• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Two Modes and Their Seasonal and Interannual Variation of the Baroclinic Waves/Storm Tracks over the Wintertime North Pacific

    2015-06-09 21:30:01JIANGYuxinandTANBenkui
    Advances in Atmospheric Sciences 2015年9期

    JIANG Yuxin and TAN Benkui

    Department of Atmospheric and Oceanic Sciences,Peking University,Beijing 100871

    Two Modes and Their Seasonal and Interannual Variation of the Baroclinic Waves/Storm Tracks over the Wintertime North Pacific

    JIANG Yuxin and TAN Benkui?

    Department of Atmospheric and Oceanic Sciences,Peking University,Beijing 100871

    In this study,a newly developed method,termed moving empirical orthogonal function analysis(MEOF),is applied to the study of midlatitude baroclinic waves over the wintertime North Pacific from 1979 to 2009.It is shown that when the daily, high-pass filtered(2–10 days)meridional wind at 250 hPa is chosen as the variable of the MEOF analysis,typical features of baroclinic waves/storm tracks over the wintertime North Pacific can be well described by this method.It is found that the first two leading modes of the MEOF analysis,MEOF1 and MEOF2,assume quite different patterns.MEOF1 takes the form of a single wave train running in the east–west direction along 40?N,while MEOF2 is a double wave train pattern running in the east–west direction along 50?N and 30?N,respectively.The shift composites of various anomalous fields based on MEOF1 and MEOF2 assume typical baroclinic wave features.

    MEOF1 represents a primary storm track pulsing with an intrinsic time scale of two days.It shows significant“midwinter suppression”and apparent interannual variability.It is stronger after the mid-1990s than before the mid-1990s.MEOF2 represents a double-branch storm track,also with an intrinsic time scale of approximately two days,running along 50?N and 30?N,respectively.It shows no apparent seasonal variation,but its interannual and decadal variation is quite clear.It oscillates with larger amplitude and longer periods after the mid-1990s than before the mid-1990s,and is heavily modulated by El Ni?no–Southern Oscillation(ENSO).

    baroclinic waves,Pacific storm tracks,MEOF analysis,ENSO

    1.Introduction

    The North Pacific is one of the two major regions where baroclinic waves/storm tracks are very active.Therefore,the study of baroclinic waves/storm tracks over the North Pacific and their spatial and temporal variation has received much attention and remains a topic of extreme importance to the science and practice of weather and climate forecasting(e.g., Chang et al.,2002;Bader et al.,2011).

    Previous studies show that the North Pacific storm track assumes apparent seasonality:it is strongest around November and weakest during midwinter(e.g.,Nakamura,1992). The mechanisms that lead to this midwinter suppression have also been extensively studied(Chang,2001;Nakamura and Sampe,2002;Harnik and Chang,2004;Penny et al.,2010). On time scales of one month or longer,Lau(1988),Chang and Fu(2002)and Wettstein and Wallace(2010)discovered that the first two modes of the Pacific storm track variability consist of a monopole that represents variability in the overall intensity of the storm track and a dipole that represents shifting of the climatological-mean storm track in the meridional direction.Chang et al.(2002)found that the Pacific storm track shifts equatorward during El Ni?no winters compared to La Ni?na winters.Seager et al.(2010)noticed that during El Ni?no events the warming of the eastern equatorial Pacific Ocean moves atmospheric convection eastward. Anomalous rising motion in the eastward-shifted convection region forces an upper-troposphere anticyclone.Anomalous westerly flow on the poleward flank at about 20?N of this upper-level anticyclone shifts both the subtropical jet and storm tracks equatorward.

    Recently,the storm track response to the changing climate has attracted much attention from meteorologists,climatologists and other scientists,and many studies indicate that the Northern Hemisphere wintertime extratropical storm tracks shifted poleward and storm activity intensified in northern high latitudes during 1959–97(McCabe et al., 2001).Zhang et al.(2008)also found a northeastward shift of Arctic/North Atlantic Oscillation centers of action and a sudden jump to a dipolar leading pattern during 2001–05,which could be an integrative manifestation of the poleward shift ofstorm tracks.Some other studies have shown that the number of storms entering the Arctic has increased(Zhang et al., 2004;Sorteberg and Walsh,2008).Zhang et al.(2004)further found that storm activities have distinct regional characteristics across different geographic sectors.The North Atlantic storms show a similar trend to the whole of the Northern Hemisphere(Kushnir et al.,1997;Geng and Sugi,2001; Nie et al.,2008),while the North Pacific storms show an opposite trend;that is,intensifying and shifting southward (Chang and Fu,2002;Nakamura et al.,2002;Nie et al.,2008; Zhang et al.,2012).

    The present study focuses on the baroclinic waves/storm tracks over the wintertime North Pacific and their temporal variability at various time scales,from intraseasonal to interannual and decadal.To this end,daily rather than monthly data are used.In addition,a newly developed method,termed moving empirical orthogonal function(MEOF)analysis(see section 2),is used in the present study,which is efficient for detecting the moving signals and their spatial and temporal variability,and provides a powerful tool for quantitatively describing both the baroclinic waves and the spatial and temporal variability of the storm tracks.

    This paper is arranged as follows:Section 2 introduces the method and data used.The results are given in section 3, and this is followed by a summary of the study in section 4.

    2.Data and methods

    There are two main approaches,widely used in the literature,to producing diagnostics of storm tracks.The first approach examines storm tracks in a Eulerian framework in which the storm tracks are defined as the geographically localized maxima in the bandpass transient variance(Blackmon,1976;Blackmon et al.,1977).The main limitation of this approach is that,even though the filtered variance coincides with the major storm track regions,it can only provide a fairly general indication of the storm track activity,as it does not discriminate between cyclones and anticyclones,or give a measure of the number of the storms or their intensity. The second approach identifies individual storms in a Lagrangian framework and follows each storm from its cyclogenesis to its cyclolysis.This approach has developed from manual studies with weather charts(Petterssen,1956;Whittaker,1982)to computer-based automatic tracking algorithms with high-quality reanalysisdatasets(Murray and Simmonds, 1991;Serreze etal.,1993;Sinclair,1994;Hodges,1995;Graham and Diaz,2001;Hoskins and Hodges,2002;Zhang et al.,2004;Inatsu,2009;Mesquita et al.,2009).The automatic tracking algorithm identifies storms as local minima or maxima of parameters,such as sea-level pressure or relative vorticity,and links them together to form storm trajectories. The merit of this approach is that it can discriminate between cyclones and anticyclones,but it depends on the criteria chosen and differences can occur when different criteria are chosen.For details of the merits and limitations of these two approaches,readers are referred to Chang et al.(2002)and Hoskins and Hodges(2002).

