美一区视频在线观看 | eeuss影院久久| 成人国产麻豆网| 国产高清国产精品国产三级 | 国产精品一区二区性色av| 91午夜精品亚洲一区二区三区| 亚洲怡红院男人天堂| 性插视频无遮挡在线免费观看| 极品教师在线视频| 国产午夜精品论理片| 精品人妻偷拍中文字幕| 美女黄网站色视频| 国产成人精品婷婷| 色播亚洲综合网| 亚洲人成网站在线播| 国产精品一区二区在线观看99 | 日韩av免费高清视频| 91在线精品国自产拍蜜月| 老司机影院成人| 国产黄片视频在线免费观看| 成人国产麻豆网| 日本黄大片高清| 成人亚洲精品一区在线观看 | 亚洲综合色惰| 亚洲熟女精品中文字幕| 男的添女的下面高潮视频| 国产午夜精品久久久久久一区二区三区| 22中文网久久字幕| 三级经典国产精品| 成人毛片60女人毛片免费| 欧美区成人在线视频| 久久久久免费精品人妻一区二区| 久久久久免费精品人妻一区二区| 亚洲欧美成人精品一区二区| 精品人妻一区二区三区麻豆| 久久99热6这里只有精品| 直男gayav资源| 久久久久久久国产电影| 观看免费一级毛片| 十八禁网站网址无遮挡 | 成人国产麻豆网| 亚洲欧美日韩无卡精品| 在线观看av片永久免费下载| 身体一侧抽搐| 高清在线视频一区二区三区| 中文字幕制服av| 国产 一区 欧美 日韩| 伦理电影大哥的女人| 精品一区二区免费观看| 国产精品嫩草影院av在线观看| 精品一区二区三卡| 亚洲最大成人av| 一级二级三级毛片免费看| 晚上一个人看的免费电影| 国产成人freesex在线| 亚洲激情五月婷婷啪啪| 国产精品三级大全| 成人性生交大片免费视频hd| 99热这里只有是精品50| 天堂av国产一区二区熟女人妻| 日韩av不卡免费在线播放| 午夜日本视频在线| 777米奇影视久久| 免费观看的影片在线观看| 又黄又爽又刺激的免费视频.| www.av在线官网国产| 国产精品无大码| 成人特级av手机在线观看| 亚洲国产精品成人综合色| 国产麻豆成人av免费视频| 久久精品国产亚洲av天美| 国产一区二区三区综合在线观看 | 亚洲av二区三区四区| 色5月婷婷丁香| 成人综合一区亚洲| 国产午夜福利久久久久久| 日韩大片免费观看网站| 男人和女人高潮做爰伦理| 亚洲av中文字字幕乱码综合| 91久久精品电影网| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 午夜精品在线福利| 成人鲁丝片一二三区免费| 国产在线男女| 午夜日本视频在线| 免费av毛片视频| 听说在线观看完整版免费高清| 噜噜噜噜噜久久久久久91| 久久久久久久久久黄片| 亚洲av.av天堂| 草草在线视频免费看| 3wmmmm亚洲av在线观看| av在线播放精品| 国产精品美女特级片免费视频播放器| 午夜免费观看性视频| 国产在视频线精品| 最近的中文字幕免费完整| 亚洲欧美一区二区三区国产| 日韩视频在线欧美| 亚洲精品视频女| av在线天堂中文字幕| 能在线免费观看的黄片| 不卡视频在线观看欧美| 男女下面进入的视频免费午夜| 国产在视频线精品| 免费av观看视频| 亚洲精品自拍成人| 精品久久久久久久久av| 一区二区三区免费毛片| 国产久久久一区二区三区| 白带黄色成豆腐渣| 在线免费观看的www视频| 国产精品熟女久久久久浪| 免费人成在线观看视频色| 国产精品不卡视频一区二区| 亚洲色图av天堂| 