• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Properties of paper mill sludge-wood fiber-HDPE composites after exposure to xenon-arc weathering

    2015-06-05 08:54:04XiaohuiYangXianquanZhangWeihongWangHaibingHuangShujuanSui
    Journal of Forestry Research 2015年2期

    Xiaohui Yang?Xianquan Zhang?Weihong Wang?Haibing Huang?Shujuan Sui

    Properties of paper mill sludge-wood fiber-HDPE composites after exposure to xenon-arc weathering

    Xiaohui Yang1?Xianquan Zhang1?Weihong Wang1?Haibing Huang2?Shujuan Sui1

    We used paper mill sludge(PMS)to substitute for part of the wood fibers(WF)used to reinforce high density polyethylene(HDPE).The resulting composites were subjected to xenon-arc weathering.The composite filled with limited PMS(under 10%)had mechanical properties and aging resistance similar to those without PMS.The composites containing more PMS faded and cracked more readily than those without PMS.Based on the carbonyl index,crystallinity,and wood index,PMS appeared to accelerate the degradation of composites during weathering.Adding PMS to WF–HDPE composites reduced the weathering resistance,and this reduction was not significant if the PMS content did not exceed 20%of the wood fibers.Therefore,PMS could be used as a reinforcement in wood-plastic composites at levels less than 20%of the wood fiber content.

    Wood fiber·Paper mill sludge·HDPE· Composites·Xenon-arc weathering

    Introduction

    Papermillsludge(PMS)isa by-productofpulping and paper recycling.With the developmentofthe paperindustry,large quantities of PMS are produced each year.This waste sludge requires correctutilization to avoid pollution.

    The main components of PMS from pulping are organic fibers and inorganic fillers(kaolinite,limestone and talc). PMS can be converted into various materials including highly reactive metakaolin,zeolites,composites,activated carbons,sorbents,and others(Hojamberdiev et al.2008; Asquini et al.2008;Kim et al.2009).Some researchers also used PMS to reinforce thermoplastics.Increasing the content of sludge in polypropylene-based composites resulted in higher Young’s modulus values(Girones et al. 2010),but lower tensile strength.PMS has also been utilized as a substitute for some of the wood fiber when reinforcing HDPE(Huang et al.2012).

    Wood fiber-reinforced thermo plastic composites (WPCs)are often used to manufacture exterior decking materials,rails,and land-building materials.Use of WPCs in the construction industry has led to concerns about the durability of these products.Many researchers revealed the susceptibility of WPCs to moisture,fungal attack and photodegradation.As wood fiber-filled HDPE composites weather,they undergo changes in surface characteristics and mechanical properties(Stark and Matuana 2007;Du et al.2010).In addition,composites with more wood componentatthe surface experience a larger percentage of total loss in flexural modulus and strength after xenon-arc weathering(Stark et al.2004).

    Though limited substitution ofwood fiberwith PMS does not obviously affect the properties of HDPE-based composites(Huang etal.2012),itis notclearwhatwillhappen to WF–PMS–HDPE composites when they are exposed toweathering.We studied the use of this material in exterior construction.We investigated the effect of PMS on the resistance of WF–HDPE composites to weathering by measuring surface characteristics and flexuralproperties of WF–PMS–HDPE composites before and after weathering.

    Materials and methods

    Materials

    High-density polyethylene(Grade:5000 s;MFI: 0.8–1.1 g/10 min)was purchased from Petrochina Daqing Petrochemical Company.Wood fiber had 40–80 mesh, length of 1–2.8 mm,and aspect ratio of 9–12.PMS was from a waste-paper recycling company.It was mainly composed of cellulose fibers(about 39%)and inorganic materials including calcium carbonate and kaolin.Maleic anhydride-grafted polyethylene(MAPE;grafting percentage of 0.9%)was obtained from Shanghai Sunny New Technology Development Co.,Ltd.It was used as a coupling agent for improving the compatibility between the bio-fiber and HDPE.Wax was from Shanghai Hualing Health and Machinery Firm,China.Polyethylene wax was from Shangdong Qilu Petrochemical Co.,Ltd.,China.Both waxes were used as lubricants.

    Preparing PMS-WF-HDPE composites

    WF and PMS particles were separately oven dried to reduce their moisture content to less than 3%.Then PMS was ground and sieved through 20–100 mesh screens.The particles ranged in length from 1 to 2.2 mm and their aspect ratio was 1:3.

    Using the formulations listed in Table 1,the components were mixed in a high-speed mixer(SHR-10A, Zhangjiagang Tonghe Plastic Machinery Co.,Ltd.,China) for 10 min.The mixture was then fed into a twin-screw extruder.At this stage,HDPE and wood fiber were compounded at150–175°C.The blends were broken into small particles using a pulverizer.Finally,the pellets were fedinto a single screw extruder and extruded into lumber with 40×4 mm cross-sections.

    Table 1 Formulation of paper millsludge(PMS)–wood fiber(WF)–high-density polyethylene(HDPE)composites

    Weathering treatment

    Specimens were putin a xenon lamp accelerated aging test chamber(Suntest XXL+,ATLAS MTT GMBH Co.,Ltd.). Tests were performed according to ASTM G155-05a (Standard Practice for Operating Xenon Arc Light Apparatus for Exposure of Non-Metallic Materials).The average irradiance was 0.35 W m-2at a wavelength of 340 nm, and the exposure cycle consisted of 102 min of light at a 63°C black panel temperature and 18 min of simultaneous water spray and light.The sample condition was assessed after 0,500,1200,and 2000 h of exposure.Before testing, specimens were cooled to room temperature.