    To further reveal both the spatial and temporal variability of the storm tracks,the above two approaches are usually combined with EOF analysis(Lau,1988;Ulbrich and Christoph,1999;Norris,2000;Chang and Fu,2002;Nakamura et al.,2002;Harnik and Chang,2003;Wettstein and Wallace,2010;Chen et al.,2014).However,another obvious common limitation of the two approaches is that they do not provide a description of the structures of the baroclinic waves themselves.To overcome this drawback,a method based on point correlation was developed(Chang,1993),and applied to the meridional wind in the upper troposphere.Based on this method,the climatological structures of baroclinic waves,their downstream development and preferred regions of travel can be well described(Chang and Yu,1999).Compared to the EOF-based method,as expected,the one-pointcorrelation-based method is unable to conveniently describe the temporal variability,such as the seasonal or interannual variability,of storm tracks.

    In this study,a newly developed method,termed moving EOF analysis(Jiang,2014),is used to study the baroclinic waves/storm tracks over the wintertime North Pacific.This method is basically similar to conventional EOF analysis,except that in order to accurately extract the moving signals,the spatial mode or modes are allowed to move(shift)in space. In MEOF analysis,there are three elements necessary for detecting the moving signals and their spatial and temporal variability:the spatial modes(denoted as MEOFs),the principle component time series(MPCs),and the shift functions.As a result,the MEOF can accurately describe the position,and therefore propagation velocity,of the moving signal,which conventional EOF fails to do(Jiang,2014).Here,we briefly describe the method,but for more details of the method and its advantages over the EOF,readers are referred to Jiang (2014).

    where i and j represent the serial numbers of space and time, respectively.The objective function of conventional EOF analysis can be expressed as one designed to find a spatial mode uiand a principal component(PC)time series cj(for simplicity,the objective function only contains one mode), which satisfy:

    subject to

    The optimal uiis called EOF1 and cjis called PC1.These variables capture as much information(in the sense of an L2-norm)regarding Fijas possible.

    The goal of MEOF analysis is to find a spatial mode ui,a time series cjand a shift function sjrepresenting forward/backward shifting of the spatial mode,which

    subject to

    The shift function sjcan also be regarded as the Lagrangian coordinate of the moving signal.This idea can be realized by performing the substitution i′=i?sj.Then,Eq.(3)can be rewritten as

    subject to

    If sjis already known,we can obtain uiand cjfrom Eqs. (2)and(4)by performing conventional EOF analysis on the matrix Fi+sj,j.Furthermore,if uiis already known,we can use Eq.(3)to solve sjand cjat each time step separately. Readers are referred to Jiang(2014)for details of the practical algorithm that solves ui,cjand sjusing Eq.(3)or Eq. (4),subject to periodic or even non-periodic boundary conditions.In this study,the MEOF modes are set to move along the zonal direction.The extended boundary condition is used,and the maximum shift allowed(smax)is set to 28,which corresponds to a movement of up to 70?east or west.This study uses the daily mean data from the National Centers for Environmental Prediction–Department of Energy (NCEP–DOE)Reanalysis 2(Kanamitsu et al.,2002)on 2.5?latitude–longitude grids in the winters of 1979–2009,where the winter season refers to November through March(NDJFM).We also tested the NCEP Climate Forecast System Reanalysis(CFSR)and the ERA-Interim reanalysis with different resolutions,and no apparent differences were found(Fig. S1–3).The variables examined include zonal and meridional wind,geopotential height,temperature,vertical velocity,and precipitation.The daily interpolated outgoing longwave radiation(OLR)data are provided by the NOAA/OAR/ESRL PSD(Liebmann and Smith,1996).The seasonal cycle is removed from all the variables by subtracting the first three harmonics of the annual cycle.Then,a 2–10-day band-pass Lanczos filter(Duchon,1979)is applied and,finally,the residual mean is removed.To examine the effect of El Ni?no–Southern Oscillation(ENSO)events on the baroclinic waves and storm tracks,the NOAA Extended Reconstructed Sea Surface Temperature(SST)V3b dataset(Smith et al.,2008) is used to calculate the winter season(NDJFM)mean interannual Ni?no3.4 index[SST averaged over(5?S–5?N,170?–120?W)].

    3.Results

    3.1.Baroclinic wave properties

    As in Chang and Yu(1999),the meridional wind,rather than its variance,is used as the variable of the MEOF analysis.To correctly reflect the baroclinic wave features,the meridional wind is high-pass(2–10 days)filtered.MEOF analysis is performed over the domain(0?–90?N,120?E–105?W),and the square root of the cosine of latitude weighting is applied prior to the MEOF analysis.As shown in Fig. 1,the first two leading MEOF modes(MEOFs)assume apparent wave-like features.The first MEOF mode(MEOF1) is a single wave train–like pattern running across the central North Pacific,centered along 40?N(Fig.1a),which accounts for 32%of the total high-frequency variance.The wave train spans west–east by about 45?of longitude,corresponding to a wavelength of 3800 km.In contrast,the second MEOF mode(MEOF2)assumes a double wave train pattern(Fig. 1b).The northern branch of the wave train is located along 50?N and has a wavelength of 3900 km,while the southern branch is along 30?N and also has a wavelength of 3900 km. MEOF2 accounts for 12%of the total high-frequency variance.Figures 1c and d show the number of days when the centers of the two modes appear at a particular longitude,respectively.Clearly,the two modes are most active over the central North Pacific around 172?W,and gradually become inactive towards the east or west.

    The phase velocity of the wave train–like anomalies can be calculated using the shift function sj.Figures 2a and b show the frequency distribution plot in(sj,sj+1?sj)space. An eastern movement with four to five grids each day can be identified.Taking 40?N as the central latitude of the two MEOF modes,the speed can be estimated using the formation

    where Cjis the speed at time j,R the earth’s radius,φthe reference latitude and D the length of a day.Figures 2c and d are the local amplifications of Figs.2a and b,respectively. The phase speed of MEOF1 shows some variation from west to east,changing from approximately 12.5 m s?1to 8 m s?1.The phase speed of the second mode is slightly less, but shares the characteristics of MEOF1:faster in the west and slower in the east.

    The above results show that the wave train–like anomalies revealed by MEOF1 and MEOF2 have only slight differences,characterized by a wavelength of approximately 4000 km and an average phase speed of 10 m s?1,which are typical features of baroclinic waves(Chang,1993).The baroclinic wave characteristics of MEOF1 and MEOF2 can also be clearly demonstrated by the shift composite maps of geopotential height,temperature and vertical velocity anomalies in the longitude–height cross sections through the wave train centers(Fig.3).These plots are obtained by shifting the centers of the MEOFs together,and then compositing.Figure 3 shows that the height perturbations have maximum amplitude at around 300 hPa,250 hPa,and 200 hPa for the wavetrains along 50?N,40?N,and 30?N,respectively.All height perturbations tilt westward with increasing height,and the vertical tilt appears slightly more pronounced for the waves in the upstream than in the downstream direction.In contrast,the temperature perturbations tilt towards the east with increasing height,except for the wave train at 30?N,where the temperature perturbation still tilts towards the west with increasing height in the upstream part of the wave train,and remains vertical with height in the downstream part.Furthermore,the temperature perturbation reaches its maximum at a lower height—approximately 500 hPa for the wave trains at 50?N and 40?N,and 400 hPa for the wave train at 30?N—and reverses its sign above the tropopause.The plot of vertical velocity shows maximum rising motion just ahead of the upper-level trough and descending motion just ahead of the ridge,with maximum vertical motion at 400 hPa,which corresponds to the maximum vertical omega velocity at 500 hPa(not shown).The wave features in the MEOFs are highly consistent with those estimated by Chang(1993).

