• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Compressive failure of spruce wood rings reinforced with glass epoxy composite

    2015-06-05 08:54:05NurdanetinYerlikayaAlaattinAktas
    Journal of Forestry Research 2015年2期

    Nurdan C?etin Yerlikaya?Alaattin Aktas?

    Compressive failure of spruce wood rings reinforced with glass epoxy composite

    Nurdan C?etin Yerlikaya1?Alaattin Aktas?2

    We experimentally tested under radial compressive loads and statistically analyzed rings constructed from spruce wood and reinforced with glass fiber.We used the Weibull distribution in statistical analysis,and tested five types of rings including unreinforced and composite reinforced(CR)as wound around the ring,oriented as two layers atangles of 45°,60°,75°and 90°to the column axis. We calculated 95%reliability of load carrying capacity of the rings by Weibulldistribution.The highestload carrying capacity was obtained with CR rings at60°to the axialaxis of the ring.Load carrying capacities of rings at CR90, CR75,CR60 and CR45 were 137,192,215 and 126% greater,respectively,than unreinforced rings.For unreinforced rings,failures resulted from catastrophic breaking of wood materials.None of the reinforced rings failed catastrophically because the outer surface of the rings was reinforced with glass–epoxy composite fiber.Cracks began at the core of the materials under the composite layer for all specimens and resulted in failure of the rings.

    Reinforced ring·Composite material· Composite reinforced·Spruce wood

    Introduction

    Haller(2007)developed and patented a procedure for manufacturing wooden profiles.Circular hollow sections perform well when subjected to axial forces so they are well suited for use as columns(Heiduschke et al.2008). Fiber-reinforced plastic(FRP)glued to the outer surface of the profile can strengthen the wood in a transverse direction and prevent the wood from splitting.A wooden core can eliminate local buckling effects and strengthen the FRP profile in an axial direction.In addition,the wooden core stiffens the compound section and prevents thin composite layers from buckling(Cabrero et al.2010a;Heiduschke et al.2008;Haller 2007).

    Wood benefits from the mechanical characteristics of FRP.Wood profiles are well suited for use in light-weight structures,the classic field of FRP composites.Furthermore,the orientation of the fiber reinforcement copes with the anisotropy of wood and preserves itagainstweathering. The fiber or textile reinforcement benefits from the low price of wood,its aesthetic appearance,and its environmental friendliness(Fam et al.2010).

    The formed profiles can be reinforced with technical fibers and/or textiles laminated to the outer wood surface. The purpose of such composite confinement is to strengthen the wood profile in the circumferential direction and to protect wood against environmentally induced damage(Heiduschke and Haller 2010).Cabrero et al. (2010b)concluded that the maximum failure stress for a compressive force is achieved for fiber reinforcement at±0°(reinforcement perpendicular to the longitudinal direction of the wood).They stated that the maximum strength was obtained for a fiber reinforcement of±25°. Heiduschke and Haller(2010)stated thatbrittle failure was observed for unreinforced columns,whose longitudinalsplitting was due to the expansion of the tubes in a circumferentialdirection,resulting in tension perpendicular to the grain failure.Cabrero et al.(2010a)concluded that the analyticalresults were within an error less than 10%of the available experimental results,with a mean error ratio less than 3%.Shin et al.(2002)concluded that without any triggering mechanism,the failure mode at 90°ply orientation was stable and progressive,while catastrophic failure resulted at 0oand mixed mode at 0°/90°and±45°ply orientation.Heiduschke et al.(2008)concluded that, compared to unreinforced columns,the load carrying capacity and ductility of reinforced tubes increased by factors of 1.46 and 1.22,respectively.Han etal.(2007)considered the height and thickness of a rib and the spacing between two adjacent ribs as factors affecting the buckling strength of a pipe.

    Weibull distribution has the capability to model experimental data of very different character.Dodson(1994) described developments regarding the estimation approaches for Weibull distribution parameters.Barbero et al.(2000) applied thisanalysis in modeling the mechanicalproperties of composite materials and suggested Weibull distribution as a practical method for determining 90 and 95%reliability values used in composite materialmechanics.Yerlikaya and Aktas(2012)analyzed statistically the testresults by Weibull distribution to obtain a 95%reliability levelfor failure load. They concluded thatthe 95%reliability value foreach corner jointconfiguration was approximately equivalent to the 0.53 average value ofthe failure load.

    The aim of this study was to obtain the buckling and failure strength of rings constructed with spruce wood,and to determine the effects of the rings reinforced by a composite layer having differentangles(45°,60°,75°and 90°). Four bearing tests were performed for each specimen configuration.Using test data,we determined a Weibull distribution to delimit the 99%reliability of each compressive failure load value.

