• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Natural enemies depend on remnant habitat size in agricultural landscapes

    2015-06-05 08:54:05
    Journal of Forestry Research 2015年2期

    Natural enemies depend on remnant habitat size in agricultural landscapes

    Mainara Xavier Jordani?E′rica Hasui?Vin?′cius Xavier da Silva

    In recent decades,the consequences of habitat fragmentation have been of growing concern,because it is particularly important to understand how fragmentation may affect biodiversity,an ecological service.We tested two hypotheses:(1)that natural fragment size in agricultural landscapes indirectly affects the herbivore through effects on natural predator populations;and(2)predator activity into the crop reduces along the distance from the natural fragment edge.From 2008 and 2009,we conducted our study in seven forest remnants and in surrounding coffee plantations(fragments ranged from 6 to 105 ha, mean 49.28±36.60 ha)in Southern Minas Gerais,Brazil. Birds were sampled by point counts,and insect predation was evaluated by using an artificial insect model(Koh and Menge 2006).Our results suggest that although there weremany potential predators(e.g.,wasps,ants,birds,and mammals),birds were the most important taxon unit.The covariance analysis supported the hypothesis that patch size affected the numberof larvae predation by overalltaxi, but there was no support for a distance effect.These findings suggest that natural enemies’ecological service (mainly from birds)declined with remnant reduction, which has implications not only for human welfare,but also in strengthening the economic justifications for conserving the remaining natural habitats and biodiversity in agricultural landscapes.

    Ecosystem service·Fragmentation· Isolation·Insectivore·Predation

    Introduction

    Increasing human population size and food consumption per person have resulted in an expansion in agricultural landscapes and a concurrentreduction of naturalhabitats to smaller,isolated fragmented patches.These changes in land use are the major drivers of biodiversity loss,because these patches become too small to support particular species or too far apart to ensure regional persistence of metapopulation dynamics(Tilman etal.2001;Fahrig 2003; Tscharntke et al.2005).

    Although most people give little thought to how dependent they are on biodiversity,crucial services for humanity are disappearing or becoming inefficient(Daily 1997;Tscharntke et al.2005;Whelan et al.2008).If conserved and managed appropriately,biodiversity can contribute to agricultural productivity and sustainability of ecosystem services(such as pest control,crop pollination, soil fertility,protection against soil erosion in waterways,and the removal of excessive nutrients).Natural pest regulation is an important service with economic and human health benefits.

    Pests,particularly herbivorous insects,destroy 37 percent of the potential crop yield(Pimentel et al.1997). Despite millions of tons of synthetic pesticides used annually,farmers frequently failed to combatpests because many have evolved resistance to them.To avoid immunity to specific chemicals,farmers need to maintain as many weapons in the pest control arsenal as possible and alternate these strategies(Sodhi and Ehrlich 2010).However, these chemical compounds can also kill beneficial species (such as pollinators,or natural predators of the pest)and also put human health at risk through food and water contamination.

    Achieving success in natural pest control depends on many factors and can easily be disrupted(Bianchi et al. 2006).There is increasing evidence that landscape structure and composition can interfere with this service (Tscharntke et al.2005;Bianchi et al.2008).Several studies have shown that species richness and abundance of natural enemies are affected by the proximity of a natural habitat patch(Tscharntke et al.2007).In this case,predators cross natural habitat edges into neighboring crops, where they significantly reduce prey populations(Cronin 2003).Thus,managing action on natural habitats in agricultural ecosystems assumes that significant predator incursions will across natural habitat edges and result in enhanced biological control(Denno et al.2005).

    The question of the optimal size and distance of natural habitats to enhance natural enemies,and consequently maximize ecosystem service,is not well understood.For example,Puckett et al.(2009)showed higher foraging habits of insectivorous birds within 20 m of the edge,but other studies also found a foraging distance pattern at least 1 km apartfrom a naturalhabitat(Jonsson et al.2010).The distance pattern depends on the biology of individual species,mainly related to habitat specialization and dispersion ability in the crop.

    We test the hypothesis of incremental predator activity into the crop along natural patch-size gradients.From a natural enemies’perspective,increasing natural patch size can result in higher abundance and diversity of food resource(MacArthur and Wilson 1967;Connor et al. 2000).If predator populations exhibit positive response to food availability,then higher predator abundance and greater predator effects are likely to be found in larger patches(With 2002;Langellotto and Denno 2004).This increment in predator abundance can be propagated into the crops,if predators can disperse freely across natural habitat edges(Cronin 2003).

    Alternatively,the opposite hypothesis of the relationship between patch size and foraging activity can be expected due edge-related phenomena.In this case,in small natural patches with high edge-to-area ratio,prey mortality will increase as a result of predator incursion into the crops (Cronin et al.2004).There are data to support both scenarios of increasing and decreasing impacts across a patch gradient(Denno et al.2005).In this study,we tested two alternative hypotheses and also evaluate the distance effect from the naturalhabitat patch in the agriculturallandscape.

    Materials and methods

    Study area

    Fieldwork was conducted in fragments in the southern Brazilian state of Minas Gerais,Brazil(21°25′48.03′′S, 45°56′51.76′′W,Fig.1).Altitude in this area averages 880 m asl,with a mean annual temperature of 23°C and annual rainfall of 1,413 mm(Costa 1998).The original vegetation is classified as seasonal semideciduous forest (Oliveira Filho and Fontes 2000).However,now the landscape is highly fragmented,with only four percent of native forest remaining in various successional stages (Fundac?a?o SOS Mata Atla?ntica and INPE 2009).The landscape matrix is mainly composed of pastures and coffee and sugar cane plantations.

    The landscape analysis was conducted using satellite images(CBERS),with a 20 m resolution,using ArcGIS 9.2TMsoftware to visually classify mature forest remnants in a 30 km radius of the municipality of Alfenas,Brazil. The patch size was then calculated to select seven forest remnants in a size gradient ranging from 6 to 105.9 ha (mean 49.28±36.60 ha,Fig.1).The matrix surrounding forest remnants was composed by coffee plantation.

    Fig.1 Location ofthe study area in the State of Minas Gerais,Brazil, showing the location of the sample sites(dark gray)

    Bird sampling

    In each sample site,six points were chosen:two points inside the fragment(located at 100 m from the nearest forest edge),two in the forest edge(located at one meter from the nearest forest edge)and two inside the coffee plantation(located at 100 m from forest edge).Each point was at least 100 m apart from the other(Fig.2).Each fragment was sampled three times in the wet season in the years of 2008 and 2009,always in the morning.

