• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Three-type MJO Initiation processes over the Western Equatorial Indian Ocean

    2015-06-09 21:30:01MEIShuangliTimLIandCHENWen
    Advances in Atmospheric Sciences 2015年9期

    MEI Shuangli,Tim LI,and CHEN Wen

    1Center for Monsoon System Research,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing,100029

    2University of Chinese Academy of Sciences,Beijing 100049

    3International Laboratory on Climate and Environment Change and Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science and Technology,Nanjing 210044

    4International Pacific Research Center,Department of Meteorology,School of Ocean and Earth Science and Technology, University of Hawaii at Manoa,Honolulu,Hawaii 96822,USA

    Three-type MJO Initiation processes over the Western Equatorial Indian Ocean

    MEI Shuangli1,2,Tim LI?3,4,and CHEN Wen1

    1Center for Monsoon System Research,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing,100029

    2University of Chinese Academy of Sciences,Beijing 100049

    3International Laboratory on Climate and Environment Change and Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science and Technology,Nanjing 210044

    4International Pacific Research Center,Department of Meteorology,School of Ocean and Earth Science and Technology, University of Hawaii at Manoa,Honolulu,Hawaii 96822,USA

    Thirty strong Madden–Julian Oscillation(MJO)events in boreal winter 1982–2001 are selected to investigate the triggering processes of MJO convection over the western equatorial Indian Ocean(IO).These MJO events are classified into three types,according to their dynamic and thermodynamic precursor signals in situ.In Type I,a remarkable increase in low-level moisture occurs,on average,7 days prior to the convection initiation.This low-level moistening is mainly due to the advection of the background mean moisture by easterly wind anomalies over the equatorial IO.In Type II,lower-tropospheric ascending motion anomalies develop,on average,4 days prior to the initiation.The cause of this ascending motion anomaly is attributed to the anomalous warm advection,set up by a suppressed MJO phase in the equatorial IO.In Type III,there are no clear dynamic and thermodynamic precursor signals in situ.The convection might be triggered by energy accumulation in the upper layer associated with Rossby wave activity fluxes originated from the midlatitudes.

    MJO,Indian Ocean,dynamic precursor signal,thermodynamic precursor signal

    1.Introduction

    Madden–Julian Oscillation(MJO)is a dominant atmospheric low-frequency mode in the tropics.With a typical planetary zonal scale and a 20–90-day period,MJO convective anomalies are often triggered in the western equatorial Indian Ocean(WEIO),and then propagate eastward along the equator to near the dateline(Lau and Chan,1985;Knutson and Weickmann,1987;Rui and Wang,1990).The MJO is a major source of predictability for extended-range(10–30-day)weather prediction.However,many operational centers around the world suffer from prediction barrier problems at this range.Currently,as many operational forecast centers participate in subseasonal-to-seasonal forecast(S2S) projects,a key issue that these centers face is whether or not their operational models are able to successfully simulate and predict MJO initiation and subsequent evolution.Therefore, further exploration and understanding of MJO initiation and propagation issues are urgently needed.

    Previous studies suggest that MJO convection can be triggered by a tropical and an extratropical process.The tropical process includes the discharge–recharge of local moisture(Blad′e and Hartmann,1993;Kemball-Cook and Weare,2001),radiation–convection feedback(Hu and Randall,1994),circumnavigation of convective coupled Kelvin waves that travel around the global equatorial regions(Lau and Peng,1987;Hendon,1988;Wang and Li,1994),downstream forcing of Rossby waves associated with preceding suppressed phases of MJO in the eastern equatorial Indian Ocean(EEIO)(Matthews,2000;Seo and Kim,2003;Jiang and Li,2005;Zhao et al.,2013),and delayed sea surface temperature feedback(Li et al.,2008).

    The extratropical process is also an important mechanism for MJO initiation.The forcing from midlatitude perturbations propagates southward and equatorward(Hsu et al.,1990;Blad′e and Hartmann,1993;Matthews and Kiladis,1999;Pan and Li,2008;Ray et al.,2009).For example,Kiladis and Weickmann(1992)suggested that Rossby wave trains might propagate into the tropics from extratropical regions to trigger MJO convection.Matthews(2008) reported observations of enhanced Rossby wave activity between 10?N and 30?N,which led the convection onset of successive MJO events over the African and Indian Ocean(IO) regions.In addition,a case study by Ray et al.(2009)showed that equatorward momentum transport from the midlatitudesmight contribute to the generation of a low-level westerly that leads to MJO initiation.Wang et al.(2012)showed that subtropical cold surges could cause MJO convection initiation.

    Many previous studies of MJO initiation were based on case studies or idealized numerical modeling.Recently,Zhao etal.(2013)showed,from a composite analysis of20 years of observational data,that both the tropical lower-tropospheric moisture accumulation in the western IO and midlatitude wave processes are important.Ling et al.(2013)suggested that large-scale signals such as low-level easterly anomalies, surface pressure anomalies,and negative temperature anomalies from the middle to upper layers over the IO may distinguish between MJO and non-MJO events prior to their initiation.Straub(2012)found that 850 hPa easterly anomalies led by about 10 days before the convection onset of the primary MJO.

    By examining individual cases of the same 20-year period as in Zhao et al.(2013),we noticed that individual MJO eventsexperienced differentprecursor signals and thus different initiation processes.This motivated us to investigate individual MJO events,in order to understand what the different predecessors are and what their corresponding triggering processes involve.Accordingly,the present study investigates specific MJO initiation precursors and processes by examining each individual MJO event through diagnosis of a reanalysis dataset.The aim is then to try to elicit information on the commonalities and differences of theses samples,ultimately to reveal whether or not the extratropical forcing is independent of the tropical forcing.The outline of the paper is as follows:Section 2 introduces the datasets and methods used in the study.Section 3 presents the MJO initiation precursors and their respective triggering processes.A conclusion and discussion are given in section 4.

    2.Data and methodology

    2.1.Data

    This study is based on ERA-40 reanalysis datasets(Uppala et al.,2005)and outgoing longwave radiation(OLR) datasets(Liebmann and Smith,1996)derived from the European Centre for Medium-Range Weather Forecast(ECMWF) and the National Oceanic and Atmospheric Administration (NOAA)respectively,both with a 2.5?spatial resolution.Our analysis focuses on the same 20-yr period(1 January 1982 to 31 December 2001)northern winter(November–April)season as in Zhao et al.(2013).To examine the precursor SST signal,we use the Global Ocean Data Assimilation System (GODAS)pentad outputs of ocean temperature at the first layer(5 m),which has a resolution of 1?×1?that increases to 1/3?in the north–south direction within 10?of the equator (Saha et al.,2006).