    In addition to height,meridional wind,temperature,and vertical velocity anomalous fields,MEOF1 and MEOF2 also leave their wave-like footprints in the OLR and precipitation anomalous fields,as shown in Fig.4,which provides strong evidence that baroclinic waves are the most powerful weather-bearing system in the midlatitudes.

    3.2.Storm track features

    From the above analysis,we know that the leading two MEOFs describe midlatitude baroclinic waves.Next,we show that the storm track properties,such as the seasonal and interannual variability,can also be derived from the two MEOFs and their time series.Given the fact that the standard deviation of high-pass filtered meridional wind can be used to define the storm track intensity(Blackmon et al., 1977),the MEOF-related storm track intensities can be obtained by applying the root-mean-square(RMS)to the MEOFs(Figs.5c and d).We term the MEOF1-related storm track the primary storm track,which is across the midlatitude North Pacific,and the MEOF2-related storm tracks the secondary storm tracks,which run along 50?N and 30?N,respectively.Comparing these two modes with the standard deviation(SD)of the 10-day high-pass filtered meridional wind for all winter days(Fig.5a),and the SD only for days when MPC2>MPC1(Fig.5b),shows that the MEOF-related patterns strongly resemble the real-data SD patterns and can be used as the model modes of the storm track variability.(The intention of the condition MPC2>MPC1 is to remove the influence of the primary storm track from the data so that the double wave train pattern can be clearly revealed).

    In fact,the storm variability represented by MEOF1 describes pulsing of the storm track over the midlatitudes(Lau, 1988;Wettstein and Wallace,2010),while the MEOF2-related variability was previously unknown and is therefore discussed in more detail below.

    3.3.Seasonal and interannual variability of storm tracks

    In view of the fact that the two MEOFs represent the primary and secondary storm tracks,the two MPC time series in fact describe the daily evolution of the storm tracks,and the storm track variability of longer time scales can be derived from the two MPCs.To confirm this,we directly calculate the areal RMS of the storm track over the domain(20?–55?N, 170?E–120?W)(black rectangle in Fig.5a)with the daily high-pass filtered 250 hPa meridional wind(blue line in Fig. 6a),which is in good agreement with the MPC1 time series. The Pearson’s correlation coefficient between the two linesis as high as 0.81(p-value<0.005).Figure 6b shows the MPC2 time series and the daily time series of the storm track with the MEOF1-represented storm track removed.Clearly, the two time series are also in remarkable agreement,with a correlation coefficient of 0.58(p-value<0.005).Here,the relatively lower correlation for MEOF2 than MEOF1 may be due to the fact that MEOF2 is much weaker than MEOF1 (MEOF1 and MEOF2 account for 32%and 12%of the total high-frequency variance,respectively)and higher MEOFs also contribute a considerable amount of the variance.So, the two MEOF time series describe the daily evolution of the two kinds of storm track variability over the wintertime North Pacific well.

    Next we examine the intrinsic time scale of the baroclinic waves/storm tracks.To this end,we compute the autocorrelation functions of the two MPC time series(Fig.7).The plot shows that the two MEOFs are fast-varying patterns.MPC1 and MPC2 in particular have e-folding decorrelation times of approximately two days,which is a typical time scale of baroclinic waves.

    Based on the two MPC time series,the seasonal and interannual variability of storm tracks can be conveniently obtained(Fig.8).Figures 8a and b show the seasonal variability of the primary and secondary storm tracks,respectively,which are obtained simply by averaging the two MPC series for the same calendar day for the period 1979–2009. Clearly,the MPC1-related primary storm track has its minimum around January and February,which is known as the“midwinter suppression”(Nakamura,1992;Nakamura and Sampe,2002).The seasonality of the MPC2-related secondary storm tracks is not as apparent as the primary storm tracks,showing only a small peak during midwinter.This increase may be an intrinsic feature of the secondary storm tracks,or a result of the north–south shift of the primary storm track.

    Figure 9 shows the interannual variability of the two MPC-related storm tracks,which is obtained by calculating the winter-season RMS of the two MPC time series,then,standardized.As shown in Fig.9a,the primary storm track assumes apparent interannual and decadal variation.It is much weaker prior to 1995 than after 1995,showing an upward trend for the period 1979–2009.

    The MPC2-related storm tracks(Fig.9b)also assume apparent interannual variability.A most notable decadal change occurs in around the mid-1990s:the oscillation shows larger amplitude and longer periods after the mid-1990s than before the mid-1990s.

    3.4.Modulation of ENSO

    Next we examine the modulation of ENSO on the two modes of the storm track variability by calculating the correlation between the winter-mean MPCs and the winter-mean Ni?no3.4 index.The results show that the correlation between the first mode of the storm track variability is very weak, with a correlation coefficient of 0.07(p-value of 0.70),but the second mode of the storm track variability is highly modulated by ENSO,with a correlation coefficient of 0.64(Fig. 9b,p-value<0.005),which is statistically significant at the 1%significance level.Further examination shows that this high correlation is mainly contributed by the MEOF2 over the eastern North Pacific.This result is consistent with a modeling study by Basu et al.(2013),who found that there are more numerous intense storms over southwest and northwestern North America when El Ni?no–like SST increases. Basu et al.(2013)’s result implies the coexistence of a storm track over the northeastern Pacific with the storm track over the southeastern Pacific during El Ni?no years.A theoretical study based on numerical modeling by Lee and Kim(2003) also supports this result.Their study also found that,in the presence of a subtropical jet of modest strength,baroclinic wave growth takes place primarily in the midlatitude baro-clinic zone,establishing a well-defined eddy-driven jet at midlatitude.

    It is important to note that MEOF2-related baroclinic waves and storm tracks have received little attention previously.In fact,baroclinic waves in double wave train form can be frequently detected in the wintertime North Pacific.Figure 10 shows an example that appeared from 7 to 13 March 1988, during the 1987/88 ENSO event.On 8 March,a distinct double wave train pattern formed around the centralNorth Pacific region and propagated eastward.Then,it reached the coastline of North America on 10 March and weakened.At the same time,another double wave train–like pattern formed in the western North Pacific and propagated eastward.

    4.Summary and conclusions

    In this study,a newly developed method,MEOF analysis, is applied to the daily,high-pass filtered meridional wind at 250 hPa to study the midlatitude baroclinic waves and storm tracks in the wintertime North Pacific during 1979–2009.It is shown that MEOF analysis provides an efficient approach for the study of both the midlatitude baroclinic waves/storm tracks and their temporal variability at various time scales. The following conclusions have been reached:

    (1)MEOF1 assumes a wave train–like pattern running across the midlatitude North Pacific,centered at 40?N.The shift composites of the variables,such as geopotential height, temperature,vertical velocity,precipitation and OLR anomalies,show that MEOF1 represents typical baroclinic waves.