    Birds were sampled using the point count method with limited distance(30 m,Develey 2003).The time for sampling in each point was 10 min.All birds were recorded,but only insectivorous(including omnivores)understory birds were considered in this study,because they are potential predators of caterpillars.The classification of foraging behaviour and vertical stratification followed Willis(1979),Fitzpatrick(1980),Ridgely and Tudor (1994,1997),Remsen and Robinson(1990),Stotz et al. (1996),Sick(2001)and Gomes et al.(2008).The taxonomic classification of the bird species followed CBRO (Comite?Brasileiro de Registros Ornitolo′gicos 2011).

    Caterpillar predation

    An experimental approach was used to compare the number of caterpillars found in the fragments.Using modeling clay,an oil-based and nontoxic compound,artificial caterpillars were constructed to capture the bite marks of potentialpredators.The artificialcaterpillars had a standard size(30 mm×7 mm),shape(cylindrical)and color (green).Due to malleability of model and the type of impression upon its retrieval,the predator taxa can be identified using a method successfully employed in other studies(Freitas and Oliveira 1996;Koh and Menge 2006).

    Fig.2 Sampling unit design of seven sites in Minas Gerais,Brazil. Each sample site was composed of six pointcounts(white circles)and five transects(white lines).White circles representthe locations where birds were sampled by point counts and the white transects where predation models were distributed

    The artificialcaterpillarswere randomly distributed along five parallel trails(20 caterpillars per trail,length=5 m) per fragment:two inside the fragment,two inside the coffee plantation,and one on the edge forest(Fig.2).Each trailwas atleast25 m from the other.Each caterpillarwas secured on the top of leaves at 1.5 m above ground using plastic glue. Afterfive days,the caterpillars were collected and examined under a stereomicroscope in orderto determine the nature of the bite marks inflicted by potential predators(e.g.,mammals,birds,ants and wasp;Fig.3).

    Data analysis

    The relative importance of predators was determined using a two-way ANOVA with habitat and predator type as the categoricalpredictors.A subsequent Tukey’s test was done to assess where there was a difference.In this analysis we excluded the edge-collected data.

    Through an analysis of covariance(ANCOVA),three models were established,representing all possible n-way combinations of the two predictor variables:patch size and predator type.Later these models were compared and selected by Akaike information criterion(AIC—Akaike Information Criterion)and then adjusted for small samples (AICc)(Burnham and Anderson 2002).This highlighted the most plausible models to explain the variation in the number of caterpillars.The Akaike criterion is defined by likelihood AICc=-2+2*K*(n/(nk-1)),where maximum likelihood is the likelihood of the data,K is the number of parameters in the model,and n is the size of sample.This generates a ranking of the best to worst model,and AICc differences≥2 are considered great,and the best support is given to the model with lowest AICc.

    The plausibility of the models was evaluated through the values ofΔAIC(difference between a determined and the lowest value of AIC among all models tested)and wi, which is the Akaike weight,which varies between 0 and 1, and estimates the weight of evidence in favor of a model i given the set of models compared.

    To assess whether the distance from the fragmentaffects the amount of caterpillars attacked by predators,we also conducted an analysis of covariance to determine the best model relating the number of attacked caterpillars to the distance from fragmentand type of predator.So we explore the gradient interior-edge-coffee plantation.Our study did nothave a controlarea for absolute lack of forestfragments with more than 500 hectares within 100 km radius.

    Furthermore,a Spearman correlation was used to evaluate the relationship between the abundance index of insectivorous bird and the number of artificial caterpillars predated by birds.

    Fig.3 Examples of different bite marks found on artificial caterpillars:a mammals,b birds and c ants

    Results

    Relative importance of predators

    Birds,insects,and mammals were the main predators of caterpillars in the study site.After five days,they attacked 21.7–60.3%of the artificial caterpillars.After excluding mammal predations from the statistical analysis due to an insufficient sample size(only two occurrences),there were significant differences between predators(i.e.,birds,ants, and wasps).The birds preferentially attacked in the forest (two-way ANOVA:F2,46=4.1;p=0.02),but even so, their attacks in the coffee plantation were higher than those from wasps and ants(Tukey test:p<0.05)(Fig.4).

    Fig.4 Numberofartificiallarvae attacked by birds,wasp and ants in the interiorofthe forestfragments and in the coffee plantation.Points represent mean±SE

    Interaction between predator type and patch size effects

    The best-supported model constructed in the analysis of covariance(GLM–ANCOVA)indicated thatthe predations were affected only by the combination of predator type and patch size(Table 1).There was no support for the individual prediction models(ΔAICc≥2).Specifically,this model showed a positive relationship between patch size and number of predation,but the intensity of those attacks was conditioned by the predator type(Fig.5a).Birds attacked more with an increase in patch size.The same thing happened with ants and wasps,but at lower levels.

    Distance from remnants effect on predations in the coffee plantations

    There was no support for the effect of distance from remnants according to the analysis of covariance(GLM–ANCOVA).The most plausible model included only the predator type(Table 2).The contribution of distance as predictor variable was very low(predictor weight=0.03), mainly when wasp and ant predations were considered (Fig.5b).

    Potential bird predators

    From a total of 23 insectivorous understory bird species in the sample sites,five may be potential candidates for pestpredators,because they mainly attack prey on foliage and stems and also occur in the coffee plantations(Table 3).In particular,Basileuterus leucoblepharus(Spearman correlation:rs=0.82 and p=0.02)and Dysithamnus mentalis (Thamnophilidae,Spearman correlation:rs=0.89 and p=0.006)showed a significant correlation between the number of caterpillars attacked and the number of bird contacts.

    Table 1 GLM–ANCOVAmodelresults compared with the nullmodel, ranked by Akaike’s Information Criterion corrected for small sample size(AICc),predicting the numberofartificialcaterpillarpredations

    Fig.5 Numberofartificiallarvae attacked by birds,wasps and ants in differentforestfragmentsizes(a)and differentdistance from the edge of forestfragments(b)

    Table 2 GLM–ANCOVA model results compared with the null model,ranked by Akaike’s Information Criterion corrected for small sample size(AICc),predicting the number of artificial caterpillar predations

    Discussion

    Influence of natural habitat patch on pest regulation service

    The economic reasons for saving and restoring natural habitats are growing increasingly influential for politicians and resource managers.It is of utmost importance to identify strategies that generate positive co-benefits for production,biodiversity,and local people.This experimentalstudy found evidence thatthe size of natural habitat patches in the agriculturallandscape interfered with natural predators.The predator service increases with the increasing size of the adjacentnaturalhabitat,being able to reduce larvae by 21.7–60.3%after five days.

    These percentages may be higher since we studied predation in small-sized patches(ranging from 6 to 105.9 ha),and therefore higher percentages may be expected in larger natural patches.For example,Greenberg et al.(2000)found that birds reduced the abundance of large arthropods(>5 mm)in a coffee plantation by 64–80%and also with lower levels of leaf damage. Borkhataria et al.(2006)expanded the insect size classes, demonstrating thatbirds can also reduce small-sized insect populations in a coffee plantation.Furthermore,pest control services in the crops were not influenced by the distance from natural habitats,at least 100 m apart from the edge.