    2.2.Moisture and heat budgets diagnosis

    The intraseasonal moisture and heat budget below are performed to understand the cause of low-level moisture increase and anomalous ascending motion generation before MJO convection onset.They are derived from the temperature and specific humidity tendency equations(Yanai et al., 1973)by applying a 20–90-day band-pass Lanczos filter:

    where cprepresents the specific heat at constant pressure,R the gas constant,?the horizontal gradient operator,L the latent heat of condensation,t time,p pressure,T temperature,q specific humidity,V V V the horizontal velocity vector,ωthe vertical p-velocity,Q1diabatic heating,and Q2the atmospheric apparent moisture sink(Zhao et al.,2013).In addition,()′denotes the 20–90-day intraseasonal component.

    where an overbar,a prime,and an asterisk represent the LFBS,MJO,and high-frequency component,respectively.

    2.3.Phase-independent wave activity flux

    To show the extratropical forcing effect on the MJO initiation,a wave activity flux is examined(Takaya and Nakamura,2001;Zhao et al.,2013):

    where a bar and a prime represent the LFBS and the intraseasonal anomaly,W is the horizontal wave activity flux,u and v are zonal and meridional wind velocity,respectively,andψ is the streamfunction(Zhao et al.,2013).

    3.Precursor signals associated with Threetype initiation processes

    The common features associated with MJO initiation during the 20-yr(1982–2001)northern winter period were examined by Zhao et al.(2013).Here,we focus on precursor signals associated with individual MJO events.Zhao et al. (2013)employed a regional EOF analysis method,with its first principal component amplitude more than one standard deviation as a criterion in selecting relatively strong MJO events.Using this method,a total of 55 cases are selected. The disadvantage of this method is that it includes local nonpropagating or westward-propagating events.To overcome this problem,an objective method,carried out in a way similar to that of Rui and Wang(1990),is employed to selectstrong,and the most representative,MJO events that formed over the WEIO.Firstly,a time–longitude diagram of the 20–90-day filtered OLR anomaly averaged over 10?S and 10?N is plotted.Then,MJO events are selected based on the time–longitude diagram using the following three criteria:(1)a contour line of negative OLR anomalies of?5 W m?2must appear continuously from the WEIO(~60?E)to the western Maritime Continent(~100?E).This constraint ensures continuous eastward propagation of the MJO over the IO.(2)The maximum strength of the negative OLR anomaly over the equatorial IO exceeds?25 W m?2(this lower limit is based on the standard deviation of OLR anomalies over the equatorial Indian Ocean and is applied to ensure that only strong MJO cases are selected).(3)At least 50%of the time span of the MJO event appears during the period from 1 November to 30 April of the following year.Using this criterion, we obtain 30 strong,continuous eastward-propagating MJO events that occurred during 1982–2001 and initiated over the WEIO.Among them,23 events overlap with those of Zhao et al.(2013).

    The information for all the selected individual MJO eventsisgiven in Table 1.Foreach event,the initiation region is determined according to the time–longitude diagram,following Zhao et al.(2013).Once the initiation region is determined,a box(at least 10?×10?)averaged time series of the intraseasonal OLR anomaly is plotted,and the initiation date is then determined based on the OLR transition from positive to negative values(see Fig.1a for an example).The vertical profiles of 20–90-day filtered key atmospheric variables such as vertical velocity,specific humidity and temperature are then examined.

    Based on the examination of the aforementioned key dynamic and thermodynamic signals and their corresponding triggering processes before the initiation for each event,we put those MJO events with common characteristics together for analysis,and thus three types of initiation processes are identified.In the first type,PBL moisture anomalies signif icantly lead the convection onset.In the second type,lowertropospheric ascending motion anomalies lead the convection initiation.In the third type,neither low-level specific humidity nor vertical motion lead the convection,but there is clear evidence of midlatitude Rossby wave activity flux convergence before the convection onset.

    In the following,we investigate the common features associated with each of the three types of initiation processes. A composite analysis method was applied to each type,with a reference day(day 0)corresponding to the initiation date shown in Table 1.Therefore,day 0 represents the time of MJO convection initiation in the WEIO.

    3.1.Type I:PBL moisture-leading

    Seventeen out of thirty MJO events are identified as possessing the characteristic of robust PBL moisture leading MJO convection initiation.The left panel of Fig.1 represents the composite time evolution of the intraseasonal OLR anomaly and vertical profiles of intraseasonal vertical velocity and specific humidity anomalies(Figs.1a–c).Prior to the convection initiation,there are positive OLR and midtropospheric descending motion anomalies.On average,the PBL significant positive moisture anomalies lead the convection initiation by 7 days.The variance of the PBL moisture phase leading is 8.1,which implies a standard deviation of2.9 days.Such a phase leading feature is statistically significant, exceeding the 95%confidence level.The moisture anomalies are initially confined to the lower level and then develop gradually upward into the upper troposphere(Fig.1c).The low-level moisture increase could cause a convectively unstable stratification,resulting in the MJO convection initia-tion.The onset of the shallow convection may be inferred from the vertical velocity profile from day?2 to day 0(Fig. 1b),when anomalous ascending motion occurs primarily in the low level.After the initiation date,the ascending motion anomaly penetrates quickly into the upper troposphere,representing the onset of deep convection(Fig.1b).

    Table 1.Information on the individual MJO events selected for each type,including case number and initiation date(in the format of year–month–day;for example,19821214 corresponds to 14 December 1982).

    Figure 4 shows the composite of 1000–700 hPa integrated intraseasonal wind and background moisture fields averaged during the period from day?7 to day 0.Note that maximum mean specific humidity appears in the eastern IO and Maritime Continent,and mean moisture decreases toward the west.Moreover,the significant moisture field distributes over the equatorial IO regions.The intraseasonal flow field during day?7 to day 0 is characterized by easterly anomalies at the equator and two anticyclonic Rossby gyres off the equator in the tropical IO.The wind anomaly distribution is consistent with the Gill pattern(Gill,1980)and is typically observed when the suppressed MJO phase is located over the EEIO. Further exploration of the intraseasonal OLR field confirmsthat a maximum positive OLR anomaly center associated with the MJO is located over the EEIO during this period (figure not shown).The intraseasonal flow advects the background high moisture westward,resulting in PBL moisture increases in the WEIO.