    Mechanical properties

    Mechanical measurements were conducted both before and after weathering.The test method and procedure were conducted according to the Standard Guide for Evaluating Mechanical and Physical Properties of Wood-Plastic Composite Products(ASTM D 7031).The dimensions of the specimens were 80×13×4 mm with a span length of 64 mm and a loading speed of 2 mm min-1.Each test was performed in five replicates.

    Surface morphology

    Color measurement

    We measured the colorparametersofexposed and unexposed specimens with a CM-2300d Photometer(Konica Minolta Sensing).Absolute chromaticity measurements were taken using the three-parameter CIE(International Commission on Illumination)scale:L*,a*,and b*system.The L*parameter is related to the amountofreflected light,while a*and b*are the chromaticity coordinates(chroma and hue,respectively). In addition,the totalcolordifference(ΔE)isthe square rootof the sum of the squares of the differences of chromaticity coordinates,calculated using the following equation:

    where,ΔE isthe totalcolordifference,andΔa*,Δb*andΔL* are the differences between the respective values before and afterweathering(Stark and Matuana 2003;Wang etal.2010).

    Stereomicroscope

    Photographs of the composite surface before and after accelerated weathering were taken with a stereomicroscope(XTL-350Z,Shanghai Changfang Optical Instrument Co., Ltd.)at×4.5 magnification.

    Surface chemistry analysis

    Using Fourier-transform infrared(FTIR)spectroscopy on a MAGNA-IR560(NICOLE)spectrometer,we studied the functional groups atthe sample surface,and recorded them in absorbance units from 4000 to 400 cm-1.

    The carbonyl index and wood index were calculated using the following equations:

    where I denotes peak intensity.The peak at2913 cm-1was chosen as a reference because it changed the least during weathering(Stark et al.2004).

    FTIR was also used to calculate the crystallinity of HDPE using the method described by Zerbi et al.(1989). The doublet peaks around 1474–1464 and 730–720 cm-1correspond to polyethylene crystalline content(1474 and 730 cm-1)and amorphous content(1464 and 720 cm-1). Percent crystallinity(X)was calculated according to the following equation:

    where,Iaand Ibcan be derived from the bands at 1474 and 1464 cm-1and 730 and 720 cm-1,respectively(Zerbi et al.1989).In this research,we calculated crystallinity using the doubletpeaks at730 and 720 cm-1(Colom etal. 2000;Stark et al 2004).

    Statistics

    Significant differences between unexposed and exposed values were determined using analysis of variance.Significance was determined atα=0.05.

    Results and analysis

    Surface morphology of WF-PMS-HDPE composite

    Exposure to xenon-arc radiation resulted in fading and cracking(Fig.1).When aged to 500 h,samples filled with PMS faded more obviously than those without PMS.After this amount of weathering,the main change of the sample surface was fading while no surface cracks were visible through a microscope.After further weathering to 1200 h, samples with 10%PMS had the same smooth surface morphology as those without PMS.Samples containing 20 and 30%PMS developed cracks on their surfaces.Surface color fading continued after 500 h of weathering,but the difference between the control and PMS-reinforced samples was most obvious at 500 h.After 2000 h of weathering,the surfaces of all samples were white and cracked. The sample containing more PMS developed wider and deeper surface cracks than did those containing less PMS. Composites of PMS:WF:PE=30:30:36 developed pale yellow particles extruding from the aged surface.

    Though the composites containing PMS faded more severely than those without PMS,they exhibited the same crack resistance after 500 h.At 10%substitution of wood fibers by PMS the composite showed the same change in morphology as the composite without PMS during 2000 h of xenon weathering.

    For extruded HDPE-based composites,a transparentand thin HDPE film was presenton the surface.After 1000 h of xenon radiation,the mechanical properties of HDPE declined,while more C=O groups and greater crystallinity were detected on the surface of the HDPE.The HDPE became fragile and cracked underthese conditions,as reported by Lee etal.(2012).Beyond this stage,the destroyed HDPE surface layer did not protect the inner wood component. Water spray and condensation facilitated removal of the degraded wood component and formation of cracks.

    Ultraviolet(UV)light can penetrate through transparent HDPE films.This significantly impacted the surface of the solid wood in our experiment.Wood components contributed greatly to color changes in composites,as reported by Matuana and Kamdem(2001),Matuana et al.(2011) and Zhang et al.(2010).L*is a quantitative evaluation of fading with higher L*values indicating greater fading (higher reflectivity)(Falk et al.2000).L*andΔE values increased with weathering(Fig.2;Table 2).All specimens faded in response to radiation.Photochemicalreactions that generate chromophoric units,mainly in lignin,cause the composites to fade quickly.Lignin absorbs light up to 400 nm with a peak at280 nm(Pandey 2005).In our study, samples with PMS exhibited more severe surface fading than those without PMS before reaching 500 h of weathering.Color change(ΔE*)showed a similar trend.This was probably due to the inorganic materials in PMS.

    Tiny wood fibers were enclosed with inorganic materials in PMS particles,thus,only part of the tiny wood fibers could come into contact with HDEP.HDPE did not penetrate into the hard PMS particles,resulting in weak bonds between PMS and HDPE.When WF–PMS–HDPE composite samples experienced wetting and drying cycles during xenon weathering,they cracked more often and earlier than did control composites(Fig.1).