    Potential pest predators

    Due to the study design,we only have indirect evidence about the type of predators.Our results indicated that predation intensity is species specific,where bird species were more effective control agents than ants or wasps, although birds were more affected by patch-size variation. Differential responses among taxa may be due to differences in their biological traits,such as ecological specialization,matrix use,and organism dispersal capacity(Henle et al.2004).

    However,interactions of species traits and landscape structure must be considered.These predators aredependent on resources not contained within a single habitat type and are likely influenced by the landscape structure of all required patch-habitat types.The ability to use resources in different habitats is dependent on biological traits of species and is influenced both by the characteristics of the patch(food supply,predation risk, competition pressure)and the characteristics of landscape (habitat complexity,diversity,quality,and patchiness). This spatial association of required habitat patches influenced the distribution patterns of predation across the cropnatural habitat interface(Tscharntke et al.2005).

    Table 3 Bird species recorded in point count observations of seven forest remnants and surrounding coffee matrix in Alfenas,MG

    Our results suggest,at least two distribution patterns of predator attacks.The first pattern,represented by ant and wasp predators,showed homogeneous distribution of attacks in the crop-naturalhabitatinterface withoutspecific preference for one habitat type or the other.The second pattern,described for bird predators,showed heterogeneous distribution of attacks with higher attacks in the natural habitats than in the crops.

    Five insectivorous bird species occurred in the matrix and are possible candidates of these attacks.However, Basileuterus leucoblepharus and Dysithamnus mentalis had a strong positive correlation between the number of larvae attacks and the number of individual bird contacts. Thus,they were potentially the most important pest predator in the study area.The positive effect of bird attacks with the naturalpatch size was explained by the addition of bird species of higher sensitivity to human disturbances (sensus Stotz et al.1996),such as Hemitriccus orbitatus and Drymophila ferruginea,which are restricted to larger fragments.This work supports an earlier suggestion that insectivorous birds were important in the reduction of herbivorous insect pests(Altegrim 1989;Strong et al. 2000)or plant damages in both natural habitats and coffee plantation(Greenberg et al.2000;Borkhataria et al.2006; Kellermann etal.2008;Van Baeletal.2008;Johnson etal. 2009).For example,they are able to reduce the population of the forest pest Lepidoptera,which the birds feed on,by 20–100%(Barbaro and Battisti 2011).

    Despite the lower level of attacks by wasps and ants, previous studies have demonstrated the importance of these taxa as natural enemies of coffee plantation pests such asleafminer,Leucoptera coffeellum(Gue′rin-Me′neville) (Lepidoptera:Lyonetiidae),which causes great economic losses in some New World coffee-producing countries, such as Brazil,Colombia,Cuba,Guatemala,Peru,and Puerto Rico(Parra 1985;Reis et al.2000;Fragoso et al. 2001).A study in Brazil on population dynamics of this species demonstrated that wasps could reduce pest populations by 69%(Reis et al.2000).A collection of wasp predator species from prior studies documented,at least, six genera and 11 species—including Protonectarina sylverae Saussure,Polybia paulista Ihering,Polybia occidentalis Olivier,Polybia scutellaris White,Brachygastra lecheguana Latreille,and Synoeca surinama cyanea Linnaeus—thatfeed on coffee leafminers(Fragoso etal.2001; Lomeli-Flores 2009).However,the findings of Reis et al. (2000)contrast to Lomeli-Flores(2009),who found that ants were the principal coffee leafminer predators in Mexico.At least 12 species were observed preying on eggs,larvae,or pupae,from the Camponotus,Pseudomyrmex,and Azteca genera.Lomeli-Flores(2009)suggests that the differences in the relative importance of predator species between countries could be due to differences in coffee-farm microclimatic conditions and/or management regimes.Brazilian coffee production is mainly under sunny conditions and farms are intensively managed,while in Mexico,production is under shady conditions and farms are traditionally managed,but this difference needs to be further tested and verified.

    Natural habitat influence on predation in crops

    Potential mechanism behind patch size

    The positive relationship between the amount of predation in crops and the size of adjacent forest is consistent with the resource-concentration hypothesis(Root 1973).This hypothesis conjectures that population density should be positively correlated with patch area.Previous work found evidence for this relationship in bird and insect species (Connor et al.2000).Several potential mechanisms,such as demographic effect,may be responsible for this pattern, and differences among species(Connor et al.2000).In the demographic effect,smaller patches should have lower density,due to greater vulnerability to stochastic conditions or the higher probability of an Allee effect(Vergara and Hahn 2009).Therefore,a denser population in larger patches could increase prey consumption in resource-rich habitats(Bianchi and Wa¨ckers 2008).

    Distance effect from remnant

    Based on theoretical predictions(Strong 1992;Polis and Strong 1996),we would expect a stronger impact of predators on herbivorous prey near natural habitats.However,our results did not support this prediction for all taxa. The absence of the distance effect may be due to the fine spatial scale used in the experimental designs,considering the high mobility of the natural enemies in the crops. Future analyses thatincorporate larger distance ranges may influence or change the observed relationships.Klein et al. (2006)found a significant distance effect in wasps,working with distances as far as 1,400 m to the nearest natural forest.

    Conservation and management implications

    Arthropod pests have been estimated to cause around 14% losses in the gross domestic product(GDP)in developed countries and 38 percentin developing countries(Zambolim etal.2008).For example,considering thatthe GDP of Brazilian agribusiness reached R$822.9 billion in 2011 (NationalConfederation of Agriculture and Cattle Breeding of Brazil),an estimated R$312.7 billion was lostin the year due to arthropod pests.Chemical pesticides are still the dominant form of control for many of these pests,but they also imply additionalcosts in the form of human health and degraded environment.On the other hand,the management and conservation ofnaturalhabitatscan increase production, withoutthese negative additionalcosts,due the conservation and enhancement of natural enemies(Jonsson et al.2010). These methods can provide naturalenemies with a favorable microclimate condition and place forshelter,dormancy,and alternative food sources(Landis etal.2000).Severalstudies showed thatdensity and diversity ofnaturalenemies tend to be higher in landscapes with a high proportion of non-crop vegetation(Bianchietal.2006).Generally,the percentage of habitatarea in a given landscape hasa strong correlation with the mean patch size and the size of largest patch(Fahrig 2003).Therefore,landscapes with higher percentages of habitat areas often correspond to landscapes to where patches are large.

    Our studies support these previous predictions,showing a positive relationship between the size of natural habitat patches and the amount of predation predators.However, some questions about this relationship and other landscape ecology issues remain.For example,what is the optimal size of a naturalhabitat to provide natural pest control and, the same time,to maximize the crop production?Should landscape restoration efforts focus on enlarging existing natural patches or building new patches?Will restored or managed landscape really restore the natural enemy’s composition and consequently the ecological process? What is the minimum distance between natural patches to facilitate natural enemy’s species migration in a managed landscape?What is the optimal spatial scale to which the predation process mainly responds?