    3.2.Type II:PBL ascending-motion-leading

    Seven out of the thirty MJO events happened when significant PBL ascending motion anomalies led the convection initiation,while moisture anomalies did not.The right panel of Fig.1 shows the composite time evolution of the intraseasonal OLR anomaly and the time–vertical sections of anomalous vertical motion and moisture fields.The ascending motion anomaly,which is significant at the 95%conf idence level,occurs initially near the surface and develops gradually upward.On average,the PBL ascending motion leads the convection onset by 4 days(Figs.1e and f),and the variance for the vertical motion phase-leading in Type II is 1.6.This implies a standard deviation of 1.3 days.Diagnosis of the low-level moisture budget during the period from day?3 to day 0 shows that the increased moisture is primarily caused by vertical advection,while the horizontal advection plays a minor role(Fig.2b).A further analysis shows that the moistening due to vertical advection is mainly caused by the advection of mean moisture by anomalous ascending motion (figure not shown).

    To understand the cause of the PBL ascending motion anomaly,we diagnose the lower-tropospheric heat budget, following Jiang and Li(2005).Figure 5b represents the composite of 1000–700 hPa integrated intraseasonal heat budget termsaveraged during the period from day?4 to day 0.Compared with Fig.5a,the budget result reveals that the horizontal temperature advection is a major term that is offset largely by the adiabatic cooling term,which is associated with vertical motions.In other words,the negative adiabatic heating, representing the cooling of the atmosphere induced by the ascending motion anomaly,is compensated by the anomalous horizontal warm advection.The temperature tendency term and the diabatic term are much smaller,and can be,to the first order of approximation,neglected.The result suggests that the PBL ascending motion is caused by the anomalous horizontal warm advection.This warm advection effect acts in a similar way to the traditional omega equation in a quasigeostrophic framework(Holton,2004).

    To further examine the source of the anomalous horizontal warm advection,each component of the horizontal temperature advection(Fig.3b)is calculated.It is found that the largest contributor is the advection of LFBS mean temperature by intraseasonal flow.Figure 6 represents the spatial distribution of vertically integrated intraseasonal wind and background temperature fields averaged during the period of day?4 to day 0.Whereas maximum mean temperature appears over the EEIO,the MJO flow prior to the initiation is dominated by anomalous easterlies at the equator and anticyclonic flow to the south of the equator.The anomalous lower-tropospheric circulation is associated with a positive OLRanomaly centered overthe tropicalcentralIO(figure not shown).The anomalous easterly flow,which is statistically significant(exceeding the 95%confidence level),advects the background high temperature westward,leading to anomalous warm temperature advection,which induces anomalous ascending motion over the initiation region.

    Another possible mechanism in generating PBL vertical motion is through SST forcing,in which warm SST anomalies could cause a PBL convergence via the change of PBL temperature and pressure fields(Lindzen and Nigam,1987). The examination of the local intraseasonal SSTA field shows that for three(four)out of seven MJO events,there are positive(negative)precursor SSTA signals over the initiation region(figure not shown).This mixed SSTA condition implies that the ocean surface condition is not critical for generating the anomalous ascending motion.In contrast,the anomalous warm advection appears in all seven Type II events,implying that it plays a critical role in triggering anomalous ascending motion prior to MJO initiation.

    3.3.Type III:Neither PBL moisture-nor ascendingmotion-leading

    In contrast to the first two types of initiation processes, there are no obvious local dynamic and thermodynamic precursor signals in Type III.A total of six events are identified for this type.Figure 7 shows the composite time evolution of the intraseasonal OLR anomaly,vertical motion,and moisture profiles for Type III.During the period of day?5 to day 0,descending motions and negative moisture anomalies appear over the initiation region in the low level(from 1000 to 700 hPa).Compared with Type I and Type II,it is apparent that the moisture tendency is positive,and the PBL moistening can be mainly attributed to the apparent moisture source term(?Q2/L)(Fig.2c).The heat budget result shows that the descending-motion-induced adiabatic warming is offset by the diabatic heating.The horizontal temperature advection,on the other hand,is very small(Fig.5 c).

    Although no robust tropical precursor signals can be found(Figs.7b and c),there are clear midlatitude signals prior to Type III MJO convection onset.Figure 8 represents the composite upper-tropospheric(200 hPa)streamfunction anomaly pattern prior to the initiation date(averaged from day?5 to day 0).It is clear that the streamfunction anomalies display a clear wave train pattern,particularly in the Southern Hemisphere,with positive anomaly centers located in the western South Atlantic and South Africa,and negative anomaly centers in the southwestern South Atlantic and southeastSouth Atlantic.The 200 hPa wave activity flux field exhibits an equatorward wave energy dispersion characteristic.In the midlatitudes,there are pronounced eastward wave activity fluxes,which turn equatorward and converge onto the tropical IO(Fig.8).

    4.Conclusion and discussion

    In the present reported study,the early signals and initiation processes relating to each one of a set of individual MJO events over the WEIO in winter are investigated through diagnosis of a 20-yr ERA-40 reanalysis dataset.Thirty strong, continuouseastward-propagating MJOeventsare selected for analysis.These events are classified into three types according to their precursor local moisture and vertical motion signals.

    For Type I,MJO initiation is characterized by a PBL moisture-leading process.Seventeen events are identified for this type.The analysis shows that a notable increase of the lower-tropospheric specific humidity occurs 7 days before MJO convection onset.The increase of lower-tropospheric moisture induces a convectively unstable stratification,leading to the MJO convection onset over the WEIO.The diagnosis of the lower-level specific humidity budget shows that the moistening is induced mainly by the advection of the mean moisture by the MJO flow.The anomalous wind is a part of the Rossby wave response to a preceding MJO suppressed phase with a heating anomaly over the EEIO.

    For Type II,MJO initiation is characterized by a phase leading of lower-tropospheric ascending motion.Seven events are identified for this type.The analysis shows that significant development of the lower-tropospheric ascending motion occurs 4 days prior to MJO convection onset.The ascending motion anomalies advect atmospheric moisture upward,promoting latent heat release and triggering MJO convection.A diagnosis of the lower-level heat budget indicates that anomalous warm horizontal advection prior to the convection initiation is a primary factor triggering the ascending motion anomaly.Further diagnosis suggests that the warm advection is mainly due to the advection of the background mean temperature by equatorial easterly anomalies in response to a positive OLR anomaly in the equatorial IO.