    Fig.1 Surface of WF–PMS–HDPE composites before and after accelerated weathering with a microscope

    Fig.2 Changes in lightness and total color of composites after accelerated weathering

    Mechanical properties of composites

    Flexural tests were performed before and after accelerated weathering.Both bending strength(BS)and modulus of elasticity(MOE)declined significantly after weathering (Fig.3).Our results were similar to those reported by Lee et al.(2012)and Stark and Matuana(2006,2003),who investigated changes in flexuralstrength and flexural MOE retention or loss ratios of WPCs after weathering.

    Photodegradation occurred mainly on the specimen surface.Some molecular chains of lignin and HDPE broke, and this was detected with FTIR.During xenon weathering,water was sprayed on the samples at intervals of 102 min. Wood fibers absorbed the moisture and expanded.When xenon lamps radiated again,the wood fibers shrunk in the hot environment.This expansion–shrinkage process weakened the bonding between the wood fiber and HDPE, resulting in impaired flexural strength.

    Table 2 Color parameters of samples before and after weathering

    Fig.3 Retentions of bending strength and elastic modulus of composites after accelerated weathering

    With more PMS in the composite,the interfaces were weaker in response to severe bending.This measurement was consistent with Kim et al.(2009)who reported that wood particles can be replaced with up to 10%of dried paper sludge.Our result contrasted with the finding of Girones et al.(2010)who showed that increasing the content of sludge in polypropylene-based composites resulted in higher Young’s moduli.After 2000 h of weathering,the control sample remained at 85%BS relative to unweathered samples;however,samples with 30%PMS retained their original BS of 74%.Similar to the change in BS,MOE values for composites with higher levels of PMS decreased more significantly(retention of 71–77%)than did those without PMS(MOE retention of 82%).

    The addition of PMS to HDPE resulted in greater and earlier damage to the composite surface.The damage due to the combination of PMS and HDPE provided more channels for water and light penetration.Composites containing more than 10%PMS lost more flexibility after weathering than those without PMS.

    Surface chemistry analysis

    We used FTIR spectroscopy to study the chemical changes on the surface of composites before and after weathering. Characteristic peaks of HDPE before weathering were at 2913,2845 and 1462 cm-1,and those of wood at 3354, 1593 and 1031 cm-1(Fig.4).After weathering for 500 h, peaks of HDPE declined to 2912,1593 and 1031 cm-1. That is,the C–H structure of HDPE,C=C structure of the aromatic ring in lignin,and C–O structure of cellulose, hemicellulose and lignin were damaged.This confirms that the photodegradation of polyolefins is mainly due to the introduction of chromophores,such as catalyst residues, hydroperoxide groups,carbonyl groups,and double bonds (Stark etal.2004).Carbonylgroups are postulated to be the main light-absorbing species responsible for photochemical-induced degradation reactions of UV-exposed polymers(Jabarin and Lofgren 1994).The carbonyl index of samples with 30%PMS increased significantly during the first 500-h exposure,while the control samples increased slightly(Fig.5).This demonstrates that PMS effectively accelerated WF–HDPE degradation during xenon-arc exposure.Yang et al.(2008)and Valadez-Gonza′lez and Veleva(2004)also proved that HDPE-based composites with kaolin or CaCO3,which are components of PMS,were readily oxidized.However,the carbonylindex of allsamples declined sharply after 1200-h exposure and the decrease in the carbonyl indices of the 30%PMS samples were more significant than for control samples. Weathered samples cracked after 1200 h,possibly due to a loose degradation layer on the surface(Fig.1).This loose degradation layer was washed away during the water spray cycle,resulting in lower carbonyl indices of samples after 1200-h exposure.

    Fig.4 FTIR spectra of the composite surfaces(expose to 0,500 and 2000 h weathering)

    Fig.5 Change in the carbonyl index and crystallinity of composites before and after weathering

    Fig.6 Change in the wood index of composites before and after weathering

    Crystallinity of control samples increased as the exposure time increased to 500 h,and then decreased thereafter (Fig.5).However,the crystallinity of samples with 30% PMS increased continuously with exposure time until 1200 h,and then decreased.The increase in crystallinity indicates that the HDPE matrix underwent a chain scission on exposure(Stark et al.2004;Du et al.2010).The progressive increase in crystallinity in PMS composites indicated that PMS accelerated photodegradation.This was proven by color and flexural property changes,as previously mentioned.However,chain scission in the HDPE matrix eventually affected linking molecules and resulted in a breakdown of crystallization and decrease in crystallinity and mechanical strength(Colom et al.2000; Torikai et al.1990).

    During xenon radiation,both HDPE and the wood component underwent degradation.The changes in the wood index can be considered as indications of wood component photodegradation(Hon 2000).Before weathering,the wood index of control samples was higher than for samples with 30%PMS(Fig.6).Wood indices of all samples decreased significantly with exposure time.It is likely that cracks on the surface of samples allowed more xenon-arc radiation to enter the interior of samples,resulting in deeper photodegradation of wood components.

    Conclusion

    When 10%of wood fibers were replaced by PMS,the composite exhibited similar response to 2000-h of xenon weathering as did the composite without PMS.Though PMS may accelerate photodegradation,it can be used as a reinforcement material for HDPE within limits.