    (2)The MEOF1-represented storm track is the primary storm track in the wintertime midlatitude North Pacific,and pulses in intensity.The primary storm track has an intrinsic time scale of two days,experiences a“midwinter suppression”and decadal shift.It is stronger during the post-1995 period than the period prior to 1995.

    (3)MEOF2 assumes a double wave train pattern running along 30?N and 50?N,respectively.The shift composites of the geopotential height,temperature,vertical velocity,precipitation and OLR anomalies show that the wave trains in MEOF2 also show typical baroclinic wave features.

    (4)The MEOF2-represented storm track are the secondary storm tracks in the wintertime midlatitude North Pacific,which also have an intrinsic time scale of approximately two days.The secondary storm tracks show no apparent seasonality,but clear interannual and decadal variability.Like the primary storm track,the secondary storm tracks experience a decadal shift around the mid-1990s.They oscillate with larger amplitude and longer period during the post-1995 period than the period prior to 1995.The secondary storm tracks are heavily modulated by ENSO.

    Acknowledgements.This research was supported by the National Natural Science Foundation of China(Grant Nos.41375060 and 41130962).We thank Professor Jiayou HUANG for his useful comments and suggestions.We would also like to thank the anonymous editor and the two reviewers for their helpful comments and suggestions,which led to improvements in the manuscript.

    Electronic Supplementary Material:Supplementary material(Figs.S1–3)is available online at http://dx.doi.org/ 10.1007/s00376-015-4251-3.

    REFERENCES

    Bader,J.,M.D.S.Mesquita,K.I.Hodges,N.Keenlyside,S. ?sterhus,and M.Miles,2011:A review on Northern Hemi-sphere sea-ice,storminess and the North Atlantic Oscillation: Observations and projected changes.Atmospheric Research,101,809–834,doi:10.1016/j.atmosres.2011.04.007.

    Basu,S.,X.D.Zhang,I.Polyakov,and U.S.Bhatt,2013:North American winter-spring storms:Modeling investigation on tropical Pacific sea surface temperature impacts.Geophys. Res.Lett.,40,5228–5233,doi:10.1002/grl.50990.

    Blackmon,M.L.,1976:A climatological spectral study of the 500 mb geopotential height of the Northern Hemisphere.J.Atmos.Sci.,33,1607–1623,doi:10.1175/1520-0469(1976)033<1607:ACSSOT>2.0.CO;2.

    Blackmon,M.L.,J.M.Wallace,N.-C.Lau,and S.L.Mullen, 1977:An observational study of the northern hemisphere wintertime circulation.J.Atmos.Sci.,34,1040–1053,doi: 10.1175/1520-0469(1977)034<1040:AOSOTN>2.0.CO;2.

    Chang,E.K.M.,1993:Downstream development of baroclinic waves as inferred from regression analysis.J.Atmos.Sci.,50,2038–2053,doi:10.1175/1520-0469(1993)050<2038: DDOBWA>2.0.CO;2.

    Chang,E.K.M.,2001:GCM and observational diagnoses of the seasonal and interannual variations of the pacific storm track during the cool season.J.Atmos.Sci.,58,1784–1800,doi: 10.1175/1520-0469(2001)058<1784:GAODOT>2.0.CO;2.

    Chang,E.K.M.,and D.B.Yu,1999:Characteristics of wave packetsin the uppertroposphere.PartI:Northern Hemisphere winter.J.Atmos.Sci.,56,1708–1728,doi:10.1175/1520-0469(1999)056<1708:COWPIT>2.0.CO;2.

    Chang,E.K.M.,and Y.F.Fu,2002:Interdecadal variations in northern hemisphere winter storm track intensity. J.Climate,15,642–658,doi:10.1175/1520-0442(2002)015<0642:IVINHW>2.0.CO;2.

    Chang,E.K.M.,S.Lee,and K.L.Swanson,2002:Storm track dynamics.J.Climate,15,2163–2183.

    Chen,L.,B.K.Tan,N.Gunnar Kvamst?,and O.M.Johannessen, 2014:Wintertime cyclone/anticyclone activity over China and its relation to upper tropospheric jets.Tellus A,66,doi: 10.3402/tellusa.v66.21889.

    Duchon,C.E.,1979:Lanczos filtering in one and two dimensions.J.Appl.Meteor.,18,1016–1022,doi:10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2.

    Geng,Q.Z.,and M.Sugi,2001:Variability of the North Atlantic cyclone activity in winter analyzed from NCEP–NCAR reanalysis data.J.Climate,14,3863–3873,doi:10.1175/1520-0442(2001)014<3863:VOTNAC>2.0.CO;2.

    Graham,N.E.,and H.F.Diaz,2001:Evidence for intensification of North Pacific winter cyclones since 1948.Bull.Amer. Meteor.Soc.,82,1869–1893,doi:10.1175/1520-0477(2001) 082<1869:EFIONP>2.3.CO;2.

    Harnik,N.,and E.K.M.Chang,2003:Storm track variations as seen in radiosonde observations and reanalysis data. J.Climate,16,480–495,doi:10.1175/1520-0442(2003)016<0480:STVASI>2.0.CO;2.

    Harnik,N.,and E.K.M.Chang,2004:The effects of variations in jet width on the growth of Baroclinic waves:Implications for midwinter pacific storm track variability.J. Atmos.Sci.,61,23–40,doi:10.1175/1520-0469(2004)061<0023:TEOVIJ>2.0.CO;2.

    Hodges,K.I.,1995:Feature tracking on the unit sphere.Mon. Wea.Rev.,123,3458–3465,doi:10.1175/1520-0493(1995) 123<3458:FTOTUS>2.0.CO;2.

    Hoskins,B.J.,and K.I.Hodges,2002:New perspectives on the northern hemisphere winter storm tracks.J.Atmos.Sci.,59,1041–1061,doi:10.1175/1520-0469(2002)059<1041: NPOTNH>2.0.CO;2.

    Inatsu,M.,2009:The neighbor enclosed area tracking algorithm for extratropical wintertime cyclones.Atmospheric Science Letters,10,267–272,doi:10.1002/asl.238.

    Jiang,Y.,2014:Moving Empirical Orthogonal Function Analysis and its Meteorological Application,Ph.D.,Peking University. Department of Atmospheric and Oceanic Sciences,98 pp.(in Chinese)

    Kanamitsu,M.,W.Ebisuzaki,J.Woollen,S.-K.Yang,J.J.Hnilo, M.Fiorino,and G.L.Potter,2002:NCEP–DOE AMIP-II reanalysis(R-2).Bull.Amer.Meteor.Soc.,83,1631–1643,doi: 10.1175/BAMS-83-11-1631.

    Kushnir,Y.,V.J.Cardone,J.G.Greenwood,and M.A.Cane, 1997:The recent increase in North Atlantic wave heights.J. Climate,10,2107–2113,doi:10.1175/1520-0442(1997)010<2107:TRIINA>2.0.CO;2.