    Materials and methods

    Materials

    The experimental materials were spruce wood,adhesive, and glass fiber.We used spruce boards of approximately 4 cm thickness and 7 cm width and 53–60 cm length to fabricate cylinders.The oven-dry density of specimens was 0.40 g cm-3.The moisture content of boards was about 11%.The epoxy resin used in the matrix material was Bisphenol ACY-225 and the hardener was Anhydride HY-225.Cylinders were assembled with the polyvinyl acetate(PVAc)adhesive.The mass of glass-fibers was 130 g km-1.

    Methods

    Spruce boards were machined in a planer.Thus,the boards whose thickness were 30 mm and width were 25 mm were obtained.Then,as shown in Fig.1,these boards were cut in width of 22.6 mm with 5°angle and in length of 530–600 mm using a diamond saw blade in a circular saw. The cleaned angular surfaces of 36 boards were glued by hand with PVAc adhesive.The glued boards were assembled into a cylinder by inserting them into a plastic mold (Fig.2)in which they were left to dry for two days. Cylinder outside diameters measured 26 cm and lengths were 50,and 58 cm.The outer and inner surfaces of the resulting cylinders were sanded.

    The outer surface of composite-reinforced(CR)cylinders was glued with a mixture of epoxy adhesive and hardener.Glass-fiber yarn was then wound around the ring in two layers,each 1 mm in thickness,at angles of±45° (CR45),±60°(CR60),±75°(CR75)and±90°(CR90)to the column axis.These specimens were left to dry for 3 days.We prepared five cylinders for testing,one unreinforced(UR)and the other four composite-reinforced (Fig.3).Rings for testing were cut to lengths of 80 mm from the 500 mm cylinders.Four replicate ring samples were prepared for each of five test groups.

    Before testing,all specimens were conditioned to approximately 12%moisture content in an environment chamber at(20±2)°C and 65±5%relative humidity until weights were constant.

    Tests were carried out under radialcompression loading at room temperature of 20°C with a 10 kN loading capacity universal testing machine at a speed of 1.5 mm min-1(Fig.4).The load was applied on the axial center of the specimen.Load was applied to each specimen until a significant decrease in strength was observed.The load and displacement graphs were computer-plotted at±0.0001 N sensitivity for all tests.

    Fig.1 Specimen geometry

    Fig.2 Preparing cylinder

    Fig.3 Examples of wooden cylinders reinforced by fabrics:unreinforced(a),90°surrounding fiber(b),75°surrounding fiber(c),45° surrounding fiber(d),60°surrounding fiber(e)

    Fig.4 Loading type

    Weibull distribution

    We used a two-parameter Weibull distribution,which is appropriate for bearing strength studies.The distribution function used in this case was that of Kim and Heffernan (2008):

    F(x;b,c),represents the probability that the bearing strength is less than or equalto x.Using the equality F(x;b, c)+R(x;b,c)=1,the reliability R(x;b,c),that is,the probability that the bearing strength is at least x,was defined by Chellis(1961)as:

    The parameters b and c ofthe distribution function F(x;b, c)are estimated from observations.Linear regression was used for parameter estimation using MicroSoft ExelTM(Chellis 1961;Ibrahim etal.2000;Guden etal.2007;Aktas 2007).This method is based on transforming Eq.1 and calculating double logarithms forboth sides.Hence,a linear regression model in the form Y=mX+r is obtained:

    F(x;b,c)is an unknown in Eq.(4)and therefore it is estimated from observed values:order n observations from smallest to largest,and let x(i)denote the i th smallest observation(i=1 corresponds to the smallest and i=n corresponds to the largest).Then a good estimator of F(x(i);b,c)is the median rank of x(i):

    Results and discussion

    Load carrying capacity

    Mean load-carrying capacities and 95%reliability obtained by Weibull distribution are shown in Fig.5.Loadcarrying capacity was greatest at CR60,in experimental tests and statisticalanalyses.Lowestload-carrying capacity was recorded for unreinforced rings in experimental and statistical analyses.In experimental tests load-carrying capacity declined in rank order as CR60>CR75>CR90>CR45.In statistical analyses load-carrying capacity declined in rank order as CR60>CR75>CR45>CR90.

    The average load-carrying capacities of rings CR90, CR75,CR60 and CR45 were 137,192,215 and 126% greater than for unreinforced rings.Mean load-carrying capacities were obtained at 53,52,52,52 and 53%of reliability(for unreinforced,CR90,CR75,CR60,and CR45,respectively).