    Future research addressing these questions can facilitate biological conservation associated with crop production increases.Concluding,our results suggest that the natural enemies’service(mainly from birds)declined with natural habitat reduction in the agricultural landscape.This has implications not only for human welfare,but also in strengthening the economic justifications for conserving remaining natural habitats.

    AcknowledgmentsWe wish to express ourgratitude to M.Raniero, M.F.V.Silva,E.Pessoni,and other members of the Laborato′rio de Ecologia de Fragmentos Florestais(ECOFRAG),who have been valuable friends,assisted in fieldwork,and made essential comments at different phases of this study.This manuscript also greatly benefited from the comments of Alberto Jose′Arab Olavarrieta.We also thank several private landowners who permitted access to their properties.Universidade Federal de Alfenas provided logistical support.We received financial support from Fundac?a?o de Amparo a` Pesquisa do Estado de Minas Gerais FAPEMIG-VALE S/A(Process #RDP-00104-10)and Conselho Nacional de Desenvolvimento Cient?′fico e Tecnolo′gico(CNPq)(Process#472250/2010).We appreciated the improvements in English language made by Jim Hesson of http://www.AcademicEnglishSolutions.com

    Altegrim O(1989)Exclusion of birds from bilberry stands:impacton insect larval density and damage to the bilberry.Oecologia 79:136–139

    Barbaro L,Battisti A(2011)Birds as predators ofthe pine processionary moth(Lepidoptera:Notodontidae).BiolControl56(2):107–114

    Bianchi FJJA,Wa¨ckers FL(2008)Effects of flowerattractiveness and nectar availability in field margins on biological control by parasitoids.Biol Control 46:400–408

    Bianchi FJJA,Booij CJH,Tscharntke T(2006)Sustainable pest regulation in agricultural landscapes:a review on landscape composition,biodiversity and natural pest control.Proc R Soc Biol Sci Ser B 273(1595):1715–1727

    Bianchi FJJA,Goedhart PW,Baveco JM(2008)Enhanced pest controlin cabbage crops near forestin The Netherlands.Landsc Ecol 23(5):595–602

    Borkhataria RR,Collazo JA,Groom MJ(2006)Additive effects of vertebrate predators on insects in a Puerto Rican coffee plantation.Ecol Appl 16(2):696–703

    Burnham KP,Anderson DR(2002)A practical information-theoretic approach,Second edn.Springer,New York,p 353

    Comite?Brasileiro de Registros Ornitolo′gicos—CBRO(2011)Lista das aves do Brasil.10th edn.CBRO.http://www.cbro.org.br. Accessed 15 Nov 2011

    Connor EF,Courtney AC,Yoder JM(2000)Individuals–area relationships:the relationship between animalpopulation density and area.Ecology 81(3):734–748

    Costa CMR(1998)Biodiversidade em Minas Gerais:um atlas para a sua conservac?a?o.Fundac?a?o Biodiversitas,Belo Horizonte,p 222

    Cronin JT(2003)Matrix heterogeneity and host-parasitoid interactions in space.Ecology 84:1506–1516

    Cronin JT,Haynes KJ,Dillemuth F(2004)Spider effects on planthopper mortality,dispersal and spatial population dynamics.Ecology 85:2134–2143

    Daily GC(1997)Introduction:whatare ecosystem services?In:Daily G(ed)Nature’s services:societal dependence on natural ecosystems.Island Press,Washington,D.C,pp 1–10

    Denno RF,Finke DL,Langellotto GA(2005)Direct and indirect effects of vegetation structure and habitat complexity on predator–prey and predator–predator interactions.In:Barbosa P,Castellanos I(eds)Ecology of predator–prey interactions. Oxford University Press,Oxford,pp 211–239

    Develey P(2003)Me′todos com estudos com aves.In:Cullen L Jr, Rudran R,Valladares-Pa′dua C(eds)Me′todos de estudos em biologia da conservac?a?o e manejo da vida silvestre.Editora Universidade Federal do Parana′,Curitiba,pp 153–179

    Fahrig L(2003)Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Syst 34:487–515

    Fitzpatrick JW(1980)Foraging behavior of neotropical tyrant flycatchers.Condor 82(1):43–57

    Fragoso DB,Jusselino-Filho P,Guedes RNC,Proque R(2001) Seletividade de inseticidas a vespas predadoras de Leucoptera coffeella(Gue′r.-Me`nev.)(Lepidoptera:Lyonetiidae).Neotrop Entomol 30(1):139–143

    Freitas AVL,Oliveira PS(1996)Ants as selective agents on herbivore biology:effects on the behaviour of a non-myrmecophilous butterfly.J Anim Ecol 65:205–210

    Fundac?a?o SOS Mata Atla?ntica&(INPE)Instituto Nacional de Pesquisas Espaciais(2009)Atlas dos remanescentes florestais da Mata Atla?ntica,per?′odo de 2005–2008.Fundac?a?o SOS Mata Atla?ntica&Sa?o Jose dos Campos,INPE,Sa?o Paulo

    Gomes VSM,Loiselle BA,Alves MAS(2008)Birds foraging for fruits and insects in shrubby restinga vegetation,southeastern Brazil.Biota Neotrop 8(4):21–31

    Greenberg R,Bichier P,Angon AC,MacVean C,Perez R,Cano E (2000)The impact of avian insectivory on arthropods and leaf damage in some guatemalan coffee plantations.Ecology 81(6):1750–1755

    Henle K,Davies KF,Kleyer M,Margules C,Settele J(2004) Predictors of species sensitivity to fragmentation.Biodivers Conserv 13:207–251

    Johnson MD,Levy NJ,Kellermann JL,Robinson DE(2009)Effects of shade and bird exclusion on arthropods and leaf damage on coffee farms in Jamaica’s Blue Mountains.Agrofor Syst 76(1):139–148

    Jonsson M,Wratten SD,Landis DA,Tompkins J-ML,Cullen R (2010)Habitat manipulation to mitigate the impacts of invasive arthropod pests.Biol Invasions 12(9):2933–2945

    Kellermann JL,Johnson MD,Stercho AM,Hackett SC(2008) Ecologicaland economic services provided by birds on Jamaican Blue Mountain coffee farms.Conserv Biol 22(5):1177–1185

    Klein A-M,Steffan-Dewenter I,Tscharntke T(2006)Rain forest promotes trophic interactions and diversity of trap-nesting Hymenoptera in adjacent agroforestry.J Anim Ecol 75(2):315–323

    Koh LP,Menge DNL(2006)Rapid assessment of Lepidoptera predation rates in neotropical forest fragments.Biotropica 38(1):132–134