    Asquini L,Furlani E,Bruckner S,Maschio S(2008)Production and characterization of sintered ceramics from paper millsludge and glass cullet.Chemosphere 71:83–89

    Colom X,Canavate J,Page`s P,Saurina J,Carrasco F(2000)Changes in crystallinity of the HDPE matrix in composites with cellulosic fiber using DSC and FTIR.J Reinf Plast Compos 19(10): 818–830

    Du H,Wang WH,Wang QW,Zhang ZM,Sui SJ,Zhang YH(2010) Effects of pigments on the UV degradation of wood-flour/HDPE composites.J Appl Polym Sci 118:1068–1076

    Falk RH,Lundin T,Felton C(2000)The effects of weathering on wood-thermoplastic composites intended for outdoor applications.In:Proceedings of the 2nd annual conference on durability and disaster mitigation in wood-frame housing.Madison,WI, USA,pp 175–179

    Girones J,PardiniG,Vilaseca F,Pelach M,Mutje P(2010)Recycling of paper mill sludge as filler/reinforcement in polypropylene composites.J Polym Environ 18(3):407–412

    Hojamberdiev M,Kameshima Y,Nakajima A,Okada K,Kadirova Z (2008)Preparation and sorption properties of materials from paper sludge.J Hazard Mater 151:710–719

    Hon DNS(2000)Weathering and photochemistry of wood.In:Hon DNS,Shiraishi N(eds)Wood and cellulosic chemistry.Marcel Dekker,New York,pp 512–546

    Huang HB,Du HH,Wang WH,Shi JY(2012)Characteristics of paper mill sludge-wood fiber-high-density polyethylene composites.Polym Compos 33(9):1628–1634

    Jabarin SA,Lofgren EA(1994)Photooxidative effects of properties and structure of high-density polyethylene.J Appl Polym Sci 53(4):411–423

    Kim S,Kim HJ,Park JC(2009)Application of recycled paper sludge and biomass materials in manufacture of green composite pallet. Resour Conserv Recycl 53:674–679

    Lee CH,Hung KC,Chen YL,Wu TL,Chien YC,Wu JH(2012) Effects of polymeric matrix on accelerated UV weathering properties of wood-plastic composites.Holzforschung 66(8): 981–987

    Matuana LM,Kamdem DP(2001)Photoaging and stabilization of rigid PVC/wood-fiber composites.J Appl Polym Sci 80: 1943–1950

    Matuana LM,Jin S,Stark NM(2011)Ultraviolet weathering of HDPE/wood-flour composites coextruded with a clear HDPE cap layer.Polym Degrad Stab 96:97–106

    Pandey KK(2005)Study of the effect of photo-irradiation on the surface chemistry of wood.Polym Degrad Stab 90:9–20

    Stark NM,Matuana LM(2003)Ultraviolet weathering of photostabilized wood-flour filled high-density polyethylene composites. J Appl Polym Sci 90:2609–2617

    Stark NM,Matuana LM(2004)Surface chemistry changes of weathered HDPE/wood-flour composites studied by XPS and FTIR spectroscopy.Polym Degrad Stab 86:1–9

    Stark NM,Matuana LM(2006)Influence of photostabilizers on wood flour-HDPE composites exposed to xenon-arc radiation with and without water spray.Polym Degrad Stab 91:3048–3056

    Stark NM,Matuana LM(2007)Characterization of weathered wood plastic composite surfaces using FTIR spectroscopy,contact angle,and XPS.Polym Degrad Stab 92(10):1883–1890

    Stark NM,Matuana LM,Clemons CM(2004)Effect of processing method on surface and weathering.J Appl Polym Sci 93: 1021–1030

    Torikai A,Shirakawa H,Nagaya S,Fueki K(1990)Photodegradation of polyethylene:factors affecting photostability.J Appl Polym Sci 40(9–10):1637–1646

    Valadez-Gonza′lez A,Veleva L(2004)Mineral filler influence on the photo-oxidation mechanism degradation of high density polyethylene.Part II:natural exposure test.Polym Degrad Stab 83:139–148

    Wang WH,Bu FH,Zhang ZM,Sui SJ,Wang QW(2010) Performance of rice-hull-PE composite exposed to natural weathering.J For Res 21(2):219–224

    Yang R,Liu Y,Yu J,Zhang DQ(2008)Spatial heterogeneity of photo-oxidation and its relation with crack propagation in polyethylene composites.Polym Eng Sci 48(11):2270–2276

    Zerbi G,Gallino G,Del Fanti N,Baini L(1989)Structural depth profiling in polyethylene films by multiple internal reflection infrared spectroscopy.Polymers 30(12):2324–2327

    Zhang ZM,Du H,Wang WH,Wang QW(2010)Property changes of wood-fiber/HDPE composites colored by iron oxide pigments after accelerated UV weathering.J For Res 21(1):59–62

    22 September 2013/Accepted:4 March 2014/Published online:5 May 2015

    ?Northeast Forestry University and Springer-Verlag Berlin Heidelberg 2015

    Projectfunding:This work was financially supported by the‘Special Fund for Forestry Research in the Public Interest(201204802-1)’and the‘Nature Science Foundation of China(31070506)’.