    Weibull distribution

    The results of the experiments are given in Table 1.Values b and c were calculated by firstranking them from smallest to largest and then computing(Xi,Y)values.We then applied linear regression to the computed(X,Y)values to produce linear regression models(Fig.6).The firstpointin Fig.6 does not appear to fit the line well.This is an expected situation when using linear regression:among consecutive(Y(i),Y(i+1))pairs,(Y(1),Y(2))has the largest absolute difference from the mean.The slope of the regression line was 6.01(for CR90),which is the value of the shape parameter c.

    Fig.5 Load carrying capacity

    When c<1.0,the material displayed a decreasing failure rate,c=0 indicates constant failure,and c>1.0 indicates an increasing failure rate.The value b was computed as b=1934 using the Y axis intercept(=-45.498)in b=e(-Y/c).Therefore,when c=0.368,there was a higher probability that the material would fracture with every unit of decrease in applied compression.The scale parameter b measures the spread in the distribution of data.As a theoretical property R(b;b,c)=0.368. Therefore,R(1934;1934,6.01)=exp(-(x/b)c)=0.368, that is,36.8%of the tested specimens had a load carrying capacity of at least 1934 N.

    The plot of R(x;b,c)is shown in Fig.7.The reliability curve in Fig.7 shows that load-carrying capacities less than or equal to 450,700,700,750 and 1,000 N(for unreinforced,CR90,CR75,CR60,and CR45,respectively) would provide high reliability.For a more certain assessment,consider 0.95 a reliability level.When these values are put as R(x;b,c)in Eq.3,and the equation is solved for x,the load carrying capacity values 613,1,180,1,375, 1,410 and 1,343 N(for unreinforced,CR90,CR75,CR60, and CR45,respectively)are obtained.In other words,this material will fail with 0.95 probability under loads of 613, 1,180,1,375,1,410 and 1,343 N(for unreinforced,CR90, CR75,CR60,and CR45,respectively)or more.

    Failure mode

    Figure 8 shows photographs of failed rings.For unreinforced rings,failures resulted from breaking of wood materials,not from separation of glued surfaces.In other words,specimens failed catastrophically.In addition,for all composite reinforced rings,specimens were not completely broken because of the outer surface of composite reinforcement.Wood was only cracked under thecomposite material.The edges of the rings were squeezed and compressed fibers were moved outward.

    Fig.6 Regression line for CR90.a the load-carrying capacity values (N);b median rank

    Table 1 Load-carrying capacity values(N)

    Fig.7 Weibull reliability distribution for failure load

    Fig.8 Photography of failed rings

    Conclusion

    We quantified the load-bearing capacities of four types of rings constructed of spruce wood and reinforced by glass fiber under radial compressive loads both experimentally and statistically.Load-carrying capacity was highest at CR60 for both experimental and statistical analyses.The lowest value was recorded for unreinforced rings in both experimental and statistical analyses.During ring failure, cracks began in the core materials for all specimens. Failures forunreinforced rings were formed by catastrophic breaking of wood materials.No composite-reinforced rings failed catastrophically.

    Aktas A(2007)Statistical analysis of bearing strength of glass-fiber composite materials.J Reinf Plast Compos 26:555–564

    Barbero E,Fernandez-Saez J,Navarro C(2000)Statisticalanalysis of the mechanical properties of composite materials.Compos B 31:375–381

    Cabrero JM,Heiduschke A,Haller P(2010a)Analytical assessment of the load carrying capacity of axially loaded wooden reinforced tubes.Compos Struct 92:2955–2965

    Cabrero JM,Heiduschke A,Haller P(2010)Parametric analysis of composite reinforced wood tubes under axial compression.In: World conference on timber engineering

    Chellis RD(1961)Deterioration and preservation of piles.Pile foundations.McGraw-Hill,New York,pp 339–372

    Dodson B(1994)Weibull analysis.American Society for Quality, Milwaukee

    Fam A,Kim YJ,Son J(2010)A numerical investigation into the response of free end tubular composite poles subjected to axial and lateral loads.Thin-Wall Struct 48:650–659

    Guden M,Yuksel S,Tasdemirci A,Tanoglu M(2007)Effect of aluminum closed-cell foam filling on the quasi-static axial crush performance of glass fiber reinforced polyester composite and aluminum/composite hybrid tubes.Compos Struct 81:480–490

    Haller P(2007)Concepts for textile reinforcements for timber structures.Mater Struct 40:107–118

    Han TH,Han SY,Kang YJ(2007)Elastic buckling behavior characteristics of GFRP pipe with reinforced ribs,composites and polycon.American Composites Manufacturers Association, 17–19 Oct,Tampa