    Landis DA,Wratten SD,Gurr GM(2000)Habitat management to conserve naturalenemies of arthropod pests in agriculture.Annu Rev Entomol45:175–201

    Langellotto GA,Denno RF(2004)Responses of invertebrate natural enemies to complex-structured habitats:a meta-analytical synthesis.Oecologia 139:1–10

    Lomeli-Flores JR(2009)Naturalenemies and mortality factors ofthe coffee leafminer Leucoptera coffeella(Guerin-Meneville)(Lepidoptera:Lyonetiidae)in Chiapas,Me′xico.PhD Dissertation, Texas A&M University,Texas,p 203

    MacArthur RH,Wilson EO(1967)The theory of island biogeography.Princeton University Press,Princeton,p 203

    Oliveira Filho AT,Fontes MAL(2000)Patterns of floristic differentiation among Atlantic Forests in Southeastern Brazil and the influence of climate.Biotropica 32:793–810

    Parra J(1985)Biologia comparada de Leucoptera coffeella(Gue′rin-Me′neville,1842)(Lepidoptera:Lyonetiidae)visando o seu zoneamento ecolo′gico no Estado de Sa?o Paulo.Rev Bras Entomol 29:45–76

    Pimentel D,Wilson C,McCullum C,Huang R,Dwen P,Flack J,Tran Q,Saltman T,Cliff B(1997)Economic and environmental benefits of biodiversity.Bioscience 47:747–757

    Polis GA,Strong DR(1996)Food web complexity and community dynamics.Am Nat 147:813–846

    Puckett HL,Brandle JR,Johnson RJ,Blankenship EE(2009)Avian foraging patterns in crop field edges adjacent to woody habitat. Agric Ecosyst Environ 131(1–2):9–15

    Reis R Jr,Lima ER,Vilela EF,Evaldo F,Barros RS(2000)Method for maintenance of coffee leaves in vitro for mass rearing of Leucoptera coffeellum(Gue′rin-Me′neville)(Lepidoptera:Lyonetiidae).An Soc Entomol Bras 29(4):849–854

    Remsen JV,Robinson SK(1990)A classification scheme forforaging behavior of birds in terrestrial habitats.Stud Avian Biol 13:144–160

    Ridgely RS,Tudor G(1994)The birds of South America:volume 1: the suboscine passerines.University of Texas Press,Austin, p 598

    Ridgely RS,Tudor G(1997)The birds of South America:volume 2: the oscine passerines.University of Texas Press,Austin,p 940

    Root RB(1973)Organization of a plant-arthropod association in simple and diverse habitats:the fauna of collards(Brassica oleraceae).Ecol Monogr 45:95–120

    Sick H(2001)Ornitologia brasileira.Nova Fronteira,Rio de Janeiro, p 912

    Sodhi NS,Ehrlich PR(2010)Conservation biology conservation biology for all.Oxford University Press,Oxford,p 344

    Stotz DF,Fitzpatrick JW,Parker TA III,Moskovitz DK(1996) Neotropical birds:ecology and conservation.University of Chicago Press,Chicago,p 502

    Strong DR(1992)Are trophic cascades all wet?Differentiation and donor-control in species ecosystems.Ecology 73:747–754

    Strong DR,Sherry TW,Holmes RT(2000)Bird predation on herbivorous insects:indirect effects on sugar maple saplings. Oecologia 125:370–379

    Tilman D,Reich PB,Knops J,Wedin D,Mielke T,Lehman C(2001) Diversity and productivity in a long-term grassland experiment. Science 294:843–845

    Tscharntke T,Rand TA,Bianchi FJJA(2005)The landscape context of trophic interactions:insectspillover across the crop–noncrop interface.Ann Zool Fenn 42:421–432

    Tscharntke T,Bommarco R,Clough Y,CristTO,Kleijn D,Rand TA, Tylianakis JM,Nouhuys SV,Vidal S(2007)Conservation biologicalcontroland enemy diversity on a landscape scale.Biol Control 43:294–309

    Van Bael SA,Philpott SM,Greenberg R,Bichier P,Barber NA, Mooney KA,Gruner DS(2008)Birds as predators in tropical agroforestry systems.Ecology 89(4):928–934

    Vergara PM,Hahn I(2009)Linking edge effects and patch size effects:importance of matrix nest predators.Ecol Model 220(9–10):1189–1196

    Whelan CJ,Wenny DG,Marquis RJ(2008)Ecosystem services provided by birds.Ann N Y Acad Sci 1134:25–60

    Willis EO(1979)The composition of avian communities in remanescent woodlots in southern Brazil.Pap Avulsos Zool (Sao Paulo)33(1):1–25

    With KA(2002)Threshold effects of landscape structure on biological control in agroecosystems.Ecol Appl 13(1):314–365

    Zambolim L,Conceic?a?o MZD,Santiago T(2008)O que engenheiros agro?nomos devem saber para orientar o uso de produtos fitossanita′rios,3a edn.Universidade Federal de Vic?osa,ANDEF, Vic?osa,p 464

    13 April 2013/Accepted:21 June 2013/Published online:29 January 2015

    ?Northeast Forestry University and Springer-Verlag Berlin Heidelberg 2015

    Projectfunding:This work is financially supported from Fundac?a?o de Amparo a`Pesquisa do Estado de Minas Gerais FAPEMIG-VALE S/A (Process#RDP-00104-10)and Conselho Nacional de Desenvolvimento Cient?′fico e Tecnolo′gico(CNPq)(Process# 472250/2010).

    The online version is available at http://www.springerlink.com

    Corresponding editor:Chai Ruihai

    M.X.Jordani

    Laborato′rio de Ecologia Animal,Departamento de Zoologia e Bota?nica,Universidade Estadual Paulista-UNESP,Rua Cristo′va?o Colombo,2265,Jardim Nazareth, Sa?o Jose′Do Rio Preto,SP CEP 15054-000,Brazil

    E′.Hasui(?)·V.X.da Silva

    Laborato′rio de Ecologia de Fragmentos do Sul de Minas Gerais–ECOFRAG,Instituto Cie?ncias da Natureza, Universidade Federal de Alfenas-UNIFAL–MG,Rua Gabriel Monteiro da Silva,700,Centro, Alfenas,MG CEP 37130-000,Brazil e-mail:ericahasui@yahoo.com