    For Type III,no clear precursor moisture and ascending motion signals are found in situ.The forcing arises primarily from midlatitude perturbations.Six events are identified.The composite analysis shows that there are robust Rossby wave train signals in the upper troposphere(with alternate cyclonic and anticyclonic circulation)extending from the midlatitudes to the tropical IO a few days prior to Type III MJO initiation. The upper-tropospheric wave activity fluxes point toward thetropical IO,with a flux convergence occurring there.The result implies that midlatitude Rossby wave energy accumulation may have an effect on the triggering of MJO convection.

    Compared with the composite result of Zhao et al.(2013), who showed common precursor features of MJO initiation, the current analysis suggests three different types of initiation characteristics among individual events within the 20 year period.Through event-by-event examination,we have classified the MJO initiation scenarios into three types based on local dynamic and thermodynamic precursor signals.We believe that such a classification is helpful for operational application to identify and predict individual MJO initiation events.

    However,it is worth mentioning that such a classification has its limitations.For example,Types I and II do not exclude the midlatitude wave impact.In fact,we note that eight out of seventeen Type I events and two out of seven Type II events involve the midlatitude wave energy dispersion effect.This indicates that during the initiation of these MJO events,both tropical and extratropical processes might work together.For these mixed events,it is important to further reveal the relative roles of the tropical and extratropical processes through idealized numerical experiments that isolate each of the processes.We intend to carry out this work in the near future. For Type III,on the other hand,the midlatitude wave process seems to be working alone,since key dynamic and thermodynamic precursor signals in the tropical region were not found.

    Another issue is how the current findings relate to successive and primary events(Matthews,2008).It is likely that Type I events are more like successive cases,since they are preceded by low-level easterly anomalies in the equatorial IO induced by a preceding suppressed-phase MJO event(Fig.4, also see Zhao et al.,2013).Type II and III cases,on the other hand,are more likely primary events,since they are triggered either by extratropical forcing or heating anomalies not related to preceding MJO events.More in-depth observational analyses and numerical modeling studies are needed to reveal the origin of the precursor heating and circulation anomalies associated with Type II events and specific processes through which midlatitude waves affect tropical convection.

    Acknowledgements.This research was supported by the China National 973 Project Grant No.2015CB453200),the National Natural Science Foundation of China Grant Nos.41475084 and 41230527,the Office of Naval Research Grant No.N00014-1210450,and the International Pacific Research Center(IPRC) sponsored by the Japan Agency for Marine-Earth Science and Technology.The School of Ocean and Earth Science and Technology contribution number is 9293,the IPRC contribution number is 1106, and Earth Science Modeling Center contribution number 039.We wish to thank the reviewers for their valuable suggestions,which helped to improve the manuscript.

    REFERENCES

    Blad′e,I.,and D.L.Hartmann,1993:Tropical intraseasonal oscillations in a simple nonlinear model.J.Atmos.Sci.,50,2922– 2939,doi:10.1175/1520-0469(1993)050<2922:TIOIAS>2. 0.CO;2.

    Gill,A.E.,1980:Some simple solutions for heat-induced tropical circulation.Quart.J.Roy.Meteor.Soc.,106,447–462,doi: 10.1002/qj.49710644905.

    Hendon,H.H.,1988:A simple model of the 40-50 day oscillation. J.Atmos.Sci.,45,569–584,doi:10.1175/1520-0469(1988) 045<0569:ASMOTD>2.0.CO;2.

    Holton,J.,2004:An Introduction to Dynamic Meteorology.4th ed.,Academic Press,535 pp.

    Hsu,H.-H.,B.J.Hoskins,and F.-F.Jin,1990:The 1985/86 intraseasonal oscillation and the role of the extratropics.J.Atmos.Sci.,47,823–839,doi:10.1175/1520-0469(1990)047<0823:TIOATR>2.0.CO;2.

    Hsu,P.-C.,and T.Li,2012:Role of the boundary layer moisture asymmetry in causing the eastward propagation of the Madden-Julian oscillation.J.Climate,25,4914–4931,doi: 10.1175/JCLI-D-11-00310.1.

    Hu,Q.,and D.A.Randall,1994:Low-frequency oscillations in radiative-convective systems.J.Atmos.Sci.,51,1089–1099, doi:10.1175/1520-0469(1994)051<1089:LFOIRC>2.0.CO; 2.

    Jiang,X.-A.,and T.Li,2005:Reinitiation of the boreal summer intraseasonal oscillation in the tropical Indian Ocean.J.Climate,18,3777–3795,doi:10.1175/JCLI3516.1.

    Kemball-Cook,S.R.,and B.C.Weare,2001:The onset of convection in the Madden-Julian oscillation.J.Climate,14,780–793,doi:10.1175/1520-0442(2001)014<0780:TOOCIT>2. 0.CO;2.

    Kiladis,G.N.,and K.M.Weickmann,1992:Circulation anomalies associated with tropical convection during northern winter.Mon.Wea.Rev.,120,1900–1923,doi:10.1175/1520-0493(1992)120<1900:CAAWTC>2.0.CO;2.

    Knutson,T.R.,and K.M.Weickmann,1987:30–60 day atmospheric oscillations:Composite life cycles of convection and circulation anomalies.Mon.Wea.Rev.,115,1407–1436,doi: 10.1175/1520-0493(1987)115<1407:DAOCLC>2.0.CO;2.

    Lau,K.-M.,and P.H.Chan,1985:Aspects of the 40–50 day oscillation during the northern winter as inferred from outgoing longwave radiation.Mon.Wea.Rev.,113,1889–1909,doi: 10.1175/1520-0493(1985)113<1889:AOTDOD>2.0.CO;2.

    Lau,K.-M.,and L.Peng,1987:Origin of low-frequency(intraseasonal)oscillations in the tropical atmosphere.Part I: Basic theory.J.Atmos.Sci.,44,950–972,doi:10.1175/1520-0469(1987)044<0950:OOLFOI>2.0.CO;2.

    Li,T.,F.Tam,X.H.Fu,T.J.Zhou,and W.J.Zhu,2008:Causes of the intraseasonal SST variability in the tropical Indian Ocean. Atmos.Oceanic Sci.Lett.,1,18–23.