    Lau,N.-C.,1988:Variability of the observed midlatitude storm tracks in relation to low-frequency changes in the circulation pattern.J.Atmos.Sci.,45,2718–2743,doi:10.1175/1520-0469(1988)045<2718:VOTOMS>2.0.CO;2.

    Lee,S.,and H.-K.Kim,2003:The dynamicalrelationship between subtropical and eddy-driven jets.J.Atmos.Sci.,60,1490–1503,doi:10.1175/1520-0469(2003)060<1490:TDRBSA>2.0.CO;2.

    Liebmann,B.,and C.A.Smith,1996:Description of a complete(interpolated)outgoing longwave radiation dataset.Bull. Amer.Meteor.Soc.,77,1275–1277.

    McCabe,G.J.,M.P.Clark,and M.C.Serreze,2001:Trends in Northern Hemisphere surface cyclone frequency and intensity.J.Climate,14,2763–2768,doi:10.1175/1520-0442 (2001)014<2763:TINHSC>2.0.CO;2.

    Mesquita,M.d.S.,D.E.Atkinson,I.Simmonds,K.Keay,and J. Gottschalck,2009:New perspectives on the synoptic development of the severe October 1992 Nome storm.Geophys. Res.Lett.,36,doi:10.1029/2009GL038824.

    Murray,R.J.,and I.Simmonds,1991:A numerical scheme for tracking cyclone centres from digital data.Part I:development and operation of the scheme.Aust.Meteor.Mag.,39, 155–166.

    Nakamura,H.,1992:Midwinter suppression of Baroclinic wave activity in the Pacific.J.Atmos.Sci.,49,1629–1642,doi: 10.1175/1520-0469(1992)049<1629:MSOBWA>2.0.CO;2. Nakamura,H.,and T.Sampe,2002:Trapping of synoptic-scale disturbances into the North-Pacific subtropical jet core in midwinter.Geophys.Res.Lett.,29,8-1–8-4,doi:10.1029/ 2002GL015535.

    Nakamura,H.,T.Izumi,and T.Sampe,2002:Interannual and decadal modulations recently observed in the Pacific storm track activity and East Asian Winter Monsoon.J.Climate,15,1855–1874,doi:10.1175/1520-0442(2002)015<1855: IADMRO>2.0.CO;2.

    Nie,J.,P.Wang,W.C.Yang,and B.K.Tan,2008:Northern hemisphere storm tracks in strong AO anomaly winters.Atmospheric Science Letters,9,153–159,doi:10.1002/asl.186.

    Norris,J.R.,2000:Interannual and interdecadal variability in the storm track,cloudiness,and sea surface temperature over the summertime North Pacific.J.Climate,13,422–430,doi: 10.1175/1520-0442(2000)013<0422:IAIVIT>2.0.CO;2.

    Penny,S.,G.H.Roe,and D.S.Battisti,2010:The source of the midwinter suppression in storminess over the North Pacific. J.Climate,23,634–648,doi:10.1175/2009JCLI2904.1.

    Petterssen,S.,1956:Weather Analysis and Forecasting Volume I Motion and Motion Systems.2nd ed.McGraw-Hill,428 pp.

    Seager,R.,N.Naik,M.Ting,M.A.Cane,N.Harnik,and Y.Kushnir,2010:Adjustment of the atmospheric circulation to tropical Pacific SST anomalies:Variability of transient eddy propagation in the Pacific–North America sector.Quart.J.Roy. Meteor.Soc.,136,277–296,doi:10.1002/qj.588.

    Serreze,M.C.,J.E.Box,R.G.Barry,and J.E.Walsh,1993: Characteristics of Arctic synoptic activity,1952–1989.Meteor.Atmos.Phys.,51,147–164,doi:10.1007/BF01030491.

    Sinclair,M.R.,1994:An objective cyclone climatology for the Southern Hemisphere.Mon.Wea.Rev.,122,2239–2256,doi: 10.1175/1520-0493(1994)122<2239:AOCCFT>2.0.CO;2.

    Smith,T.M.,R.W.Reynolds,T.C.Peterson,and J.Lawrimore, 2008:Improvements to NOAA’s historical merged land–ocean surface temperature analysis(1880–2006).J.Climate,21,2283–2296,doi:10.1175/2007JCLI2100.1.

    Sorteberg,A.,and J.E.Walsh,2008:Seasonal cyclone variability at 70?N and its impact on moisture transport into the Arctic.Tellus A,60,570–586,doi:10.1111/j.1600-0870.2008. 00314.x.

    Ulbrich,U.,and M.Christoph,1999:A shift of the NAO and increasing storm track activity over Europe due to anthropogenic greenhouse gas forcing.Climate Dyn.,15,551–559, doi:10.1007/s003820050299.

    Wettstein,J.J.,and J.M.Wallace,2010:Observed patterns of month-to-month storm-track variability and their relationship to the background flow.J.Atmos.Sci.,67,1420–1437,doi: 10.1175/2009JAS3194.1.

    Whittaker,L.M.,1982:Atlas of Northern Hemisphere Extratropical Cyclone Activity,1958–1977.Dept.of Meteorology,University of Wisconsin,65 pp.

    Zhang,Y.X.,Y.H.Ding,and Q.P.Li,2012:Interdecadal variations of extratropical cyclone activities and storm tracks in the Northern Hemisphere.Chinese J.Atmos.Sci.,36,912–928.

    Zhang,X.D.,J.E.Walsh,J.Zhang,U.S.Bhatt,and M.Ikeda, 2004:Climatology and interannual variability of arctic cyclone activity:1948–2002.J.Climate,17,2300–2317,doi: 10.1175/1520-0442(2004)017<2300:CAIVOA>2.0.CO;2.

    Zhang,X.D.,A.Sorteberg,J.Zhang,R.Gerdes,and J.C.Comiso, 2008:Recent radical shifts of atmospheric circulations and rapid changes in Arctic climate system.Geophys.Res.Lett.,35,doi:10.1029/2008GL035607.

    :Jiang,Y.X.,and B.K.Tan,2015:Two modes and their seasonal and interannual variation of the baroclinic waves/storm tracks over the wintertime North Pacific.Adv.Atmos.Sci.,32(9),1244–1254,

    10.1007/s00376-015-4251-3.