    日本免费一区二区三区高清不卡| 日本与韩国留学比较| 男人舔女人下体高潮全视频| 99在线人妻在线中文字幕| 一区二区三区乱码不卡18| 国产中年淑女户外野战色| 99久久人妻综合| 国产亚洲精品av在线| 国内精品美女久久久久久| 久久久久久伊人网av| 免费大片18禁| 欧美丝袜亚洲另类| 国产精品野战在线观看| 永久免费av网站大全| 热99在线观看视频| 日韩欧美在线乱码| 午夜福利在线在线| 18禁在线播放成人免费| 成人鲁丝片一二三区免费| 人人妻人人看人人澡| 免费av不卡在线播放| 少妇人妻一区二区三区视频| 最近中文字幕高清免费大全6| 国产乱来视频区| 国产淫语在线视频| 一区二区三区高清视频在线| 日韩av在线免费看完整版不卡| 久久久久久久久大av| av卡一久久| 极品教师在线视频| 人人妻人人澡人人爽人人夜夜 | 亚洲精品aⅴ在线观看| 高清日韩中文字幕在线| 禁无遮挡网站| 日本一本二区三区精品| 午夜福利在线观看免费完整高清在| 久久精品夜夜夜夜夜久久蜜豆| 搡老妇女老女人老熟妇| 女的被弄到高潮叫床怎么办| 白带黄色成豆腐渣| 日韩制服骚丝袜av| 久久午夜福利片| 成人亚洲精品av一区二区| 91狼人影院| 日本五十路高清| 综合色av麻豆| 欧美丝袜亚洲另类| 亚洲国产精品合色在线| 久久精品久久久久久噜噜老黄 | 国产熟女欧美一区二区| 亚洲自偷自拍三级| 久99久视频精品免费| 99热精品在线国产| 国产极品天堂在线| 一级毛片久久久久久久久女| 国产精品蜜桃在线观看| 欧美激情久久久久久爽电影| 热99在线观看视频| 大香蕉97超碰在线| 久久久久久久亚洲中文字幕| 中文字幕av成人在线电影| 男女边吃奶边做爰视频| 免费在线观看成人毛片| av在线亚洲专区| av播播在线观看一区| 嫩草影院精品99| 热99re8久久精品国产| kizo精华| 亚洲精品成人久久久久久| 日本av手机在线免费观看| 亚洲精品456在线播放app| 欧美日韩国产亚洲二区| 久久精品久久久久久噜噜老黄 | 91久久精品电影网| 男女国产视频网站| 青春草国产在线视频| 国产伦理片在线播放av一区| 少妇被粗大猛烈的视频| 午夜福利视频1000在线观看| 国产精品电影一区二区三区| 亚洲精品,欧美精品| 99九九线精品视频在线观看视频| 蜜桃久久精品国产亚洲av| 久久久久久久久久久免费av| 国产成年人精品一区二区| 2021少妇久久久久久久久久久| 国产在视频线在精品| 亚洲成人av在线免费| 国产精品一及| 水蜜桃什么品种好| 国产成人一区二区在线| 热99在线观看视频| 亚洲国产精品成人久久小说| 97超碰精品成人国产| 亚洲欧美日韩无卡精品| 天天躁日日操中文字幕| 亚洲av成人精品一区久久| 1000部很黄的大片| 男女边吃奶边做爰视频| 女的被弄到高潮叫床怎么办| av.在线天堂| 亚洲国产欧美在线一区| 少妇人妻精品综合一区二区| 成人高潮视频无遮挡免费网站| www日本黄色视频网| 一二三四中文在线观看免费高清| 十八禁国产超污无遮挡网站| 国产精品综合久久久久久久免费| 我要搜黄色片| 午夜久久久久精精品| 亚洲电影在线观看av| 欧美精品国产亚洲| 精品无人区乱码1区二区| 欧美日韩国产亚洲二区| 久久精品夜夜夜夜夜久久蜜豆| 能在线免费看毛片的网站| 99热这里只有是精品50| 人人妻人人澡欧美一区二区| 亚洲av熟女| 99久久人妻综合| 日本-黄色视频高清免费观看| 精品久久久久久久久av| 国产亚洲一区二区精品| 美女脱内裤让男人舔精品视频| 亚洲精品色激情综合| av女优亚洲男人天堂| 啦啦啦韩国在线观看视频| 亚洲精品乱码久久久久久按摩| 中国国产av一级| 美女高潮的动态| 久久久久国产网址| 国产精品国产三级国产av玫瑰| 亚洲国产精品成人久久小说| 久久久久久久久久成人| 国产不卡一卡二| 日韩欧美精品免费久久| kizo精华| 最近最新中文字幕免费大全7| 亚洲欧美日韩高清专用| 在线播放无遮挡| 村上凉子中文字幕在线| 国内精品宾馆在线| 日韩成人伦理影院| 国产私拍福利视频在线观看| 能在线免费观看的黄片| 日韩国内少妇激情av| 日本午夜av视频| 日日摸夜夜添夜夜爱| 国产综合懂色| 午夜福利在线在线| 亚洲精品国产av成人精品| 可以在线观看毛片的网站| 免费看a级黄色片| 色播亚洲综合网| av黄色大香蕉| 日韩欧美 国产精品| 国产高清国产精品国产三级 | 国产高清视频在线观看网站| 亚洲av不卡在线观看| av福利片在线观看| 99在线人妻在线中文字幕| 韩国高清视频一区二区三区| 亚洲中文字幕日韩| 日本免费a在线| 亚洲图色成人| 汤姆久久久久久久影院中文字幕 | 18禁在线无遮挡免费观看视频| 十八禁国产超污无遮挡网站| av国产免费在线观看| 一级毛片我不卡| 国产精品野战在线观看| 亚洲伊人久久精品综合 | 成人亚洲欧美一区二区av| 床上黄色一级片| 婷婷色av中文字幕| 欧美三级亚洲精品| 一个人免费在线观看电影| 国产在线一区二区三区精 | 欧美成人一区二区免费高清观看| 午夜精品一区二区三区免费看| 人人妻人人澡欧美一区二区| 好男人在线观看高清免费视频| 欧美日韩国产亚洲二区| 在线免费观看的www视频| 在线免费观看不下载黄p国产| 久久精品国产亚洲av涩爱| 在线观看一区二区三区| 国产美女午夜福利| 成人高潮视频无遮挡免费网站| 成人国产麻豆网| 欧美zozozo另类| 九九爱精品视频在线观看| 一级毛片我不卡| 日日摸夜夜添夜夜爱| 高清毛片免费看| 免费观看精品视频网站| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲乱码一区二区免费版| 亚洲av成人av| 好男人视频免费观看在线| 亚洲av成人精品一区久久| 精品人妻偷拍中文字幕| 欧美性猛交╳xxx乱大交人| 亚洲一区高清亚洲精品| 免费看光身美女| 亚洲乱码一区二区免费版| 一个人免费在线观看电影| 亚洲国产色片| 国产大屁股一区二区在线视频| 