国产精品久久久久久久电影| 欧美三级亚洲精品| 国产午夜福利久久久久久| 亚洲精品乱码久久久久久按摩| 欧美日韩视频高清一区二区三区二| 亚洲国产成人一精品久久久| 99视频精品全部免费 在线| 一级a做视频免费观看| 午夜激情福利司机影院| 亚洲精品一二三| 免费播放大片免费观看视频在线观看| videossex国产| 亚洲人成网站在线播| 国产老妇女一区| 亚洲欧美成人综合另类久久久| 国产成人91sexporn| 国产精品三级大全| 中文乱码字字幕精品一区二区三区 | 毛片女人毛片| av在线老鸭窝| 精品酒店卫生间| 免费高清在线观看视频在线观看| 淫秽高清视频在线观看| 日韩亚洲欧美综合| 午夜久久久久精精品| 肉色欧美久久久久久久蜜桃 | 亚洲av日韩在线播放| 午夜福利在线在线| 亚洲欧洲国产日韩| 国产男人的电影天堂91| 视频中文字幕在线观看| 久久久久性生活片| 男女那种视频在线观看| 免费高清在线观看视频在线观看| 校园人妻丝袜中文字幕| 九九爱精品视频在线观看| 国产免费福利视频在线观看| 久久精品综合一区二区三区| 水蜜桃什么品种好| 欧美变态另类bdsm刘玥| 国产成人freesex在线| 国产色爽女视频免费观看| 国产老妇女一区| 亚洲怡红院男人天堂| 午夜免费激情av| 国产 一区 欧美 日韩| 搞女人的毛片| 男女啪啪激烈高潮av片| 久久久久免费精品人妻一区二区| 国产成人91sexporn| 欧美日韩国产mv在线观看视频 | 国产av在哪里看| 男女国产视频网站| 日本黄色片子视频| 人人妻人人澡人人爽人人夜夜 | 能在线免费观看的黄片| 欧美激情国产日韩精品一区| 久久99热这里只有精品18| 亚洲国产色片| 精品少妇黑人巨大在线播放| 日本wwww免费看| 日韩 亚洲 欧美在线| 大香蕉久久网| 亚洲自偷自拍三级| 久久99热6这里只有精品| 国产精品一区二区在线观看99 | 色视频www国产| 日本免费在线观看一区| 久久久精品欧美日韩精品| av线在线观看网站| 亚洲欧美精品自产自拍| 大香蕉97超碰在线| 日本-黄色视频高清免费观看| 午夜老司机福利剧场| 伦理电影大哥的女人| 啦啦啦中文免费视频观看日本| 国产伦在线观看视频一区| 激情 狠狠 欧美| 小蜜桃在线观看免费完整版高清| 丰满乱子伦码专区| 在线播放无遮挡| 激情五月婷婷亚洲| 国产又色又爽无遮挡免| 搡老乐熟女国产| 看黄色毛片网站| 日本猛色少妇xxxxx猛交久久| 又黄又爽又刺激的免费视频.| 久久久久久久久大av| 色尼玛亚洲综合影院| 久久精品国产自在天天线| 女的被弄到高潮叫床怎么办| 少妇丰满av| 国产精品蜜桃在线观看| 亚洲国产精品sss在线观看| 三级国产精品片| 亚洲精品日韩在线中文字幕| 三级国产精品片| 午夜福利在线在线| 又爽又黄无遮挡网站| 中文欧美无线码| 免费看av在线观看网站| av免费观看日本| 非洲黑人性xxxx精品又粗又长| 男女啪啪激烈高潮av片| 欧美xxxx性猛交bbbb| 日韩一本色道免费dvd| 欧美xxxx性猛交bbbb| 亚洲精品乱码久久久久久按摩| 最近2019中文字幕mv第一页| 神马国产精品三级电影在线观看| 免费在线观看成人毛片| 国产 一区精品| 精品一区二区三区视频在线| 熟妇人妻久久中文字幕3abv| 亚洲av福利一区| av线在线观看网站| 街头女战士在线观看网站| 国产片特级美女逼逼视频| 