    Heiduschke A,Haller P(2010)Fiber-reinforced plastic-confined wood profiles under axial compression.Int Assoc Bridge Struct Eng 3:246–253

    Heiduschke A,Cabrero JM,Manthey C,Haller P,Gu¨nther E(2008) Mechanical behaviour and life cycle assessment of fibrereinforced timber profiles.In:Braganca L,Koukkari H,Blok H,Cervasio R,Velkovic M,Plewako RUV,Landolfo Z,Silva L, Haller P(eds)Cost C25 sustainability of constructions-integrated approach to lifetime engineering.COST C-25.European Commission,Dresden,pp 3.38–3.46

    Ibrahim S,Polyzois D,Hassan SK(2000)Developmentof glass fiber reinforced plastic poles for transmission and distribution lines. Can J Civil Eng 27:850–858

    Kim YJ,Heffernan PJ(2008)Fatigue behavior of externally strengthened concrete beams with fiber-reinforced polymers: state of the art.J Compos Constr 12(3):246–256

    Shin KC,Lee JJ,Kim KH,Song MC,Huh JS(2002)Axial crush and bending collapse of an aluminum/GFRP hybrid square tube and its energy absorption capability.Compos Struct 57:279–287

    Yerlikaya NC,Aktas A(2012)Enhancement of load-carrying capacity of corner joints in case-type furniture.Mater Des 37:393–401

    23 November 2013/Accepted:7 February 2014/Published online:28 April 2015

    ?Northeast Forestry University and Springer-Verlag Berlin Heidelberg 2015

    The online version is available at http://www.springerlink.com

    Corresponding editor:Yu Lei

    ?Nurdan C?etin Yerlikaya ncyerlikaya@gmail.com

    1Department of Industrial Design,Faculty of Artand Design, Yalova University,77100 Yalova,Turkey

    2Department of Mechanical Engineering,Faculty of Engineering,Istanbul University,Avc?lar,34320 Istanbul, Turkey