    9 November 2014;revised 18 February 2015;accepted 9 March 2015)

    ?Corresponding author:TAN Benkui

    Email:bktan@pku.edu.cn

    亚洲av日韩精品久久久久久密| 精品国产乱码久久久久久男人| 男女下面进入的视频免费午夜 | 亚洲视频免费观看视频| 国产精品精品国产色婷婷| 午夜福利在线观看吧| 欧美成人免费av一区二区三区| 国产成人啪精品午夜网站| 无限看片的www在线观看| 国产一区二区三区视频了| av视频免费观看在线观看| 黄频高清免费视频| 久久性视频一级片| 国产精品一区二区免费欧美| 国产精品98久久久久久宅男小说| 国产真人三级小视频在线观看| 成在线人永久免费视频| 99久久精品国产亚洲精品| 啦啦啦韩国在线观看视频| 日韩中文字幕欧美一区二区| 午夜福利一区二区在线看| 狠狠狠狠99中文字幕| 欧美乱妇无乱码| 黄色丝袜av网址大全| 咕卡用的链子| 亚洲成人久久性| 男女做爰动态图高潮gif福利片 | 久久热在线av| 妹子高潮喷水视频| 日韩欧美一区二区三区在线观看| 丝袜美腿诱惑在线| 两性夫妻黄色片| 色综合欧美亚洲国产小说| 成人欧美大片| 国产99白浆流出| 国产免费av片在线观看野外av| 久久中文字幕一级| x7x7x7水蜜桃| 脱女人内裤的视频| 国产亚洲av高清不卡| 国产xxxxx性猛交| 国产黄a三级三级三级人| 久久亚洲真实| 国产亚洲欧美98| 国内精品久久久久精免费| av免费在线观看网站| 女人高潮潮喷娇喘18禁视频| 91成年电影在线观看| 日本一区二区免费在线视频| 国产99久久九九免费精品| 久久国产精品影院| 欧美老熟妇乱子伦牲交| 久久久久国内视频| 丰满人妻熟妇乱又伦精品不卡| 色播在线永久视频| 国产精品久久久久久亚洲av鲁大| 亚洲人成77777在线视频| 香蕉国产在线看| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲国产日韩欧美精品在线观看 | 在线视频色国产色| 最近最新中文字幕大全免费视频| 国产亚洲欧美98| 一级毛片高清免费大全| 成人国产一区最新在线观看| 精品国产乱码久久久久久男人| 一进一出抽搐动态| 麻豆一二三区av精品| 老熟妇仑乱视频hdxx| 欧美老熟妇乱子伦牲交| 91国产中文字幕| 性少妇av在线| 免费在线观看视频国产中文字幕亚洲| 久久国产乱子伦精品免费另类| 亚洲熟妇熟女久久| 精品无人区乱码1区二区| 夜夜躁狠狠躁天天躁| 麻豆成人av在线观看| 久久国产乱子伦精品免费另类| 中文字幕另类日韩欧美亚洲嫩草| av片东京热男人的天堂| 男男h啪啪无遮挡| 欧美一区二区精品小视频在线| 99国产精品免费福利视频| 18美女黄网站色大片免费观看| 色综合欧美亚洲国产小说| 曰老女人黄片| 国产精品久久久人人做人人爽| 51午夜福利影视在线观看| 99香蕉大伊视频| 国产1区2区3区精品| 精品一区二区三区视频在线观看免费| 国产欧美日韩一区二区三| 日韩大码丰满熟妇| xxx96com| 一边摸一边做爽爽视频免费| 99在线人妻在线中文字幕| 久久性视频一级片| 99精品在免费线老司机午夜| 在线视频色国产色| 亚洲黑人精品在线| 91麻豆av在线| 不卡av一区二区三区| 欧美精品亚洲一区二区| 1024视频免费在线观看| 麻豆av在线久日| 一边摸一边抽搐一进一小说| 国产成人精品久久二区二区91| 久久精品影院6| 午夜福利免费观看在线| 久久精品国产亚洲av高清一级| 久久久精品欧美日韩精品| or卡值多少钱| 黄色视频,在线免费观看| 国产精品一区二区三区四区久久 | 久久久久久久久久久久大奶| 国产精华一区二区三区| 老汉色av国产亚洲站长工具| 人人妻人人爽人人添夜夜欢视频| av在线天堂中文字幕| 欧美日韩一级在线毛片| 亚洲国产欧美一区二区综合| 免费在线观看黄色视频的| 最新在线观看一区二区三区| 亚洲欧美日韩高清在线视频| 一边摸一边抽搐一进一小说| 久久中文字幕一级| 国产xxxxx性猛交| 日本精品一区二区三区蜜桃| 麻豆一二三区av精品| 亚洲一区二区三区不卡视频| 99国产精品99久久久久| 无限看片的www在线观看| 精品国产国语对白av| 欧美性长视频在线观看| av欧美777| 丝袜人妻中文字幕| 精品国内亚洲2022精品成人| 亚洲欧美激情在线| 国产精品一区二区三区四区久久 | 天堂√8在线中文| 午夜福利在线观看吧| 夜夜爽天天搞| 久久热在线av| 亚洲欧美日韩无卡精品| 夜夜爽天天搞| 看片在线看免费视频| 日本免费一区二区三区高清不卡 | 精品国产国语对白av| 国产精品影院久久| 电影成人av| 日韩欧美国产在线观看| 成人av一区二区三区在线看| 国内毛片毛片毛片毛片毛片| 亚洲国产中文字幕在线视频| 夜夜看夜夜爽夜夜摸| 日韩三级视频一区二区三区| 桃色一区二区三区在线观看| 国产精品99久久99久久久不卡| 在线永久观看黄色视频| 精品无人区乱码1区二区| 成人永久免费在线观看视频| 国产免费av片在线观看野外av| 99在线视频只有这里精品首页| 亚洲色图综合在线观看| 亚洲欧美日韩无卡精品| 又大又爽又粗| 中文字幕av电影在线播放| 久久人人97超碰香蕉20202| 欧美激情极品国产一区二区三区| e午夜精品久久久久久久| 一本综合久久免费| 他把我摸到了高潮在线观看| 国产精品美女特级片免费视频播放器 | 国产精品 欧美亚洲| 久热爱精品视频在线9| 宅男免费午夜| 可以在线观看的亚洲视频| 亚洲一区二区三区不卡视频| 国产精品 欧美亚洲| 9191精品国产免费久久| 两个人免费观看高清视频| 波多野结衣一区麻豆| 亚洲精品av麻豆狂野| 成人av一区二区三区在线看| 欧美成人性av电影在线观看| 丰满人妻熟妇乱又伦精品不卡| 国产精品综合久久久久久久免费 | 欧美另类亚洲清纯唯美| ponron亚洲| 久久久精品欧美日韩精品| 精品久久蜜臀av无| 亚洲 欧美 日韩 在线 免费| 99国产综合亚洲精品| www国产在线视频色| 