    The online version is available at http://www.springerlink.com

    Corresponding editor:Yu Lei

    ?Weihong Wang weihongwang2001@aliyun.com

    1Key Lab of Bio-Based Material Science&Technology of Education Ministry,Northeast Forestry University, Harbin 150040,China

    2Heilongjiang Wood Science Research Institute, Haping Road 134,Harbin 150081,China

    成人国产一区最新在线观看| 操出白浆在线播放| 亚洲av成人av| 天天躁夜夜躁狠狠躁躁| 男人舔女人的私密视频| 激情在线观看视频在线高清| 国产在线精品亚洲第一网站| 欧美中文综合在线视频| 欧美丝袜亚洲另类 | 一进一出好大好爽视频| 亚洲国产精品999在线| 12—13女人毛片做爰片一| 亚洲专区国产一区二区| 国产精品久久久久成人av| 在线国产一区二区在线| 在线国产一区二区在线| 欧美日韩av久久| 欧美 亚洲 国产 日韩一| 精品日产1卡2卡| 免费在线观看亚洲国产| 久久人妻福利社区极品人妻图片| 狠狠狠狠99中文字幕| 亚洲狠狠婷婷综合久久图片| 久久久水蜜桃国产精品网| 1024香蕉在线观看| 国产xxxxx性猛交| 美女大奶头视频| 啦啦啦免费观看视频1| 国产野战对白在线观看| 午夜视频精品福利| 久久久久国产精品人妻aⅴ院| 亚洲 欧美一区二区三区| 久久午夜综合久久蜜桃| 精品久久蜜臀av无| 自拍欧美九色日韩亚洲蝌蚪91| 久久伊人香网站| 日韩欧美在线二视频| 十八禁人妻一区二区| 最近最新中文字幕大全免费视频| 69av精品久久久久久| 嫩草影院精品99| 欧美成人性av电影在线观看| 69av精品久久久久久| 狠狠狠狠99中文字幕| 国产精品久久久久久人妻精品电影| 欧美成人性av电影在线观看| 亚洲黑人精品在线| 啪啪无遮挡十八禁网站| 99精国产麻豆久久婷婷| 成人免费观看视频高清| 欧美日韩乱码在线| 免费看十八禁软件| 两性夫妻黄色片| 日韩一卡2卡3卡4卡2021年| 久久草成人影院| 美女扒开内裤让男人捅视频| 级片在线观看| 人人澡人人妻人| 国产1区2区3区精品| 精品卡一卡二卡四卡免费| 亚洲午夜理论影院| 99国产精品一区二区三区| 欧美 亚洲 国产 日韩一| 久久久久久免费高清国产稀缺| 精品国产超薄肉色丝袜足j| 黄网站色视频无遮挡免费观看| 色哟哟哟哟哟哟| 自线自在国产av| 久久人人精品亚洲av| 欧美av亚洲av综合av国产av| 午夜福利欧美成人| 欧美在线黄色| 丁香欧美五月| 亚洲片人在线观看| 久热这里只有精品99| 婷婷六月久久综合丁香| 在线永久观看黄色视频| 国产又色又爽无遮挡免费看| 午夜影院日韩av| 亚洲欧美日韩无卡精品| 亚洲欧美日韩无卡精品| 在线观看一区二区三区激情| 亚洲成人精品中文字幕电影 | 男女床上黄色一级片免费看| 亚洲av成人av| 18禁国产床啪视频网站| 午夜a级毛片| 精品一品国产午夜福利视频| 精品一品国产午夜福利视频| 80岁老熟妇乱子伦牲交| 亚洲国产精品999在线| 精品久久久久久,| 亚洲国产毛片av蜜桃av| 男女做爰动态图高潮gif福利片 | 国产精品亚洲一级av第二区| 国产精品99久久99久久久不卡| 9热在线视频观看99| 亚洲av五月六月丁香网| 水蜜桃什么品种好| 变态另类成人亚洲欧美熟女 | 黄色成人免费大全| 欧美成人午夜精品| 亚洲熟女毛片儿| 身体一侧抽搐| 美女大奶头视频| 男女做爰动态图高潮gif福利片 | 97人妻天天添夜夜摸| 国产视频一区二区在线看| 激情视频va一区二区三区| 女同久久另类99精品国产91| 欧美成人午夜精品| 亚洲成人免费电影在线观看| 亚洲精品中文字幕在线视频| 亚洲精品在线美女| 国产高清视频在线播放一区| 午夜精品国产一区二区电影| 日韩精品青青久久久久久| 久久人人97超碰香蕉20202| 精品国产美女av久久久久小说| 亚洲久久久国产精品| 国产免费现黄频在线看| 久久久国产精品麻豆| 免费高清在线观看日韩| 男女之事视频高清在线观看| 亚洲黑人精品在线| 高清毛片免费观看视频网站 | 国产人伦9x9x在线观看| 人人妻人人添人人爽欧美一区卜| 脱女人内裤的视频| 在线观看免费高清a一片| 女人爽到高潮嗷嗷叫在线视频| 亚洲自偷自拍图片 自拍| 每晚都被弄得嗷嗷叫到高潮| 好男人电影高清在线观看| 