    Liebmann,B.,and C.A.Smith,1996:Description of a complete(interpolated)outgoing longwave radiation dataset.Bull. Amer.Meteor.Soc.,77,1275–1277.

    Lindzen,R.S.,and S.Nigam,1987:On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics.J.Atmos.Sci.,44,2418–2436,doi: 10.1175/1520-0469(1987)044<2418:OTROSS>2.0.CO;2.

    Ling,J.,C.D.Zhang,and P.Bechtold,2013:Large-scale distinctions between MJO and Non-MJO convective initiation over the tropical Indian Ocean.J.Atmos.Sci.,70,2696–2712,doi: 10.1175/JAS-D-13-029.1.

    Matthews,A.J.,2000:Propagation mechanisms for the Madden-Julian Oscillation.Quart.J.Roy.Meteor.Soc.,126,2637–2651,doi:10.1002/qj.49712656902.

    Matthews,A.J.,2008:Primary and successive events in the Madden-Julian oscillation.Quart.J.Roy.Meteor.Soc.,134, 439–453,doi:10.1002/qj.224.

    Matthews,A.J.,and G.N.Kiladis,1999:The tropicalextratropical interaction between high-frequency transients and the Madden-Julian oscillation.Mon.Wea.Rev.,127,661–677,doi:10.1175/1520-0493(1999)127<0661:TTEIBH>2. 0.CO;2.

    Pan,L.-L.,and T.Li,2008:Interactions between the tropical ISO and midlatitude low-frequency flow.Climate Dyn.,31,375–388,doi:10.1007/s00382-007-0272-7.

    Ray,P.,C.D.Zhang,J.Dudhia,and S.S.Chen,2009:A numerical case study on the initiation of the Madden-Julian oscillation. J.Atmos.Sci.,66,310–331,doi:10.1175/2008JAS2701.1.

    Rui,H.L.,and B.Wang,1990:Development characteristics and dynamic structure of tropical intraseasonal convection anomalies.J.Atmos.Sci.,47,357–379,doi:10.1175/1520-0469(1990)047<0357:DCADSO>2.0.CO;2.

    Saha,S.,and Coauthors,2006:The NCEP climate forecastsystem. J.Climate,19,3483–3517,doi:10.1175/JCLI3812.1.

    Seo,K.H.,and K.Y.Kim,2003:Propagation and initiation mechanisms of the Madden-Julian oscillation.J.Geophys.Res.,108,4384,doi:10.1029/2002JD002876.

    Straub,K.H.,2012:MJO initiation in the real-time multivariate MJO index.J.Climate,26,1130–1151,doi:10.1175/JCLID-12-00074.1.

    Takaya,K.,and H.Nakamura,2001:A formulation of a phaseindependent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J.Atmos.Sci.,58,608–627,doi:10.1175/1520-0469(2001) 058<0608:AFOAPI>2.0.CO;2.

    Uppala,S.M.,and Coauthors,2005:The ERA-40 re-analysis. Quart.J.Roy.Meteor.Soc.,131,2961–3012,doi:10.1256/qj. 04.176.

    Wang,B.,and T.M.Li,1994:Convective interaction with boundary-layer dynamics in the development of a tropical intraseasonal system.J.Atmos.Sci.,51,1386–1400,doi: 10.1175/1520-0469(1994)051<1386:CIWBLD>2.0.CO;2.

    Wang,L.,K.Kodera,and W.Chen,2012:Observed triggering of tropical convection by a cold surge:Implications for MJO initiation.Quart.J.Roy.Meteor.Soc.,138,1740–1750,doi: 10.1002/qj.1905.

    Yanai,M.,S.Esbensen,and J.-H.Chu,1973:Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets.J.Atmos.Sci.,30,611–627,doi: 10.1175/1520-0469(1973)030<0611:DOBPOT>2.0.CO;2.

    Zhao,C.B.,T.Li,and T.J.Zhou,2013:Precursor signals and processes associated with MJO initiation over the Tropical Indian Ocean.J.Climate,26,291–370,doi:10.1175/JCLID-12-00113.1.

    :Mei,S.L.,T.Li,and W.Chen,2015:Three-type MJO Initiation processes over the Western Equatorial Indian Ocean.Adv.Atmos.Sci.,32(9),1208–1216,

    10.1007/s00376-015-4201-0.