人体艺术视频欧美日本| 村上凉子中文字幕在线| 噜噜噜噜噜久久久久久91| 国产精品美女特级片免费视频播放器| 久久久a久久爽久久v久久| 最近中文字幕2019免费版| 黄片wwwwww| 狠狠狠狠99中文字幕| 成人性生交大片免费视频hd| 夜夜爽夜夜爽视频| 日本免费在线观看一区| 久久精品国产自在天天线| 两个人视频免费观看高清| 韩国高清视频一区二区三区| 久久精品熟女亚洲av麻豆精品 | 啦啦啦啦在线视频资源| 18+在线观看网站| 身体一侧抽搐| 日韩制服骚丝袜av| 一区二区三区免费毛片| 国产在视频线在精品| 欧美最新免费一区二区三区| 亚洲国产精品专区欧美| 亚洲四区av| 美女被艹到高潮喷水动态| 自拍偷自拍亚洲精品老妇| 欧美成人a在线观看| 国产精品野战在线观看| 日产精品乱码卡一卡2卡三| 欧美成人一区二区免费高清观看| 国产精品乱码一区二三区的特点| 国产成年人精品一区二区| 亚洲欧美精品综合久久99| 久久热精品热| 亚洲欧美清纯卡通| 伦理电影大哥的女人| 亚洲自拍偷在线| 精品一区二区三区视频在线| 美女脱内裤让男人舔精品视频| 噜噜噜噜噜久久久久久91| 十八禁国产超污无遮挡网站| 成人国产麻豆网| 人妻系列 视频| 天堂av国产一区二区熟女人妻| 精品人妻视频免费看| 久久国内精品自在自线图片| 内射极品少妇av片p| 又粗又硬又长又爽又黄的视频| 精品99又大又爽又粗少妇毛片| 91午夜精品亚洲一区二区三区| 成人无遮挡网站| 国产精品不卡视频一区二区| 日本猛色少妇xxxxx猛交久久| 老司机福利观看| 三级经典国产精品| 亚洲国产欧洲综合997久久,| 麻豆精品久久久久久蜜桃| av专区在线播放| 日产精品乱码卡一卡2卡三| 毛片一级片免费看久久久久| 久久精品夜色国产| 日韩,欧美,国产一区二区三区 | 国产人妻一区二区三区在| 国产午夜精品一二区理论片| 亚洲激情五月婷婷啪啪| 久久精品影院6| 成人性生交大片免费视频hd| 成人午夜精彩视频在线观看| 国内精品美女久久久久久| 色综合站精品国产| 欧美丝袜亚洲另类| 久久精品久久久久久久性| 午夜激情欧美在线| 搞女人的毛片| 亚洲精品成人久久久久久| 最近中文字幕高清免费大全6| 少妇被粗大猛烈的视频| 亚洲精品影视一区二区三区av| 精品久久久噜噜| 久久欧美精品欧美久久欧美| 久久婷婷人人爽人人干人人爱| 亚洲四区av| 伦精品一区二区三区| 2022亚洲国产成人精品| 少妇猛男粗大的猛烈进出视频 | 国产高清视频在线观看网站| 国产成人aa在线观看| 国内精品一区二区在线观看| 搡女人真爽免费视频火全软件| 日韩高清综合在线| 欧美变态另类bdsm刘玥| 欧美日韩在线观看h| 一二三四中文在线观看免费高清| 国产精品电影一区二区三区| 亚洲乱码一区二区免费版| 国产高清国产精品国产三级 | 天天躁夜夜躁狠狠久久av| 久久精品久久精品一区二区三区| 中文字幕人妻熟人妻熟丝袜美| 中文字幕av成人在线电影| 狠狠狠狠99中文字幕| 亚洲精品一区蜜桃| 午夜福利网站1000一区二区三区| 成人午夜高清在线视频| 欧美3d第一页| h日本视频在线播放| 中文精品一卡2卡3卡4更新| 国产在视频线精品| 欧美一级a爱片免费观看看| 久久久久免费精品人妻一区二区| 亚洲av福利一区| 麻豆乱淫一区二区| 尾随美女入室| 少妇丰满av| 精品欧美国产一区二区三| 国产精品不卡视频一区二区| 亚洲av成人av| 美女高潮的动态| 九草在线视频观看| av又黄又爽大尺度在线免费看 | 欧美不卡视频在线免费观看| 97在线视频观看| 久久人妻av系列| 在线观看一区二区三区| 狂野欧美白嫩少妇大欣赏| 不卡视频在线观看欧美| 最近最新中文字幕免费大全7| 久久精品久久久久久久性| 国产精品人妻久久久久久| www日本黄色视频网| 亚洲欧美清纯卡通| 欧美97在线视频| 欧美又色又爽又黄视频| 女人十人毛片免费观看3o分钟| 亚洲在线自拍视频| 国产三级中文精品| 丝袜美腿在线中文| 精品久久久久久久久久久久久| 边亲边吃奶的免费视频| 偷拍熟女少妇极品色| 国产大屁股一区二区在线视频| 亚洲真实伦在线观看| 中文字幕熟女人妻在线| 久久人人爽人人片av| 男女那种视频在线观看| 免费观看a级毛片全部| 成人av在线播放网站| 99久久九九国产精品国产免费| 久久久久久伊人网av| 免费在线观看成人毛片| 亚洲国产精品合色在线| 亚洲欧美成人综合另类久久久 | 伊人久久精品亚洲午夜| 99久久中文字幕三级久久日本| 精品无人区乱码1区二区| 亚洲av二区三区四区| 国产男人的电影天堂91| 简卡轻食公司| 国产午夜精品一二区理论片| 精华霜和精华液先用哪个| 久久精品久久精品一区二区三区| 国产 一区 欧美 日韩| 精品不卡国产一区二区三区| 精品久久久久久久久av| 九九爱精品视频在线观看| av.在线天堂| 综合色丁香网| 成人美女网站在线观看视频| 91av网一区二区| 亚洲av免费高清在线观看| 伊人久久精品亚洲午夜| 国产成人精品婷婷| 老司机福利观看| 国产爱豆传媒在线观看| 一级二级三级毛片免费看| 一级爰片在线观看| 色噜噜av男人的天堂激情| 非洲黑人性xxxx精品又粗又长| 日本黄色视频三级网站网址| 亚洲欧美日韩高清专用| 日韩精品青青久久久久久| 少妇熟女欧美另类| 哪个播放器可以免费观看大片| 国产单亲对白刺激| 亚洲美女视频黄频| 乱码一卡2卡4卡精品| 在线免费观看的www视频| 国产日韩欧美在线精品| 欧美一区二区国产精品久久精品| 国产午夜精品论理片| 天美传媒精品一区二区| 一个人看的www免费观看视频| av卡一久久| 人体艺术视频欧美日本| 亚洲国产色片| 2021天堂中文幕一二区在线观| 嘟嘟电影网在线观看| av国产免费在线观看| 免费黄网站久久成人精品| 免费播放大片免费观看视频在线观看 | 亚洲高清免费不卡视频| 中文亚洲av片在线观看爽| 亚洲四区av| 欧美一区二区精品小视频在线| 久久精品夜色国产| 久久国产乱子免费精品| 