    在线观看免费视频网站a站| 日韩成人av中文字幕在线观看| 欧美日韩综合久久久久久| 22中文网久久字幕| 97在线视频观看| 午夜老司机福利剧场| 晚上一个人看的免费电影| 亚洲精品中文字幕在线视频 | 内地一区二区视频在线| 在线观看av片永久免费下载| 午夜日本视频在线| 亚洲精品乱久久久久久| 欧美少妇被猛烈插入视频| 中文字幕av电影在线播放| 亚洲国产色片| 亚洲精品一区蜜桃| 一级毛片aaaaaa免费看小| 欧美+日韩+精品| 少妇的逼水好多| 亚洲av二区三区四区| 精品酒店卫生间| 亚洲国产精品国产精品| 亚洲丝袜综合中文字幕| 精品人妻熟女毛片av久久网站| 久久久欧美国产精品| 看十八女毛片水多多多| 成人亚洲欧美一区二区av| 国产欧美亚洲国产| 中国美白少妇内射xxxbb| 久久婷婷青草| 岛国毛片在线播放| 国产av精品麻豆| 国产精品一区二区在线观看99| 大话2 男鬼变身卡| 国产免费一级a男人的天堂| 麻豆成人av视频| 亚洲中文av在线| 人人妻人人澡人人爽人人夜夜| 纵有疾风起免费观看全集完整版| 一区二区三区精品91| 99热网站在线观看| 各种免费的搞黄视频| 人人妻人人添人人爽欧美一区卜| 国产精品久久久久久av不卡| 能在线免费看毛片的网站| 久久久久国产精品人妻一区二区| 九九爱精品视频在线观看| 观看免费一级毛片| 亚洲av在线观看美女高潮| 在线观看免费视频网站a站| 不卡视频在线观看欧美| 国产成人freesex在线| 人妻制服诱惑在线中文字幕| 久久久久久久久久久免费av| 色94色欧美一区二区| h日本视频在线播放| 九草在线视频观看| 国产精品一区二区三区四区免费观看| 黄色一级大片看看| 不卡视频在线观看欧美| 不卡视频在线观看欧美| 免费大片黄手机在线观看| 看免费成人av毛片| 少妇高潮的动态图| 女人久久www免费人成看片| 美女脱内裤让男人舔精品视频| 夫妻性生交免费视频一级片| 波野结衣二区三区在线| 伦理电影大哥的女人| 91精品一卡2卡3卡4卡| 欧美老熟妇乱子伦牲交| 国产探花极品一区二区| 大又大粗又爽又黄少妇毛片口| 欧美日韩综合久久久久久| 欧美日韩视频精品一区| 精品久久久久久久久av| 91久久精品国产一区二区成人| 国模一区二区三区四区视频| 日韩 亚洲 欧美在线| 国产精品久久久久久久久免| 成人综合一区亚洲| 亚洲国产日韩一区二区| 日本黄大片高清| 观看av在线不卡| 欧美亚洲 丝袜 人妻 在线| 视频区图区小说| 国产亚洲91精品色在线| 国产成人精品婷婷| 大码成人一级视频| 美女xxoo啪啪120秒动态图| 亚洲情色 制服丝袜| 免费观看性生交大片5| 春色校园在线视频观看| 亚洲欧美中文字幕日韩二区| 国产精品一二三区在线看| 精品99又大又爽又粗少妇毛片| 在线亚洲精品国产二区图片欧美 | 国产亚洲91精品色在线| 亚洲欧洲日产国产| 青春草亚洲视频在线观看| 高清欧美精品videossex| 久久精品国产亚洲网站| 高清在线视频一区二区三区| 99热全是精品| 日韩一区二区三区影片| 久久精品夜色国产| 在线亚洲精品国产二区图片欧美 | 亚洲欧洲国产日韩| 久久精品久久久久久噜噜老黄| 最近最新中文字幕免费大全7| 视频区图区小说| 高清av免费在线| 国产国拍精品亚洲av在线观看| 国产亚洲欧美精品永久| 亚洲欧美日韩卡通动漫| 亚洲情色 制服丝袜| 欧美少妇被猛烈插入视频| 有码 亚洲区| 久久久久久久久大av| 少妇人妻一区二区三区视频| 国产熟女午夜一区二区三区 | 日日摸夜夜添夜夜爱| 免费播放大片免费观看视频在线观看| 亚洲精品日韩在线中文字幕| 人妻夜夜爽99麻豆av| 免费观看av网站的网址| 女人久久www免费人成看片| 免费黄网站久久成人精品| 国产精品一区www在线观看| 亚洲高清免费不卡视频| 日韩亚洲欧美综合| 水蜜桃什么品种好| 少妇 在线观看| av不卡在线播放| 如何舔出高潮| 国产一区有黄有色的免费视频| 国产在线男女| 亚洲国产日韩一区二区| 人妻夜夜爽99麻豆av| 国产精品国产三级专区第一集| 欧美亚洲 丝袜 人妻 在线| 亚洲国产av新网站| 午夜激情久久久久久久| xxx大片免费视频| av又黄又爽大尺度在线免费看| 国产高清有码在线观看视频| 我要看黄色一级片免费的| 午夜福利影视在线免费观看| 高清av免费在线| 黑人猛操日本美女一级片| 