    12 September 2014;revised 10 February 2015;accepted 16 February 2015)

    ?Corresponding author:Tim LI

    Email:timli@hawaii.edu

    亚洲精品,欧美精品| 涩涩av久久男人的天堂| 精品一区二区三区视频在线| 精品少妇内射三级| 久久国产精品男人的天堂亚洲 | 高清av免费在线| 亚洲av.av天堂| 国产欧美日韩综合在线一区二区| 大陆偷拍与自拍| 亚洲国产精品999| 免费人成在线观看视频色| 一级爰片在线观看| 三上悠亚av全集在线观看| 性色av一级| 欧美日韩av久久| 国产免费一区二区三区四区乱码| 一本色道久久久久久精品综合| 国产精品一国产av| 国产精品偷伦视频观看了| 欧美日韩成人在线一区二区| 永久免费av网站大全| 黑丝袜美女国产一区| 黄色配什么色好看| 宅男免费午夜| 日韩成人伦理影院| 亚洲欧美成人精品一区二区| 18+在线观看网站| 热99久久久久精品小说推荐| 国产精品国产av在线观看| 九九爱精品视频在线观看| 热re99久久精品国产66热6| 激情视频va一区二区三区| 久久99热6这里只有精品| 黄色视频在线播放观看不卡| av国产久精品久网站免费入址| 91aial.com中文字幕在线观看| 在线精品无人区一区二区三| 亚洲人成网站在线观看播放| h视频一区二区三区| 午夜视频国产福利| 国产免费又黄又爽又色| 极品少妇高潮喷水抽搐| 国产色爽女视频免费观看| 国产成人精品一,二区| 亚洲丝袜综合中文字幕| 夜夜爽夜夜爽视频| 天天影视国产精品| 涩涩av久久男人的天堂| 久久精品国产鲁丝片午夜精品| 最近的中文字幕免费完整| 亚洲欧美中文字幕日韩二区| a级毛片黄视频| 美国免费a级毛片| 一级毛片我不卡| 9191精品国产免费久久| 精品卡一卡二卡四卡免费| 亚洲情色 制服丝袜| 国产日韩一区二区三区精品不卡| 自拍欧美九色日韩亚洲蝌蚪91| 久久久久精品久久久久真实原创| 免费女性裸体啪啪无遮挡网站| 久久鲁丝午夜福利片| 国产成人一区二区在线| 捣出白浆h1v1| 亚洲国产日韩一区二区| 欧美变态另类bdsm刘玥| 人人妻人人爽人人添夜夜欢视频| 久久国产精品男人的天堂亚洲 | 如日韩欧美国产精品一区二区三区| 久久久亚洲精品成人影院| 午夜福利网站1000一区二区三区| 国产成人精品在线电影| 国产精品一区二区在线观看99| a级片在线免费高清观看视频| 久久久国产欧美日韩av| 中文字幕亚洲精品专区| 久久久久久人人人人人| 久久久久久久大尺度免费视频| 一二三四在线观看免费中文在 | 成人二区视频| 99热6这里只有精品| 99热6这里只有精品| 国产亚洲一区二区精品| 久久人人97超碰香蕉20202| 日本91视频免费播放| 乱人伦中国视频| 国产日韩欧美在线精品| 青春草视频在线免费观看| 不卡视频在线观看欧美| 国产在线免费精品| 欧美日韩综合久久久久久| 国产女主播在线喷水免费视频网站| 大陆偷拍与自拍| 国产精品 国内视频| 久久精品国产自在天天线| 国产精品人妻久久久影院| 黑人欧美特级aaaaaa片| 日韩欧美精品免费久久| 少妇的逼好多水| 国产视频首页在线观看| 黄色怎么调成土黄色| 国产在视频线精品| 国内精品宾馆在线| 国产日韩欧美视频二区| 一本色道久久久久久精品综合| 日韩中文字幕视频在线看片| 2022亚洲国产成人精品| 久久精品国产自在天天线| 精品久久蜜臀av无| 久久久久人妻精品一区果冻| 美女内射精品一级片tv| 我要看黄色一级片免费的| 国产一级毛片在线| 国产深夜福利视频在线观看| h视频一区二区三区| 成人免费观看视频高清| 香蕉丝袜av| 大码成人一级视频| 男女无遮挡免费网站观看| 中国美白少妇内射xxxbb| 成人亚洲精品一区在线观看| 欧美xxⅹ黑人| 成人手机av| 久久精品久久久久久噜噜老黄| 丝袜人妻中文字幕| 草草在线视频免费看| 国产成人91sexporn| 高清av免费在线| 亚洲精品久久午夜乱码| 毛片一级片免费看久久久久| 中文字幕精品免费在线观看视频 | 国产色爽女视频免费观看| 久久久精品免费免费高清| 18禁国产床啪视频网站| videosex国产| 国产免费一级a男人的天堂| 最新的欧美精品一区二区| 26uuu在线亚洲综合色| 日韩av免费高清视频| 青青草视频在线视频观看| 最后的刺客免费高清国语| 80岁老熟妇乱子伦牲交| 尾随美女入室| 一级黄片播放器| 999精品在线视频| 老司机影院毛片| 一区二区日韩欧美中文字幕 | 国产欧美日韩一区二区三区在线| 亚洲综合色网址| 久久久国产一区二区| 伦理电影大哥的女人| 久久人人97超碰香蕉20202| 久久久久国产精品人妻一区二区| 老司机亚洲免费影院| 国产国拍精品亚洲av在线观看| 亚洲美女视频黄频| 大码成人一级视频| 久久青草综合色| 中国三级夫妇交换| 亚洲性久久影院| 成人综合一区亚洲| 捣出白浆h1v1| 边亲边吃奶的免费视频| 只有这里有精品99| 精品福利永久在线观看| 欧美精品一区二区免费开放| 日韩大片免费观看网站| 国产一区亚洲一区在线观看| 夫妻午夜视频| 美女内射精品一级片tv| 最后的刺客免费高清国语| 青青草视频在线视频观看| 亚洲精品第二区| 午夜影院在线不卡| 久久国产精品男人的天堂亚洲 | 午夜影院在线不卡| 18禁国产床啪视频网站| 久久精品人人爽人人爽视色| 永久免费av网站大全| 老司机影院成人| 亚洲欧美精品自产自拍| 91国产中文字幕| 色吧在线观看| 黄色怎么调成土黄色| 美女福利国产在线| 人妻少妇偷人精品九色| 欧美成人午夜免费资源| 成人午夜精彩视频在线观看| 亚洲欧美成人精品一区二区| 大香蕉97超碰在线| 亚洲 欧美一区二区三区| 精品久久久精品久久久| 日本爱情动作片www.