国产乱人偷精品视频| 我的女老师完整版在线观看| 成人综合一区亚洲| 激情 狠狠 欧美| 亚洲无线观看免费| 欧美zozozo另类| 国语自产精品视频在线第100页| 欧美成人a在线观看| 在线天堂最新版资源| 久久久久网色| 久久久午夜欧美精品| 中文字幕精品亚洲无线码一区| 午夜福利在线观看免费完整高清在| 精品一区二区三区视频在线| 国产极品天堂在线| 成人亚洲精品av一区二区| 免费av毛片视频| 久久韩国三级中文字幕| 女人被狂操c到高潮| 国产又黄又爽又无遮挡在线| 人体艺术视频欧美日本| 美女内射精品一级片tv| 亚洲天堂国产精品一区在线| 国内揄拍国产精品人妻在线| 少妇熟女欧美另类| 午夜福利高清视频| 中国国产av一级| 99久久成人亚洲精品观看| 国产真实伦视频高清在线观看| 久99久视频精品免费| 亚洲av日韩在线播放| 99久久精品国产国产毛片| .国产精品久久| 亚洲欧美日韩卡通动漫| 麻豆成人av视频| 床上黄色一级片| 欧美一级a爱片免费观看看| 日韩制服骚丝袜av| 亚洲欧美精品综合久久99| 国产精品.久久久| 国产白丝娇喘喷水9色精品| 少妇裸体淫交视频免费看高清| 国产精品野战在线观看| 亚洲一级一片aⅴ在线观看| 直男gayav资源| 少妇被粗大猛烈的视频| 国产v大片淫在线免费观看| 熟女人妻精品中文字幕| h日本视频在线播放| 性色avwww在线观看| 国产高潮美女av| 国产中年淑女户外野战色| 五月伊人婷婷丁香| 真实男女啪啪啪动态图| 成人特级av手机在线观看| 不卡视频在线观看欧美| 最近手机中文字幕大全| 亚洲激情五月婷婷啪啪| 中文字幕免费在线视频6| 99久久中文字幕三级久久日本| 国产精品野战在线观看| 亚洲av熟女| 人人妻人人澡人人爽人人夜夜 | 欧美成人一区二区免费高清观看| 国内少妇人妻偷人精品xxx网站| 婷婷色av中文字幕| 国产精品一及| 亚洲精华国产精华液的使用体验| 国产精品久久久久久av不卡| 精品一区二区三区人妻视频| 建设人人有责人人尽责人人享有的 | 嫩草影院精品99| 女人久久www免费人成看片 | 亚洲成人精品中文字幕电影| videos熟女内射| 亚洲一级一片aⅴ在线观看| 麻豆一二三区av精品| av视频在线观看入口| 你懂的网址亚洲精品在线观看 | 日本wwww免费看| 久久久a久久爽久久v久久| 狂野欧美激情性xxxx在线观看| 看十八女毛片水多多多| 水蜜桃什么品种好| 久久精品久久久久久噜噜老黄 | 精品久久久久久电影网 | 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产伦精品一区二区三区四那| 在线免费观看的www视频| 直男gayav资源| 久久婷婷人人爽人人干人人爱| 成年av动漫网址| 在线观看一区二区三区| 99久国产av精品| 五月伊人婷婷丁香| 91精品国产九色| 亚洲欧美日韩无卡精品| 免费看av在线观看网站| 少妇人妻一区二区三区视频| 亚洲一区高清亚洲精品| 久久99蜜桃精品久久| 麻豆乱淫一区二区| 自拍偷自拍亚洲精品老妇| 建设人人有责人人尽责人人享有的 | 亚洲国产日韩欧美精品在线观看| 高清av免费在线| 国产精品电影一区二区三区| 国产成人福利小说| 看黄色毛片网站| 最近视频中文字幕2019在线8| 少妇的逼水好多| 亚洲av电影在线观看一区二区三区 | 蜜桃久久精品国产亚洲av| 美女大奶头视频| 99久久人妻综合| 爱豆传媒免费全集在线观看| 秋霞伦理黄片| 久久久久久伊人网av| 欧美高清性xxxxhd video| 久久久久久久久大av| 成人综合一区亚洲| 一级毛片电影观看 | 亚洲精品成人久久久久久| 桃色一区二区三区在线观看| 97人妻精品一区二区三区麻豆| 欧美高清性xxxxhd video| av免费在线看不卡| 精品99又大又爽又粗少妇毛片| 亚洲精品国产成人久久av| 中文字幕亚洲精品专区| 91av网一区二区| 欧美极品一区二区三区四区| 日韩精品有码人妻一区| 99久久人妻综合| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久99精品国语久久久| 国产69精品久久久久777片| 国产 一区精品| 欧美高清性xxxxhd video| 亚洲怡红院男人天堂| 又黄又爽又刺激的免费视频.| 亚州av有码| 国产精品野战在线观看| av在线天堂中文字幕| 少妇熟女aⅴ在线视频| 99国产精品一区二区蜜桃av| 国产精品1区2区在线观看.| 亚洲国产最新在线播放| 午夜福利在线观看免费完整高清在| 色噜噜av男人的天堂激情| 亚洲精品一区蜜桃| 国产成年人精品一区二区| 麻豆一二三区av精品| 免费大片18禁| 三级经典国产精品| 久久国内精品自在自线图片| 天天躁夜夜躁狠狠久久av| 亚洲一区高清亚洲精品| 男人舔女人下体高潮全视频| 国产又黄又爽又无遮挡在线| 亚洲欧洲日产国产| 中国美白少妇内射xxxbb| 亚洲aⅴ乱码一区二区在线播放| 精品国产一区二区三区久久久樱花 | 日本免费a在线| 两个人的视频大全免费| 别揉我奶头 嗯啊视频| 一级二级三级毛片免费看| 寂寞人妻少妇视频99o| 亚洲人成网站在线播| 一级毛片电影观看 | 日韩av在线大香蕉| 波多野结衣高清无吗| 男女那种视频在线观看| 欧美激情在线99| 欧美又色又爽又黄视频| 国产成人a区在线观看| 亚洲国产精品成人综合色| 午夜福利在线在线| 国产日韩欧美在线精品| 免费搜索国产男女视频| av在线观看视频网站免费| 午夜精品一区二区三区免费看| 一个人观看的视频www高清免费观看| 蜜臀久久99精品久久宅男| 欧美一级a爱片免费观看看| 国产成人a∨麻豆精品| 欧美日本亚洲视频在线播放| 免费观看精品视频网站| 久久午夜福利片| 成人三级黄色视频| 成人一区二区视频在线观看| 六月丁香七月| 深夜a级毛片| 赤兔流量卡办理| 国产精华一区二区三区| 午夜a级毛片| 在线播放无遮挡| 在线免费十八禁| av免费在线看不卡|