亚洲国产高清在线一区二区三| 久久久久九九精品影院| 两个人的视频大全免费| 三级毛片av免费| 国产极品天堂在线| 国产精品伦人一区二区| 日韩不卡一区二区三区视频在线| 亚洲不卡免费看| 国产精品久久久久久精品电影| av黄色大香蕉| 亚洲自偷自拍三级| 波多野结衣巨乳人妻| 亚洲最大成人av| av在线亚洲专区| 日韩成人av中文字幕在线观看| 国产成人freesex在线| 欧美zozozo另类| 久久久久久久久久久免费av| 婷婷色综合www| 日本-黄色视频高清免费观看| 日韩亚洲欧美综合| 午夜日本视频在线| 久热久热在线精品观看| 99久久精品热视频| 天堂网av新在线| 一边亲一边摸免费视频| 午夜免费男女啪啪视频观看| 搡老妇女老女人老熟妇| 欧美最新免费一区二区三区| 99久国产av精品国产电影| 精品一区二区三区人妻视频| 午夜激情欧美在线| 国产 一区精品| 亚洲av电影不卡..在线观看| 一级毛片 在线播放| 免费少妇av软件| 日本猛色少妇xxxxx猛交久久| 亚洲人成网站在线观看播放| 嫩草影院新地址| 国产毛片a区久久久久| 国产精品久久视频播放| 亚洲欧美精品自产自拍| 亚洲精品成人av观看孕妇| 国产黄频视频在线观看| 免费黄网站久久成人精品| 久久久久久久久大av| 亚洲在线观看片| 麻豆国产97在线/欧美| kizo精华| 亚洲欧美日韩卡通动漫| 美女脱内裤让男人舔精品视频| 亚洲四区av| 中文字幕av成人在线电影| 麻豆精品久久久久久蜜桃| 免费观看a级毛片全部| 日本三级黄在线观看| 爱豆传媒免费全集在线观看| 中文字幕av在线有码专区| 在线观看美女被高潮喷水网站| 黄色一级大片看看| 婷婷色综合www| 国内少妇人妻偷人精品xxx网站| 亚洲欧美中文字幕日韩二区| 只有这里有精品99| 亚洲人成网站在线播| 国产精品一及| 赤兔流量卡办理| 国产黄色小视频在线观看| 国产精品一区二区在线观看99 | 免费av不卡在线播放| 亚洲四区av| 午夜日本视频在线| 欧美极品一区二区三区四区| 国产一区亚洲一区在线观看| 国产精品不卡视频一区二区| 男女视频在线观看网站免费| 人妻夜夜爽99麻豆av| a级毛色黄片| 久久精品久久久久久噜噜老黄| 久久久a久久爽久久v久久| 亚洲国产欧美人成| 天天一区二区日本电影三级| 午夜免费激情av| 男女边摸边吃奶| 免费看日本二区| 精品久久久久久电影网| 国产淫语在线视频| 校园人妻丝袜中文字幕| 高清午夜精品一区二区三区| 欧美高清性xxxxhd video| 亚洲综合色惰| 小蜜桃在线观看免费完整版高清| 一区二区三区四区激情视频| 肉色欧美久久久久久久蜜桃 | 91精品一卡2卡3卡4卡| 欧美zozozo另类| 天堂中文最新版在线下载 | 国产久久久一区二区三区| 中文精品一卡2卡3卡4更新| 少妇的逼水好多| 亚洲欧美日韩卡通动漫| 亚洲av日韩在线播放| 久久99热6这里只有精品| 婷婷六月久久综合丁香| 99久久精品一区二区三区| 男女国产视频网站| 久久亚洲国产成人精品v| 毛片一级片免费看久久久久| 欧美精品一区二区大全| 国产精品蜜桃在线观看| 777米奇影视久久| 色5月婷婷丁香| 久久午夜福利片| av网站免费在线观看视频 | 亚洲av国产av综合av卡| 丝瓜视频免费看黄片| 亚洲内射少妇av| 特级一级黄色大片| 免费观看的影片在线观看| 亚洲精品久久久久久婷婷小说| 欧美极品一区二区三区四区| 久久久国产一区二区| 亚洲在久久综合| 春色校园在线视频观看| 国产精品福利在线免费观看| 老师上课跳d突然被开到最大视频| 男女国产视频网站| 国产精品1区2区在线观看.