桃花免费在线播放| 亚洲精品乱久久久久久| 国产成人精品婷婷| 九色成人免费人妻av| 成人影院久久| 亚洲av电影在线观看一区二区三区| 国产精品人妻久久久影院| 欧美日韩视频精品一区| 国产精品秋霞免费鲁丝片| av免费在线看不卡| 国产亚洲午夜精品一区二区久久| 在线观看免费高清a一片| 国产精品熟女久久久久浪| 亚洲人与动物交配视频| 久久久国产欧美日韩av| 中文资源天堂在线| 国产高清不卡午夜福利| 免费人妻精品一区二区三区视频| 大片电影免费在线观看免费| 日日摸夜夜添夜夜爱| 丰满迷人的少妇在线观看| 黑人高潮一二区| 自拍欧美九色日韩亚洲蝌蚪91 | 视频区图区小说| 2018国产大陆天天弄谢| 中国三级夫妇交换| 国产精品人妻久久久影院| 18禁在线播放成人免费| 嫩草影院入口| 春色校园在线视频观看| 特大巨黑吊av在线直播| 80岁老熟妇乱子伦牲交| 亚洲欧美成人精品一区二区| 国产毛片在线视频| 色5月婷婷丁香| 一级爰片在线观看| 两个人免费观看高清视频 | 大码成人一级视频| 亚洲欧美日韩卡通动漫| 国产精品一区www在线观看| 纯流量卡能插随身wifi吗| 在线播放无遮挡| 亚洲欧美一区二区三区黑人 | 纵有疾风起免费观看全集完整版| freevideosex欧美| 欧美日韩视频精品一区| 各种免费的搞黄视频| 日韩强制内射视频| 91久久精品国产一区二区三区| av卡一久久| 久久午夜综合久久蜜桃| 国产综合精华液| 91精品伊人久久大香线蕉| 亚洲欧美中文字幕日韩二区| 少妇人妻精品综合一区二区| 晚上一个人看的免费电影| 久久狼人影院| kizo精华| 国产av精品麻豆| 国产永久视频网站| 成人黄色视频免费在线看| 久久久久久久久大av| 欧美少妇被猛烈插入视频| 王馨瑶露胸无遮挡在线观看| 狂野欧美激情性bbbbbb| 亚洲三级黄色毛片| 国产精品一区二区性色av| 精品一区二区免费观看| 日韩强制内射视频| 国产精品久久久久久av不卡| 99热全是精品| 黄色欧美视频在线观看| 欧美激情极品国产一区二区三区 | 国产极品天堂在线| 亚洲精品色激情综合| 国精品久久久久久国模美| 51国产日韩欧美| 久久久国产欧美日韩av| 久热这里只有精品99| 97超碰精品成人国产| 亚洲,欧美,日韩| 高清黄色对白视频在线免费看 | 2021少妇久久久久久久久久久| 中文乱码字字幕精品一区二区三区| 啦啦啦啦在线视频资源| 十八禁高潮呻吟视频 | 18禁裸乳无遮挡动漫免费视频| 伦理电影免费视频| 精品久久久精品久久久| 韩国高清视频一区二区三区| 国产精品99久久久久久久久| a级毛片在线看网站| 女人精品久久久久毛片| 好男人视频免费观看在线| 国产一级毛片在线| 高清视频免费观看一区二区| 婷婷色麻豆天堂久久| 3wmmmm亚洲av在线观看| 观看美女的网站| 日韩一区二区三区影片| 秋霞伦理黄片| 国产免费一级a男人的天堂| 99久久中文字幕三级久久日本| 黄色毛片三级朝国网站 | freevideosex欧美| 欧美国产精品一级二级三级 | 人体艺术视频欧美日本| 3wmmmm亚洲av在线观看| 久久久久人妻精品一区果冻| 我要看黄色一级片免费的| 91成人精品电影| tube8黄色片| 亚洲人成网站在线观看播放| 人妻 亚洲 视频| 国产精品久久久久久久电影| 男人舔奶头视频| 多毛熟女@视频| 午夜老司机福利剧场| 亚洲图色成人| av有码第一页| 亚洲熟女精品中文字幕| 一级二级三级毛片免费看| 麻豆精品久久久久久蜜桃| 日韩电影二区| 性高湖久久久久久久久免费观看| 亚洲av欧美aⅴ国产| 搡女人真爽免费视频火全软件| 国产av国产精品国产| 国产成人aa在线观看| 一级爰片在线观看| 免费看光身美女| 久久99精品国语久久久| 精品午夜福利在线看| 久久青草综合色| 国产美女午夜福利| 观看免费一级毛片| 国产精品一区二区性色av| 成人国产av品久久久| 久久久亚洲精品成人影院| 99久久中文字幕三级久久日本| 国产老妇伦熟女老妇高清| av在线app专区| 日本91视频免费播放| 高清视频免费观看一区二区| 亚洲精品亚洲一区二区| 国产一区亚洲一区在线观看| 啦啦啦视频在线资源免费观看| 国产精品一二三区在线看| av视频免费观看在线观看| 你懂的网址亚洲精品在线观看| 菩萨蛮人人尽说江南好唐韦庄| 能在线免费看毛片的网站| 老女人水多毛片| 欧美日韩综合久久久久久| 少妇丰满av| 国产综合精华液| 99热全是精品| 少妇的逼水好多| 在线看a的网站| 少妇人妻久久综合中文| 国模一区二区三区四区视频| 国产爽快片一区二区三区| 99精国产麻豆久久婷婷| 人妻一区二区av| 国产精品.