在线观看| 有码 亚洲区| 嫩草影院入口| 熟妇人妻不卡中文字幕| 精品酒店卫生间| 国产熟女午夜一区二区三区| 免费久久久久久久精品成人欧美视频 | 最近中文字幕高清免费大全6| 欧美日韩国产mv在线观看视频| 少妇 在线观看| 18禁观看日本| 少妇的逼水好多| 成人毛片60女人毛片免费| 大香蕉久久成人网| 国产成人91sexporn| 国产精品一区二区在线不卡| 久久午夜福利片| 欧美3d第一页| 99九九在线精品视频| 五月玫瑰六月丁香| 国产成人a∨麻豆精品| 日日摸夜夜添夜夜爱| 久久热在线av| 国产日韩欧美视频二区| 国产淫语在线视频| 亚洲国产精品一区二区三区在线| 亚洲av国产av综合av卡| 一级毛片电影观看| 丝袜脚勾引网站| 丝袜在线中文字幕| 一区二区日韩欧美中文字幕 | 97在线人人人人妻| 18+在线观看网站| 免费观看在线日韩| 中文字幕人妻熟女乱码| 两个人看的免费小视频| 欧美xxxx性猛交bbbb| 男女无遮挡免费网站观看| 99国产综合亚洲精品| 日韩制服骚丝袜av| 人人妻人人添人人爽欧美一区卜| 日韩三级伦理在线观看| 久久国产亚洲av麻豆专区| a 毛片基地| 亚洲av在线观看美女高潮| 国产精品一区二区在线观看99| 国产免费一级a男人的天堂| 一区二区三区精品91| 在线看a的网站| 国产精品一国产av| 香蕉国产在线看| 免费播放大片免费观看视频在线观看| 制服诱惑二区| 日本-黄色视频高清免费观看| 日韩制服丝袜自拍偷拍| 99热全是精品| 久久久a久久爽久久v久久| 久热这里只有精品99| 欧美+日韩+精品| 香蕉丝袜av| 色网站视频免费| 高清黄色对白视频在线免费看| 国产又色又爽无遮挡免| 赤兔流量卡办理| 色94色欧美一区二区| 欧美激情极品国产一区二区三区 | 亚洲国产av新网站| 如日韩欧美国产精品一区二区三区| 中文字幕人妻熟女乱码| 国产男女内射视频| 国语对白做爰xxxⅹ性视频网站| 久久国产亚洲av麻豆专区| 亚洲精品456在线播放app| 国产一区有黄有色的免费视频| 久久久久久久久久久免费av| 最近最新中文字幕大全免费视频 | 免费日韩欧美在线观看| 日本wwww免费看| 亚洲欧美成人综合另类久久久| 久久人人爽人人爽人人片va| 午夜免费鲁丝| 一二三四在线观看免费中文在 | 国产精品国产三级国产专区5o| 18禁观看日本| 国产午夜精品一二区理论片| 精品熟女少妇av免费看| 一区二区三区精品91| 内地一区二区视频在线| 人妻人人澡人人爽人人| 日韩av免费高清视频| 又黄又粗又硬又大视频| 亚洲第一av免费看| 永久网站在线| 女人精品久久久久毛片| av国产久精品久网站免费入址| 黄色毛片三级朝国网站| 内地一区二区视频在线| 精品人妻熟女毛片av久久网站| 一级黄片播放器| 免费av中文字幕在线| 亚洲精品国产av成人精品| 又黄又爽又刺激的免费视频.| 亚洲少妇的诱惑av| 亚洲av日韩在线播放| 亚洲美女视频黄频| 亚洲欧美清纯卡通| 欧美亚洲日本最大视频资源| 九草在线视频观看| 午夜日本视频在线| 国产亚洲午夜精品一区二区久久| 精品少妇久久久久久888优播| 日本av手机在线免费观看| 美女内射精品一级片tv| 日韩欧美精品免费久久| 建设人人有责人人尽责人人享有的| 久热久热在线精品观看| 最近2019中文字幕mv第一页| 一个人免费看片子| 精品国产露脸久久av麻豆| 天天操日日干夜夜撸| 如日韩欧美国产精品一区二区三区| 国产高清国产精品国产三级| 男人爽女人下面视频在线观看| 99久久人妻综合| 欧美日韩av久久| 精品亚洲成a人片在线观看| 男女边摸边吃奶| 一级毛片电影观看| 国产日韩欧美在线精品| 精品久久蜜臀av无| 欧美97在线视频| 亚洲av男天堂| 新久久久久国产一级毛片| 免费播放大片免费观看视频在线观看| 韩国高清视频一区二区三区| 黄片无遮挡物在线观看| 国产乱来视频区| 天堂中文最新版在线下载| 一区二区三区乱码不卡18| 久久精品国产亚洲av涩爱| 亚洲精品国产色婷婷电影| 日本91视频免费播放| 搡女人真爽免费视频火全软件| 最近的中文字幕免费完整| 亚洲欧美一区二区三区黑人 | 丰满乱子伦码专区| 精品视频人人做人人爽| 国产亚洲午夜精品一区二区久久| 午夜福利视频在线观看免费| 亚洲国产av影院在线观看| 精品99又大又爽又粗少妇毛片| 亚洲精品aⅴ在线观看| 我要看黄色一级片免费的| 波野结衣二区三区在线| 91精品伊人久久大香线蕉| 免费看光身美女| 搡老乐熟女国产| 考比视频在线观看| 久久久久人妻精品一区果冻| 日韩成人伦理影院| 狂野欧美激情性xxxx在线观看| 精品国产一区二区三区四区第35| 我的女老师完整版在线观看| 亚洲国产毛片av蜜桃av| 亚洲精品色激情综合| 新久久久久国产一级毛片| 日本vs欧美在线观看视频| 精品亚洲乱码少妇综合久久| www.色视频.com| 亚洲少妇的诱惑av| 少妇的丰满在线观看| 亚洲国产毛片av蜜桃av| 2018国产大陆天天弄谢| 国产精品麻豆人妻色哟哟久久| 26uuu在线亚洲综合色| 黄色 视频免费看| 久久免费观看电影| 国产亚洲一区二区精品| 国产 一区精品| 久久99热6这里只有精品| 美女大奶头黄色视频| 熟女人妻精品中文字幕| 日韩av不卡免费在线播放| 一二三四在线观看免费中文在 | 成人无遮挡网站| 五月开心婷婷网| 日本av手机在线免费观看| 国产一区二区三区综合在线观看 | 欧美日本中文国产一区发布| 国精品久久久久久国模美| 另类亚洲欧美激情| 国产欧美日韩综合在线一区二区| 精品99又大又爽又粗少妇毛片| 香蕉国产在线看| 亚洲国产欧美日韩在线播放| 免费观看a级毛片全部| 在线亚洲精品国产二区图片欧美| 日本av免费视频播放| 国产无遮挡羞羞视频在线观看| 欧美精品人与动牲交sv欧美| 三级国产精品片| 这个男人来自地球电影免费观看 | 国产成人免费无遮挡视频| 性高湖久久久久久久久免费观看| 少妇猛男粗大的猛烈进出视频| 国产不卡av网站在线观看| 91久久精品国产一区二区三区| 久热这里只有精品99| 成人影院久久| 国产成人精品一,二区| 大码成人一级视频| 国产午夜精品一二区理论片| 天美传媒精品一区二区| 