高清在线国产一区| 国产精品亚洲av一区麻豆| 大码成人一级视频| 正在播放国产对白刺激| 免费观看精品视频网站| 中文字幕av电影在线播放| 9191精品国产免费久久| 美国免费a级毛片| 亚洲午夜精品一区,二区,三区| 亚洲精品成人av观看孕妇| 悠悠久久av| 亚洲欧美日韩无卡精品| 免费在线观看完整版高清| 黄色视频不卡| 亚洲人成77777在线视频| 亚洲欧美一区二区三区黑人| 啪啪无遮挡十八禁网站| 青草久久国产| 热99re8久久精品国产| 国产成人欧美在线观看| 国产片内射在线| 热re99久久国产66热| 色婷婷久久久亚洲欧美| 亚洲精品成人av观看孕妇| 亚洲一区二区三区色噜噜 | 老汉色av国产亚洲站长工具| 五月开心婷婷网| av在线天堂中文字幕 | 国产精品亚洲av一区麻豆| www.精华液| 亚洲欧美日韩高清在线视频| 又黄又爽又免费观看的视频| 97碰自拍视频| 精品国产一区二区三区四区第35| 午夜福利一区二区在线看| 99在线人妻在线中文字幕| 日本免费a在线| 日本撒尿小便嘘嘘汇集6| 黄色丝袜av网址大全| xxxhd国产人妻xxx| 美女国产高潮福利片在线看| 老熟妇仑乱视频hdxx| 亚洲成人免费av在线播放| 久久中文看片网| 成人亚洲精品一区在线观看| 高清毛片免费观看视频网站 | 高清av免费在线| 久久午夜综合久久蜜桃| 99久久99久久久精品蜜桃| 9热在线视频观看99| 国产精品1区2区在线观看.| 老熟妇仑乱视频hdxx| 国产主播在线观看一区二区| 久久精品人人爽人人爽视色| 日韩高清综合在线| 热99re8久久精品国产| 在线播放国产精品三级| 怎么达到女性高潮| 男男h啪啪无遮挡| 久久精品亚洲精品国产色婷小说| 国产亚洲av高清不卡| 国产成人欧美| 免费少妇av软件| 欧美日韩乱码在线| 中文字幕色久视频| www日本在线高清视频| av中文乱码字幕在线| 一区二区日韩欧美中文字幕| 人人妻人人爽人人添夜夜欢视频| 国产一区二区三区综合在线观看| 午夜亚洲福利在线播放| 大香蕉久久成人网| av片东京热男人的天堂| 欧美大码av| 黄色丝袜av网址大全| 国产亚洲欧美精品永久| 欧美最黄视频在线播放免费 | av国产精品久久久久影院| 久久国产精品人妻蜜桃| 黑人猛操日本美女一级片| 超碰成人久久| av中文乱码字幕在线| 国产精品自产拍在线观看55亚洲| 在线av久久热| 无限看片的www在线观看| 亚洲精品中文字幕在线视频| 亚洲激情在线av| 亚洲欧美一区二区三区黑人| 可以免费在线观看a视频的电影网站| 搡老熟女国产l中国老女人| 亚洲av成人不卡在线观看播放网| 精品国产美女av久久久久小说| 久久久久久久久久久久大奶| 欧美中文综合在线视频| 国产精品99久久99久久久不卡| 国产xxxxx性猛交| 88av欧美| 成人黄色视频免费在线看| 国产精品一区二区在线不卡| 亚洲精品在线美女| 老汉色av国产亚洲站长工具| 国产麻豆69| 曰老女人黄片| 欧美老熟妇乱子伦牲交| 免费在线观看黄色视频的| 夜夜躁狠狠躁天天躁| 午夜视频精品福利| 国产91精品成人一区二区三区| 桃红色精品国产亚洲av| 在线播放国产精品三级| 精品福利观看| 亚洲视频免费观看视频| 在线看a的网站| 色在线成人网| 国产午夜精品久久久久久| bbb黄色大片| 脱女人内裤的视频| 亚洲人成网站在线播放欧美日韩| 国产又色又爽无遮挡免费看| 老鸭窝网址在线观看| 正在播放国产对白刺激| 亚洲精品在线美女| 国产精品久久久av美女十八| 国产成人精品无人区| 欧美成人免费av一区二区三区| 9热在线视频观看99| 婷婷六月久久综合丁香| cao死你这个sao货| 免费久久久久久久精品成人欧美视频| www日本在线高清视频| 美女午夜性视频免费| a级毛片在线看网站| 搡老乐熟女国产| 国产精品综合久久久久久久免费 | 91在线观看av| 精品久久久久久,| cao死你这个sao货| 久久精品国产99精品国产亚洲性色 | 亚洲精品一卡2卡三卡4卡5卡| 日韩 欧美 亚洲 中文字幕| 国产精品九九99| 女人被狂操c到高潮| 国产精品乱码一区二三区的特点 | av天堂在线播放| 淫秽高清视频在线观看| 日韩有码中文字幕| 亚洲 欧美一区二区三区| 久久久久久人人人人人| 国产黄a三级三级三级人| 别揉我奶头~嗯~啊~动态视频| 高潮久久久久久久久久久不卡| 久久久久久免费高清国产稀缺| 亚洲精品一二三| 久久精品亚洲av国产电影网| 91大片在线观看| 国产亚洲精品久久久久久毛片| 一区二区日韩欧美中文字幕| 欧美成人性av电影在线观看| 成熟少妇高潮喷水视频| 久久精品亚洲精品国产色婷小说| 日韩成人在线观看一区二区三区| 