国产亚洲精品久久久久久毛片| 天堂动漫精品| 久久草成人影院| 中文亚洲av片在线观看爽| 老汉色av国产亚洲站长工具| 色综合欧美亚洲国产小说| 身体一侧抽搐| 51午夜福利影视在线观看| 伦理电影免费视频| 搞女人的毛片| 久久婷婷人人爽人人干人人爱 | 好男人电影高清在线观看| 国产精品久久久人人做人人爽| 国产伦人伦偷精品视频| av片东京热男人的天堂| 成人精品一区二区免费| 精品人妻1区二区| 久久久久久久精品吃奶| 制服人妻中文乱码| 亚洲少妇的诱惑av| 丝袜人妻中文字幕| 女人爽到高潮嗷嗷叫在线视频| 美女免费视频网站| 欧美成狂野欧美在线观看| 国产1区2区3区精品| 欧美黑人精品巨大| 别揉我奶头~嗯~啊~动态视频| 天天一区二区日本电影三级 | 91大片在线观看| 久久久久久免费高清国产稀缺| avwww免费| 久久精品成人免费网站| 中文字幕精品免费在线观看视频| 国产一卡二卡三卡精品| 亚洲av电影不卡..在线观看| av天堂在线播放| av视频在线观看入口| 免费在线观看日本一区| 亚洲成人精品中文字幕电影| 国产av又大| 免费在线观看视频国产中文字幕亚洲| 十八禁网站免费在线| 国产精华一区二区三区| 岛国在线观看网站| 变态另类成人亚洲欧美熟女 | 在线观看免费午夜福利视频| 一二三四在线观看免费中文在| 99国产精品免费福利视频| 91麻豆av在线| 成人国产一区最新在线观看| www.www免费av| 香蕉久久夜色| 99国产精品免费福利视频| 久久这里只有精品19| 亚洲专区国产一区二区| 国产精品一区二区三区四区久久 | 欧美乱妇无乱码| 两性午夜刺激爽爽歪歪视频在线观看 | 成人18禁在线播放| 好男人电影高清在线观看| 国产精品久久久久久人妻精品电影| 九色国产91popny在线| 亚洲国产毛片av蜜桃av| 好男人在线观看高清免费视频 | 久久精品亚洲精品国产色婷小说| 日韩欧美三级三区| 久久久久国产一级毛片高清牌| 欧美精品亚洲一区二区| 精品国产乱码久久久久久男人| 中文字幕最新亚洲高清| 日本vs欧美在线观看视频| 老司机深夜福利视频在线观看| 久久中文看片网| 成熟少妇高潮喷水视频| 欧美亚洲日本最大视频资源| 免费观看人在逋| 久久热在线av| 免费av毛片视频| 欧美黄色淫秽网站| 少妇粗大呻吟视频| 又大又爽又粗| 欧美日韩瑟瑟在线播放| 欧美日韩中文字幕国产精品一区二区三区 | 欧美日韩福利视频一区二区| 精品少妇一区二区三区视频日本电影| 18禁美女被吸乳视频| 久久久久久久久免费视频了| 国产欧美日韩一区二区三| 久久这里只有精品19| 9191精品国产免费久久| 啦啦啦 在线观看视频| 欧美另类亚洲清纯唯美| 嫩草影视91久久| 高清毛片免费观看视频网站| 国产免费男女视频| 精品久久久久久久毛片微露脸| 国产片内射在线| 免费看a级黄色片| av福利片在线| 亚洲精品一卡2卡三卡4卡5卡| 午夜福利免费观看在线| 淫妇啪啪啪对白视频| 亚洲国产毛片av蜜桃av| 十分钟在线观看高清视频www| 夜夜看夜夜爽夜夜摸| 欧美日韩乱码在线| 一级毛片女人18水好多| 欧美黑人精品巨大| 在线观看日韩欧美| 中文亚洲av片在线观看爽| 香蕉丝袜av| 欧美中文综合在线视频| 欧美av亚洲av综合av国产av| 麻豆国产av国片精品| 久热爱精品视频在线9| 俄罗斯特黄特色一大片| 欧美久久黑人一区二区| 国产男靠女视频免费网站| a在线观看视频网站| 亚洲一区二区三区不卡视频| 成人免费观看视频高清| xxx96com| 欧美在线黄色| 午夜老司机福利片| 在线观看www视频免费| 丝袜美腿诱惑在线| 丝袜美足系列| 久久人人精品亚洲av| 在线观看免费午夜福利视频| 亚洲精品在线美女| 在线观看免费日韩欧美大片| 777久久人妻少妇嫩草av网站| 久久久久久久午夜电影| 黄色a级毛片大全视频| 精品国产一区二区三区四区第35| 国产97色在线日韩免费| 亚洲欧美激情在线| 久久久久久久精品吃奶| 欧美不卡视频在线免费观看 | 男人舔女人下体高潮全视频| 熟女少妇亚洲综合色aaa.| 欧美一区二区精品小视频在线| 如日韩欧美国产精品一区二区三区| 在线十欧美十亚洲十日本专区| 亚洲精品粉嫩美女一区| 亚洲欧洲精品一区二区精品久久久| 91成人精品电影| 欧美色视频一区免费| 国产亚洲av高清不卡| av视频在线观看入口| 久久国产亚洲av麻豆专区| 深夜精品福利| 级片在线观看| 欧美午夜高清在线| 日本三级黄在线观看| 午夜福利18| 免费在线观看亚洲国产| 自线自在国产av| 69精品国产乱码久久久| 精品一区二区三区视频在线观看免费| 视频在线观看一区二区三区| 欧美精品亚洲一区二区| 欧美在线一区亚洲| 成年版毛片免费区| 大型av网站在线播放| 日韩国内少妇激情av| 美女高潮到喷水免费观看| 啦啦啦观看免费观看视频高清 | 操美女的视频在线观看| 国产精品综合久久久久久久免费 | 中文字幕精品免费在线观看视频| videosex国产| 日韩大尺度精品在线看网址 | 熟女少妇亚洲综合色aaa.| 美女免费视频网站| 午夜成年电影在线免费观看| 啦啦啦免费观看视频1| 老司机福利观看| 国产野战对白在线观看| 精品日产1卡2卡| 亚洲伊人色综图| 免费人成视频x8x8入口观看| 欧美精品亚洲一区二区| 久久亚洲真实| 国产亚洲精品久久久久久毛片| 夜夜爽天天搞| 欧美乱色亚洲激情| 狠狠狠狠99中文字幕| 女人爽到高潮嗷嗷叫在线视频| av在线天堂中文字幕| 色综合婷婷激情| 19禁男女啪啪无遮挡网站| 国产1区2区3区精品| 亚洲精品美女久久久久99蜜臀| av天堂久久9| 久久精品国产亚洲av香蕉五月| 亚洲国产中文字幕在线视频| 国产欧美日韩一区二区三| √禁漫天堂资源中文www| 久久欧美精品欧美久久欧美| 亚洲人成伊人成综合网2020| 亚洲专区中文字幕在线| 日韩一卡2卡3卡4卡2021年| 女人高潮潮喷娇喘18禁视频| 桃色一区二区三区在线观看| 亚洲欧美日韩另类电影网站| 免费女性裸体啪啪无遮挡网站| 欧美最黄视频在线播放免费| 欧美午夜高清在线| 国产高清videossex| 久久国产精品男人的天堂亚洲| 