亚洲成色77777| 一本久久精品| 久久99一区二区三区| 久久国内精品自在自线图片| 久久精品国产亚洲av涩爱| 黄色毛片三级朝国网站| 你懂的网址亚洲精品在线观看| 久久韩国三级中文字幕| 中文字幕另类日韩欧美亚洲嫩草| 欧美国产精品va在线观看不卡| 午夜福利在线观看免费完整高清在| 毛片一级片免费看久久久久| 精品国产露脸久久av麻豆| 国产精品嫩草影院av在线观看| 精品国产一区二区三区久久久樱花| 精品久久国产蜜桃| 97在线人人人人妻| 久久久久视频综合| 亚洲国产毛片av蜜桃av| 亚洲av男天堂| 亚洲伊人色综图| 99热网站在线观看| 在线观看免费视频网站a站| 亚洲欧洲精品一区二区精品久久久 | 又粗又硬又长又爽又黄的视频| 国产探花极品一区二区| 亚洲av.av天堂| 国产精品久久久久久精品古装| 少妇高潮的动态图| 黑人高潮一二区| 王馨瑶露胸无遮挡在线观看| 视频中文字幕在线观看| 亚洲欧美色中文字幕在线| 成人黄色视频免费在线看| a级毛片黄视频| 国产高清不卡午夜福利| 午夜免费鲁丝| 国产淫语在线视频| 一本—道久久a久久精品蜜桃钙片| 国产精品99久久99久久久不卡 | 久久久久视频综合| av黄色大香蕉| 在线看a的网站| 咕卡用的链子| 熟女av电影| 亚洲av福利一区| 亚洲高清免费不卡视频| 一个人免费看片子| 国产片内射在线| 少妇的逼水好多| 亚洲精品久久午夜乱码| 欧美人与善性xxx| 青春草亚洲视频在线观看| 亚洲在久久综合| 亚洲色图综合在线观看| 99国产综合亚洲精品| 亚洲欧美中文字幕日韩二区| 免费人妻精品一区二区三区视频| 欧美成人午夜精品| 99香蕉大伊视频| 黑人巨大精品欧美一区二区蜜桃 | 亚洲三级黄色毛片| 中文字幕最新亚洲高清| 日韩,欧美,国产一区二区三区| 91精品伊人久久大香线蕉| 日本-黄色视频高清免费观看| a级毛片黄视频| 91国产中文字幕| 国产爽快片一区二区三区| 99久久中文字幕三级久久日本| 国产又爽黄色视频| av天堂久久9| 亚洲国产日韩一区二区| 美国免费a级毛片| 亚洲一码二码三码区别大吗| 婷婷色av中文字幕| 国产成人91sexporn| 天天影视国产精品| 青春草亚洲视频在线观看| 久久精品人人爽人人爽视色| 在线 av 中文字幕| 一区二区三区精品91| 黑人巨大精品欧美一区二区蜜桃 | 国产亚洲精品第一综合不卡 | 日本av免费视频播放| 国产亚洲午夜精品一区二区久久| 免费观看性生交大片5| 免费av中文字幕在线| 欧美日韩国产mv在线观看视频| 老熟女久久久| 寂寞人妻少妇视频99o| 一级毛片电影观看| 国产乱人偷精品视频| 一级毛片黄色毛片免费观看视频| 亚洲国产精品专区欧美| 日韩 亚洲 欧美在线| 精品熟女少妇av免费看| 一级a做视频免费观看| 国产精品久久久久久av不卡| 亚洲精品一区蜜桃| 美女脱内裤让男人舔精品视频| 欧美人与性动交α欧美精品济南到 | 免费观看性生交大片5| 国产色爽女视频免费观看| 亚洲欧美一区二区三区黑人 | 制服诱惑二区| 美女内射精品一级片tv| 精品人妻在线不人妻| 久久女婷五月综合色啪小说| 一级片'在线观看视频| 国产亚洲一区二区精品| 亚洲,欧美,日韩| 草草在线视频免费看| 热99国产精品久久久久久7| 亚洲精华国产精华液的使用体验| 日产精品乱码卡一卡2卡三| 久久久精品94久久精品| 欧美3d第一页| 国产免费现黄频在线看| 亚洲伊人久久精品综合| 在线 av 中文字幕| 国产探花极品一区二区| 十分钟在线观看高清视频www| 2021少妇久久久久久久久久久| 涩涩av久久男人的天堂| 搡老乐熟女国产| 亚洲国产成人一精品久久久| 亚洲精品乱码久久久久久按摩| 久久热在线av| 在线观看免费视频网站a站| 极品人妻少妇av视频| 国产av码专区亚洲av| 高清av免费在线| 亚洲伊人色综图| 22中文网久久字幕| 啦啦啦视频在线资源免费观看| av线在线观看网站| 亚洲精品视频女| 亚洲 欧美一区二区三区| 男人舔女人的私密视频| 男女边摸边吃奶| 婷婷色综合www| 宅男免费午夜| 色吧在线观看| 黄网站色视频无遮挡免费观看| 十八禁网站网址无遮挡| 亚洲精品色激情综合| 国产一级毛片在线| 免费女性裸体啪啪无遮挡网站| xxx大片免费视频| 丝瓜视频免费看黄片| 久久久久久久久久久久大奶| 人人妻人人添人人爽欧美一区卜| av线在线观看网站| 国产欧美日韩综合在线一区二区| 五月天丁香电影| 亚洲人成77777在线视频| 日韩大片免费观看网站| 少妇 在线观看| 欧美日韩一区二区视频在线观看视频在线| 国产精品欧美亚洲77777| 亚洲精品456在线播放app| 永久免费av网站大全| av卡一久久| 另类亚洲欧美激情| av免费在线看不卡| 久久久久久人人人人人| 男的添女的下面高潮视频| 午夜老司机福利剧场| 国产伦理片在线播放av一区| 少妇的逼好多水| 熟妇人妻不卡中文字幕| 免费人妻精品一区二区三区视频| 亚洲高清免费不卡视频| 久久鲁丝午夜福利片| 日本猛色少妇xxxxx猛交久久| 免费看av在线观看网站| 欧美日韩综合久久久久久| 久久ye,这里只有精品| 久久精品国产鲁丝片午夜精品| 寂寞人妻少妇视频99o| 日日爽夜夜爽网站| 亚洲欧美成人精品一区二区| 国产精品人妻久久久影院| 中文字幕亚洲精品专区| 1024视频免费在线观看| 咕卡用的链子| 午夜免费男女啪啪视频观看| 日韩大片免费观看网站| 国产精品久久久久久精品古装| 国产免费现黄频在线看| 久久ye,这里只有精品| 亚洲国产毛片av蜜桃av| 国产黄色免费在线视频| 在线 av 中文字幕| 国产精品一区二区在线观看99| 国产激情久久老熟女| 亚洲少妇的诱惑av| 久久精品久久久久久噜噜老黄| 国产精品久久久久久精品电影小说| 插逼视频在线观看| 亚洲精品国产色婷婷电影| 丝袜喷水一区| 看非洲黑人一级黄片| 黄网站色视频无遮挡免费观看| 黑丝袜美女国产一区| 亚洲国产精品专区欧美| 在线亚洲精品国产二区图片欧美| 亚洲av中文av极速乱| www日本在线高清视频|