黄色视频,在线免费观看| 97超级碰碰碰精品色视频在线观看| 久久久久久久久中文| 黑人巨大精品欧美一区二区蜜桃| 大陆偷拍与自拍| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲欧美精品综合一区二区三区| 91成人精品电影| а√天堂www在线а√下载| 国产精品亚洲av一区麻豆| 久久久久国产精品人妻aⅴ院| 久久久久亚洲av毛片大全| 天天添夜夜摸| 97超级碰碰碰精品色视频在线观看| 免费在线观看视频国产中文字幕亚洲| 村上凉子中文字幕在线| 99国产精品一区二区蜜桃av| 精品国产乱子伦一区二区三区| 亚洲av成人不卡在线观看播放网| 亚洲aⅴ乱码一区二区在线播放 | 久久国产精品人妻蜜桃| 丰满饥渴人妻一区二区三| 成人免费观看视频高清| 精品午夜福利视频在线观看一区| 欧美性长视频在线观看| 国产一区在线观看成人免费| 亚洲五月天丁香| 亚洲在线自拍视频| 99国产极品粉嫩在线观看| 电影成人av| 91精品国产国语对白视频| 无遮挡黄片免费观看| 大香蕉久久成人网| 精品高清国产在线一区| 亚洲片人在线观看| 精品熟女少妇八av免费久了| 手机成人av网站| 国产精品一区二区三区四区久久 | 欧美最黄视频在线播放免费 | videosex国产| 一级片'在线观看视频| 夜夜看夜夜爽夜夜摸 | 久久这里只有精品19| 国产精品久久久久成人av| 免费在线观看完整版高清| 国产av又大| 91在线观看av| a级片在线免费高清观看视频| 精品熟女少妇八av免费久了| 欧美国产精品va在线观看不卡| 亚洲第一av免费看| 成年人黄色毛片网站| 搡老熟女国产l中国老女人| 1024香蕉在线观看| 很黄的视频免费| 国产精品98久久久久久宅男小说| 啦啦啦 在线观看视频| 欧美黄色淫秽网站| 999久久久精品免费观看国产| 99精国产麻豆久久婷婷| √禁漫天堂资源中文www| 国产一区二区三区视频了| 日日干狠狠操夜夜爽| 免费av中文字幕在线| 97碰自拍视频| 精品免费久久久久久久清纯| 精品第一国产精品| 999久久久精品免费观看国产| 91av网站免费观看| 久久久久久久久免费视频了| 欧美av亚洲av综合av国产av| 久久天躁狠狠躁夜夜2o2o| 看免费av毛片| 巨乳人妻的诱惑在线观看| 国产欧美日韩一区二区精品| 欧美精品亚洲一区二区| 99精品欧美一区二区三区四区| 老司机午夜十八禁免费视频| 老司机在亚洲福利影院| 五月开心婷婷网| 欧美乱色亚洲激情| 男人舔女人的私密视频| 日本免费a在线| 高清在线国产一区| 91字幕亚洲| 黄色视频,在线免费观看| www.精华液| 亚洲国产欧美日韩在线播放| 国产av精品麻豆| 久久午夜综合久久蜜桃| 伊人久久大香线蕉亚洲五| 亚洲精品中文字幕一二三四区| 黄色丝袜av网址大全| 男人舔女人的私密视频| 国产av精品麻豆| 国产高清国产精品国产三级| 亚洲 国产 在线| 久久人妻福利社区极品人妻图片| 亚洲精品国产色婷婷电影| 欧美亚洲日本最大视频资源| 美女高潮到喷水免费观看| 亚洲精品国产一区二区精华液| 一进一出抽搐gif免费好疼 | 搡老熟女国产l中国老女人| 18禁国产床啪视频网站| 国产国语露脸激情在线看| 丁香六月欧美| 亚洲成人精品中文字幕电影 | 桃色一区二区三区在线观看| www日本在线高清视频| 亚洲久久久国产精品| 美女扒开内裤让男人捅视频| 涩涩av久久男人的天堂| 在线观看午夜福利视频| 香蕉久久夜色| 中文字幕人妻丝袜一区二区| 校园春色视频在线观看| 好男人电影高清在线观看| av超薄肉色丝袜交足视频| 午夜91福利影院| 亚洲成av片中文字幕在线观看| 精品国产一区二区久久| 国产精品国产高清国产av| 日本黄色日本黄色录像| 极品人妻少妇av视频| 午夜两性在线视频| 亚洲性夜色夜夜综合| 国产成人啪精品午夜网站| 999久久久国产精品视频| 久久人妻福利社区极品人妻图片| xxx96com| 精品国产一区二区三区四区第35| 桃色一区二区三区在线观看| 悠悠久久av| 亚洲黑人精品在线| 看黄色毛片网站| 日韩欧美一区视频在线观看| 老司机午夜十八禁免费视频| av免费在线观看网站| 久久香蕉国产精品| 精品久久久久久成人av| 亚洲美女黄片视频| 波多野结衣一区麻豆| 水蜜桃什么品种好| videosex国产| 黑人欧美特级aaaaaa片| av欧美777| 女人被狂操c到高潮| 三上悠亚av全集在线观看| 国产成人影院久久av| 一级毛片精品| 国产高清激情床上av| 久久久久国产一级毛片高清牌| 纯流量卡能插随身wifi吗| 黄片大片在线免费观看| 亚洲精品一卡2卡三卡4卡5卡| av中文乱码字幕在线| 日本免费一区二区三区高清不卡 | 欧美老熟妇乱子伦牲交| 亚洲成a人片在线一区二区| 动漫黄色视频在线观看| 黄色视频,在线免费观看| 久久热在线av| 婷婷精品国产亚洲av在线| 国产黄色免费在线视频| 精品第一国产精品| 国产野战对白在线观看| 久久久久国内视频| 免费日韩欧美在线观看| 欧美日本中文国产一区发布| 成人亚洲精品av一区二区 | 久久精品91无色码中文字幕| 在线观看免费高清a一片| av视频免费观看在线观看| 国产麻豆69| 黄网站色视频无遮挡免费观看| 高清黄色对白视频在线免费看| 看免费av毛片| 国产高清激情床上av| 无人区码免费观看不卡| 久久精品91蜜桃| 午夜福利在线观看吧| 99久久99久久久精品蜜桃| 人人妻,人人澡人人爽秒播| 中国美女看黄片| 在线观看66精品国产| 人成视频在线观看免费观看| 老司机亚洲免费影院| 国产精品av久久久久免费| 国产1区2区3区精品| a级片在线免费高清观看视频| 国产激情久久老熟女| 国产野战对白在线观看| 亚洲欧美激情综合另类| 老汉色∧v一级毛片| 亚洲五月婷婷丁香| 久久精品91蜜桃| 18禁裸乳无遮挡免费网站照片 | 国产91精品成人一区二区三区| 国产激情久久老熟女| 亚洲国产毛片av蜜桃av| 久久久久久亚洲精品国产蜜桃av| 亚洲精品国产区一区二| 亚洲精品中文字幕一二三四区| 亚洲专区字幕在线| 亚洲av日韩精品久久久久久密| 亚洲精品av麻豆狂野| 国产精品一区二区三区四区久久 | 午夜视频精品福利| 日韩大码丰满熟妇| 亚洲五月色婷婷综合| 老鸭窝网址在线观看| 日韩免费高清中文字幕av| 国产免费现黄频在线看| 久久人人爽av亚洲精品天堂| 少妇被粗大的猛进出69影院| 成熟少妇高潮喷水视频| 国产精品久久久av美女十八| 日本vs欧美在线观看视频| 亚洲精品一区av在线观看| 成在线人永久免费视频| 色尼玛亚洲综合影院| 精品国产美女av久久久久小说| 国产精品一区二区在线不卡| 亚洲男人天堂网一区| xxxhd国产人妻xxx| 美女高潮到喷水免费观看| 亚洲av片天天在线观看| 久久人妻福利社区极品人妻图片| 9191精品国产免费久久| 久久香蕉国产精品| 色播在线永久视频| 少妇裸体淫交视频免费看高清 | netflix在线观看网站| 99国产综合亚洲精品| 无限看片的www在线观看| 日日干狠狠操夜夜爽| 欧美日韩精品网址| 久久久久国内视频| 国产亚洲av高清不卡| 在线观看免费日韩欧美大片| 12—13女人毛片做爰片一| tocl精华| 成人av一区二区三区在线看| 久久九九热精品免费| 亚洲欧美激情在线| 久久久久国内视频| 成人特级黄色片久久久久久久| 香蕉国产在线看| 伊人久久大香线蕉亚洲五| 日本vs欧美在线观看视频| 自线自在国产av| 精品一区二区三区四区五区乱码| 精品人妻1区二区| 日本vs欧美在线观看视频| 人人妻,人人澡人人爽秒播| 人人妻人人澡人人看| 999精品在线视频| 久久亚洲真实| 久热爱精品视频在线9| 夜夜爽天天搞| 欧美不卡视频在线免费观看 | 国产色视频综合| 少妇粗大呻吟视频| 午夜老司机福利片| 欧美av亚洲av综合av国产av| 亚洲人成伊人成综合网2020| 婷婷精品国产亚洲av在线| 日本撒尿小便嘘嘘汇集6| 99国产极品粉嫩在线观看| 中文欧美无线码| 丰满饥渴人妻一区二区三| 超色免费av| 12—13女人毛片做爰片一| 久久九九热精品免费| 成人av一区二区三区在线看| 欧美人与性动交α欧美精品济南到| 老司机靠b影院| x7x7x7水蜜桃| 日韩欧美国产一区二区入口| 久久久久久亚洲精品国产蜜桃av| 超碰成人久久| 成在线人永久免费视频| 欧美日韩精品网址| 欧美成人性av电影在线观看| 亚洲国产欧美网| 男女之事视频高清在线观看| 欧美性长视频在线观看| 国产成人影院久久av| 国产成人欧美| 大香蕉久久成人网| 国产精品影院久久| 99久久综合精品五月天人人| www.自偷自拍.com| 黄色片一级片一级黄色片| 一级a爱片免费观看的视频| 国产成人一区二区三区免费视频网站| 欧美日韩黄片免| 午夜福利在线观看吧| 在线观看www视频免费| 视频在线观看一区二区三区| 色哟哟哟哟哟哟| 国产区一区二久久| 丰满的人妻完整版| 丁香六月欧美| 日韩欧美免费精品| 亚洲五月色婷婷综合| 欧美精品一区二区免费开放| 精品国产亚洲在线| 国产精品美女特级片免费视频播放器 | 国产一区二区在线av高清观看| 看黄色毛片网站| 男女之事视频高清在线观看| 老司机在亚洲福利影院| 午夜免费激情av| 一进一出抽搐gif免费好疼 | 亚洲 欧美 日韩 在线 免费| 精品熟女少妇八av免费久了| 99国产极品粉嫩在线观看| 久久精品国产99精品国产亚洲性色 |