成年女人毛片免费观看观看9| 国产三级在线视频| 99久久综合精品五月天人人| 在线观看一区二区三区| 色av中文字幕| 久久精品国产清高在天天线| 成人18禁高潮啪啪吃奶动态图| 亚洲第一青青草原| 中文字幕最新亚洲高清| 一a级毛片在线观看| 老司机午夜福利在线观看视频| 日本五十路高清| 亚洲免费av在线视频| 午夜免费成人在线视频| 欧美人与性动交α欧美精品济南到| 悠悠久久av| 制服诱惑二区| 欧美+亚洲+日韩+国产| 一进一出抽搐动态| 国产高清视频在线播放一区| 亚洲人成电影免费在线| 亚洲专区中文字幕在线| av片东京热男人的天堂| 天天躁狠狠躁夜夜躁狠狠躁| 久久久精品国产亚洲av高清涩受| 日韩免费av在线播放| 国产欧美日韩一区二区精品| 97碰自拍视频| 桃色一区二区三区在线观看| 亚洲精品一卡2卡三卡4卡5卡| 大陆偷拍与自拍| 我的亚洲天堂| 国产一区二区三区综合在线观看| 亚洲情色 制服丝袜| 国产黄a三级三级三级人| 色播在线永久视频| 亚洲一码二码三码区别大吗| 国语自产精品视频在线第100页| 日韩高清综合在线| 久久久久久免费高清国产稀缺| 精品熟女少妇八av免费久了| 999久久久国产精品视频| 一级作爱视频免费观看| 男女午夜视频在线观看| 真人一进一出gif抽搐免费| 在线十欧美十亚洲十日本专区| 国产精品香港三级国产av潘金莲| 丁香欧美五月| 国产成人影院久久av| 咕卡用的链子| 88av欧美| 成人国语在线视频| av免费在线观看网站| 久久人妻福利社区极品人妻图片| 亚洲情色 制服丝袜| 日韩 欧美 亚洲 中文字幕| 老司机午夜十八禁免费视频| 女同久久另类99精品国产91| 午夜a级毛片| 国产精华一区二区三区| 国产精品免费视频内射| 丝袜美腿诱惑在线| 最近最新中文字幕大全电影3 | 免费在线观看黄色视频的| 99久久99久久久精品蜜桃| 国产精品香港三级国产av潘金莲| 91国产中文字幕| 天天一区二区日本电影三级 | aaaaa片日本免费| 成年版毛片免费区| 在线天堂中文资源库| 久久午夜综合久久蜜桃| 久久精品aⅴ一区二区三区四区| 中文字幕色久视频| 免费在线观看影片大全网站| 日韩av在线大香蕉| 波多野结衣巨乳人妻| 国产欧美日韩精品亚洲av| 精品久久久久久成人av| 97碰自拍视频| 国产色视频综合| 欧美不卡视频在线免费观看 | 亚洲最大成人中文| 亚洲一码二码三码区别大吗| 精品不卡国产一区二区三区| 99久久国产精品久久久| 国产亚洲精品第一综合不卡| 日本三级黄在线观看| 国产精品免费一区二区三区在线| 精品第一国产精品| 亚洲九九香蕉| 夜夜看夜夜爽夜夜摸| 久久这里只有精品19| 人人妻,人人澡人人爽秒播| 婷婷丁香在线五月| 一区二区日韩欧美中文字幕| 日韩大尺度精品在线看网址 | 亚洲精品国产色婷婷电影| 人人妻人人爽人人添夜夜欢视频| 日日爽夜夜爽网站| 国产精品av久久久久免费| 日韩精品中文字幕看吧| 久久久久国内视频| 亚洲av成人不卡在线观看播放网| 婷婷丁香在线五月| 国产精品二区激情视频| 91九色精品人成在线观看| 男女下面插进去视频免费观看| 变态另类成人亚洲欧美熟女 | 在线观看www视频免费| 国产精华一区二区三区| 99国产极品粉嫩在线观看| 女人精品久久久久毛片| 国产男靠女视频免费网站| 成人亚洲精品av一区二区| 久久精品aⅴ一区二区三区四区| 人妻丰满熟妇av一区二区三区| 欧美日本中文国产一区发布| 99精品在免费线老司机午夜| 久久人妻福利社区极品人妻图片| 欧美精品啪啪一区二区三区| 桃红色精品国产亚洲av| 12—13女人毛片做爰片一| 欧美成狂野欧美在线观看| 午夜精品国产一区二区电影| 男人操女人黄网站| 国产高清视频在线播放一区| 很黄的视频免费| 色在线成人网| av片东京热男人的天堂| 亚洲国产精品sss在线观看| 欧美另类亚洲清纯唯美| 长腿黑丝高跟| 女人爽到高潮嗷嗷叫在线视频| 老鸭窝网址在线观看| 999精品在线视频| 亚洲一区高清亚洲精品| 久久精品国产清高在天天线| 亚洲午夜理论影院| 国产精品久久视频播放| 波多野结衣高清无吗| 人妻久久中文字幕网| 男女床上黄色一级片免费看| 两性午夜刺激爽爽歪歪视频在线观看 | 国产精品99久久99久久久不卡| 欧美成狂野欧美在线观看| 91成人精品电影| 国产日韩一区二区三区精品不卡| 免费看美女性在线毛片视频| 妹子高潮喷水视频| 欧美日韩亚洲国产一区二区在线观看| 久久香蕉国产精品| 久久国产精品影院| av片东京热男人的天堂| 亚洲av美国av| 亚洲国产精品合色在线| 欧美日韩福利视频一区二区| av视频免费观看在线观看| 咕卡用的链子| 成年人黄色毛片网站| 精品国产一区二区三区四区第35| 日日摸夜夜添夜夜添小说| 亚洲精华国产精华精| 国产精品影院久久| 久久热在线av| 满18在线观看网站| 麻豆成人av在线观看| e午夜精品久久久久久久| 男女床上黄色一级片免费看| 岛国在线观看网站| 国产精品秋霞免费鲁丝片| 精品国产美女av久久久久小说| 咕卡用的链子| 如日韩欧美国产精品一区二区三区| 国产亚洲精品第一综合不卡| 亚洲欧美日韩高清在线视频| 免费高清在线观看日韩| 午夜两性在线视频| 精品一区二区三区四区五区乱码| 久久天堂一区二区三区四区| 黄色毛片三级朝国网站| 久久精品91无色码中文字幕| 伊人久久大香线蕉亚洲五| 欧美另类亚洲清纯唯美| 亚洲男人天堂网一区| 亚洲午夜理论影院| 俄罗斯特黄特色一大片| 美女国产高潮福利片在线看| 免费人成视频x8x8入口观看| 91老司机精品| 又黄又粗又硬又大视频| or卡值多少钱| 亚洲国产精品久久男人天堂| 色在线成人网| 亚洲第一欧美日韩一区二区三区| 少妇粗大呻吟视频| 99久久国产精品久久久| 一区二区三区高清视频在线| 麻豆国产av国片精品| 精品少妇一区二区三区视频日本电影| 嫁个100分男人电影在线观看| 动漫黄色视频在线观看| 日日干狠狠操夜夜爽| 精品少妇一区二区三区视频日本电影| 丝袜人妻中文字幕| 亚洲精品在线美女| 免费在线观看亚洲国产| 欧美日本亚洲视频在线播放| 最新在线观看一区二区三区|