久久久| 少妇人妻 视频| 91久久精品国产一区二区成人| 国产亚洲一区二区精品| 国产伦在线观看视频一区| 久久99蜜桃精品久久| 亚洲情色 制服丝袜| 一级av片app| av有码第一页| 色婷婷av一区二区三区视频| 美女内射精品一级片tv| 久久精品国产鲁丝片午夜精品| 女性生殖器流出的白浆| 国产伦精品一区二区三区视频9| 国语对白做爰xxxⅹ性视频网站| 91成人精品电影| av.在线天堂| 国产一区亚洲一区在线观看| 国产黄片视频在线免费观看| 观看免费一级毛片| 久久女婷五月综合色啪小说| 美女国产视频在线观看| 老司机亚洲免费影院| 在线观看一区二区三区激情| 色网站视频免费| 七月丁香在线播放| 日韩 亚洲 欧美在线| 在线播放无遮挡| 久久久午夜欧美精品| 亚洲,一卡二卡三卡| 久热久热在线精品观看| 国产精品国产av在线观看| 免费观看a级毛片全部| 欧美另类一区| 欧美3d第一页| 日日摸夜夜添夜夜添av毛片| 久久久久久久久久久久大奶| 亚洲色图综合在线观看| 国产乱来视频区| 久久久久久人妻| av视频免费观看在线观看| 久久99精品国语久久久| 成年人午夜在线观看视频| 99re6热这里在线精品视频| 在线看a的网站| 在线观看国产h片| 欧美 日韩 精品 国产| 日产精品乱码卡一卡2卡三| 大香蕉97超碰在线| 91精品一卡2卡3卡4卡| 一边亲一边摸免费视频| 丝瓜视频免费看黄片| 精品国产露脸久久av麻豆| 一区二区三区四区激情视频| 午夜免费男女啪啪视频观看| 97超视频在线观看视频| 国产免费视频播放在线视频| 久久精品国产亚洲av涩爱| 成人18禁高潮啪啪吃奶动态图 | 日本av手机在线免费观看| 蜜桃久久精品国产亚洲av| 亚洲av国产av综合av卡| 99久久精品国产国产毛片| 一个人看视频在线观看www免费| av又黄又爽大尺度在线免费看| 欧美成人精品欧美一级黄| 伊人亚洲综合成人网| 大片免费播放器 马上看| 蜜桃在线观看..| 日韩大片免费观看网站| 天堂俺去俺来也www色官网| 欧美区成人在线视频| 欧美日韩视频高清一区二区三区二| 国产色爽女视频免费观看| 成人黄色视频免费在线看| 欧美日韩av久久| 国产黄片美女视频| 青春草亚洲视频在线观看| 国产日韩欧美在线精品| 美女主播在线视频| 国产 精品1| 人体艺术视频欧美日本| 色视频在线一区二区三区| 美女中出高潮动态图| 亚洲欧洲国产日韩| 三级国产精品片| 亚洲欧美一区二区三区黑人 | 亚洲国产精品国产精品| av播播在线观看一区| 五月天丁香电影| 国产av码专区亚洲av| 高清不卡的av网站| 中文资源天堂在线| 国产男人的电影天堂91| 超碰97精品在线观看| 国产高清不卡午夜福利| 青春草视频在线免费观看| 免费观看av网站的网址| 日韩av免费高清视频| 极品教师在线视频| 日本-黄色视频高清免费观看| 亚洲情色 制服丝袜| 老女人水多毛片| 男人舔奶头视频| 一区二区三区四区激情视频| 国产免费又黄又爽又色| 亚洲激情五月婷婷啪啪| 日韩欧美精品免费久久| 欧美成人午夜免费资源| 天堂中文最新版在线下载| 97在线视频观看| 国产亚洲一区二区精品| 黑丝袜美女国产一区| 欧美国产精品一级二级三级 | 色5月婷婷丁香| 日本wwww免费看| 中文乱码字字幕精品一区二区三区| 国产午夜精品一二区理论片| 午夜av观看不卡| 亚洲国产最新在线播放| 精品视频人人做人人爽| 男人舔奶头视频| 高清不卡的av网站| 国产高清三级在线| a级毛片在线看网站| 校园人妻丝袜中文字幕| 国产深夜福利视频在线观看| 亚洲国产精品一区二区三区在线| 国产精品三级大全| 国产乱来视频区| 日韩熟女老妇一区二区性免费视频| 国产精品国产三级国产av玫瑰| 国产美女午夜福利| 成年人免费黄色播放视频 | 欧美少妇被猛烈插入视频| 一级av片app| av.