| 国产淫片久久久久久久久| 亚洲精品日韩av片在线观看| 国产成人精品一,二区| 免费大片18禁| 全区人妻精品视频| 99热这里只有是精品在线观看| 亚洲国产精品专区欧美| 国产伦精品一区二区三区四那| 久久99热这里只频精品6学生| 免费观看在线日韩| 欧美3d第一页| 国产一区亚洲一区在线观看| 搞女人的毛片| 久久久色成人| 亚洲精品日韩av片在线观看| 黄色欧美视频在线观看| 亚洲最大成人av| 熟妇人妻久久中文字幕3abv| 最近中文字幕高清免费大全6| 亚洲综合精品二区| 成人一区二区视频在线观看| 亚洲av福利一区| 又黄又爽又刺激的免费视频.| 高清日韩中文字幕在线| 亚洲人成网站在线播| 26uuu在线亚洲综合色| 高清在线视频一区二区三区| a级一级毛片免费在线观看| 色吧在线观看| 高清在线视频一区二区三区| 国产精品av视频在线免费观看| 三级国产精品片| 免费高清在线观看视频在线观看| 亚洲国产成人一精品久久久| 99久久中文字幕三级久久日本| 久久久精品免费免费高清| 日本免费a在线| 国产一区二区三区综合在线观看 | 色尼玛亚洲综合影院| 久久99热这里只有精品18| 十八禁国产超污无遮挡网站| 日韩av免费高清视频| 小蜜桃在线观看免费完整版高清| 久久久久久国产a免费观看| 久久久久久久久中文| 听说在线观看完整版免费高清| 在线播放无遮挡| 国产亚洲最大av| 高清视频免费观看一区二区 | 欧美日本视频| av在线天堂中文字幕| 十八禁网站网址无遮挡 | 狠狠精品人妻久久久久久综合| 少妇丰满av| 高清在线视频一区二区三区| 亚洲一级一片aⅴ在线观看| 亚洲av成人精品一区久久| 国产国拍精品亚洲av在线观看| 亚洲三级黄色毛片| 有码 亚洲区| 在线播放无遮挡| 久久6这里有精品| 久久久久久久久久人人人人人人| 国产精品熟女久久久久浪| 91午夜精品亚洲一区二区三区| 韩国高清视频一区二区三区| 黄片wwwwww| videos熟女内射| 一边亲一边摸免费视频| 日日摸夜夜添夜夜添av毛片| 丝袜美腿在线中文| 色网站视频免费| 国产人妻一区二区三区在| 午夜日本视频在线| 18禁动态无遮挡网站| 精品久久久久久久久av| 国产高清不卡午夜福利| 久久精品久久久久久久性| 又粗又硬又长又爽又黄的视频| 久久久久久久久久久免费av| 青春草国产在线视频| 亚洲av福利一区| 亚洲成色77777| 建设人人有责人人尽责人人享有的 | 夜夜爽夜夜爽视频| 一个人观看的视频www高清免费观看| 午夜福利在线在线| 国产成人精品一,二区| 在线观看免费高清a一片| 免费高清在线观看视频在线观看| 精品久久久噜噜| 男女视频在线观看网站免费| 日本与韩国留学比较| 日韩视频在线欧美| 久久午夜福利片| 亚洲精品日韩av片在线观看| 国产激情偷乱视频一区二区| 一本久久精品| 国产一区二区在线观看日韩| 亚洲欧美成人精品一区二区| 在线 av 中文字幕| 男女下面进入的视频免费午夜| 久久亚洲国产成人精品v| 麻豆成人午夜福利视频| 亚洲伊人久久精品综合| 精品少妇黑人巨大在线播放| 51国产日韩欧美| 国产有黄有色有爽视频|