在线天堂| 久久青草综合色| 国产成人精品一,二区| 五月伊人婷婷丁香| 激情五月婷婷亚洲| 妹子高潮喷水视频| 国产欧美亚洲国产| 国产亚洲91精品色在线| 国产一级毛片在线| 免费观看av网站的网址| 青春草亚洲视频在线观看| 亚洲美女搞黄在线观看| 欧美xxⅹ黑人| 综合色丁香网| 一级毛片aaaaaa免费看小| 久久久久视频综合| 久久精品国产亚洲av天美| 精品人妻偷拍中文字幕| 国产免费一区二区三区四区乱码| kizo精华| 97在线视频观看| 久久婷婷青草| 中文精品一卡2卡3卡4更新| 中文字幕人妻熟人妻熟丝袜美| 精品一区二区三卡| 成年美女黄网站色视频大全免费 | 观看美女的网站| 国产在视频线精品| 日韩成人伦理影院| 成人18禁高潮啪啪吃奶动态图 | 女性被躁到高潮视频| 国产视频内射| 国产精品.久久久| 国产黄片视频在线免费观看| 又爽又黄a免费视频| av播播在线观看一区| 精品一区二区三区视频在线| 黄色一级大片看看| 国产高清国产精品国产三级| 乱码一卡2卡4卡精品| 婷婷色综合大香蕉| 另类精品久久| av在线观看视频网站免费| 黄色视频在线播放观看不卡| 国产高清不卡午夜福利| 久久精品久久精品一区二区三区| 80岁老熟妇乱子伦牲交| 亚洲综合色惰| 免费看日本二区| 22中文网久久字幕| 老司机亚洲免费影院| 女人久久www免费人成看片| 亚洲av电影在线观看一区二区三区| 久久久久久久亚洲中文字幕| 日韩伦理黄色片| 亚洲精品成人av观看孕妇| 成年美女黄网站色视频大全免费 | 日韩一本色道免费dvd| 插阴视频在线观看视频| 亚洲国产日韩一区二区| 激情五月婷婷亚洲| 91成人精品电影| av福利片在线| 人妻系列 视频| 边亲边吃奶的免费视频| 欧美日韩国产mv在线观看视频| 不卡视频在线观看欧美| 成人特级av手机在线观看| 高清在线视频一区二区三区| 深夜a级毛片| 97精品久久久久久久久久精品| 肉色欧美久久久久久久蜜桃| 啦啦啦中文免费视频观看日本| 国产午夜精品一二区理论片| 777米奇影视久久| 日日啪夜夜爽| 精品国产乱码久久久久久小说| 在线观看www视频免费| 一级,二级,三级黄色视频| 五月天丁香电影| 欧美区成人在线视频| 91久久精品国产一区二区成人| 尾随美女入室| 欧美另类一区| 青春草视频在线免费观看| 女人精品久久久久毛片| 亚洲精品国产av蜜桃| 免费观看a级毛片全部| 人妻系列 视频| 天天躁夜夜躁狠狠久久av| 在现免费观看毛片| 亚洲欧美精品自产自拍| 日韩免费高清中文字幕av| 亚洲av二区三区四区| 黄色毛片三级朝国网站 | 国产亚洲最大av| 青春草视频在线免费观看| 一级片'在线观看视频| 国产高清三级在线| 亚洲综合色惰| 国产在线一区二区三区精| 精品国产一区二区久久| 久久精品国产亚洲av天美| 国内揄拍国产精品人妻在线| 午夜精品国产一区二区电影| 哪个播放器可以免费观看大片| 另类精品久久| 国产精品偷伦视频观看了| 亚洲欧美日韩另类电影网站| 男女边摸边吃奶| 国产日韩欧美视频二区| 亚洲精品久久久久久婷婷小说| 国产中年淑女户外野战色| 久久久亚洲精品成人影院| 国产 精品1| 男女边摸边吃奶| 国产精品99久久99久久久不卡 | 亚洲精品第二区| freevideosex欧美| 免费在线观看成人毛片| 最新的欧美精品一区二区| 人妻系列 视频| 日产精品乱码卡一卡2卡三| 日韩一区二区三区影片| 亚洲精品,欧美精品| 热re99久久精品国产66热6| 黄片无遮挡物在线观看| 亚洲精品中文字幕在线视频 | 久久ye,这里只有精品| 久热这里只有精品99| 免费av中文字幕在线| 日韩精品免费视频一区二区三区 | 国产精品久久久久久精品电影小说| 大话2 男鬼变身卡| 在线 av 中文字幕| 美女大奶头黄色视频| 久久久久国产精品人妻一区二区| 寂寞人妻少妇视频99o| 亚洲av免费高清在线观看| 成人毛片60女人毛片免费| 黄色视频在线播放观看不卡| 亚洲激情五月婷婷啪啪| 韩国av在线不卡| 日本与韩国留学比较| 免费看av在线观看网站| 成人黄色视频免费在线看| 晚上一个人看的免费电影| 69精品国产乱码久久久| 免费黄网站久久成人精品| 精品一区二区免费观看| 新久久久久国产一级毛片| 亚州av有码| 大又大粗又爽又黄少妇毛片口| 欧美少妇被猛烈插入视频| 国产伦理片在线播放av一区| 色视频在线一区二区三区| 免费大片黄手机在线观看| 91精品伊人久久大香线蕉| 大陆偷拍与自拍| 一本一本综合久久| 久久久久久久久久久久大奶| 少妇 在线观看| 国产精品偷伦视频观看了| 香蕉精品网在线| 亚洲国产av新网站|