• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Production of mahogany sawdust reinforced LDPE wood-plastic composites using statistical response surface methodology

    2015-06-05 08:54:05
    Journal of Forestry Research 2015年2期

    Production of mahogany sawdust reinforced LDPE wood-plastic composites using statistical response surface methodology

    Sofina-E-Arab?Md.Azharul Islam

    We produced wood–plastic composite board by using sawmill wastage of mahogany(Swietenia macrophylla)wood and low density polyethylene.We used multi-response optimization to optimize the process parameters of composite board production including mixing ratio,fire retardant(%)and pressing time(min).We investigated the effects of these three process parameters in the mechanical and physical properties of the composite board.Afterwards,Box–Behnken design was performed as response surface methodology with desirability functions to attain the optimallevelof mixing ratio,fire retardantand pressing time(min).The maximum modulus of elasticity (MOE)and modulus of rupture(MOR)were achieved at the optimal conditions of wood plastic mixing ratio of 60:40,pressing time of 9 min and zero fire retardant percentage.The optimized MOR and MOE were 13.12 and 1,781.0 N mm-2,respectively.

    Wood plastic composite·LDPE·Mechanical properties·Physical properties·Response surface methodology

    Introduction

    Advances in science and technology have led to more sophisticated and diverse uses of wood(Panshin and DeZeewe 1980).Increasing availability of composite products including plywood,oriented standard board(OSB),hardboard,particle board,fiberboard,and veneer counters the growing scarcity of timber and degradation of biodiversity due to timber harvest(Islam et al.2012).Enhanced utilization of wood requires more intelligent processing technologies(Panshin and De Zeewe 1980)such as improved composite products which are useful economic alternatives to solid wood.They are used both for interior and exterior construction and furniture manufacturing throughout the world(Leu et al.2011).

    Most wood based composites were previously bonded with urea formaldehyde and phenolformaldehyde resin but emission of formaldehyde from these types of composites has become an environmental concern(Lee et al.2002). For this reason,wood–plastic composite(WPC)was introduced in 1970 in Italy to solve this problem(Pritchard 2004).Environmentally friendly alternatives to these wood–plastic materials include products that use polyethylene(Kuo et al.1998;Rahim 2009;Yuan et al.2013). Various types of polyethylene are used in preparing WPC including low-density polyethylene(LDPE),high density polyethylene(HDPE),and linear low-density polyethylene (LLDPE)(Chen et al.2007).Studies of wood composites based on low-density polyethylene(LDPE)are few(Yamashita et al.1999).LDPE has been used as a binding material in a combination with sawdust to manufacture wood composite product.Low density polyethylene (LDPE)is a thermoplastic made from petroleum.LDPE materials are strong,light-weight and durable(Pramila and Ramesh 2011).Low density polyethylene(LDPE)is a polyethylene with a density of less than 940 kg m-3and melting point of 120°C.It is produced by a high pressure process,and is often referred to as high pressure polyethylene.Recent studies have evaluated particle boardproduction using low density polyethylene(LDPE)(A-tuanya et al.2011;Zhang et al.2013).

    Because polymersare now used to manufacture a wide range of wood–plastic composites(WPCs),the fire risk of polymers hasattracted considerable attention.Acyclic pattern isengaged in the process of combustion of polymers-preheating,decomposition,ignition,and combustion.In the presence of a flame source,the polymer becomes preheated.Boron based fire retardants,for example,a combination of Borax(Na2B4O7-10H2O)and Boric acid(H3BO3)have yielded improved performance(Stark etal.2010).The use offire retardantin WPCs has an impacton the mechanicalproperties of wood butcomposites with borax/boric acid have shown better dimensional stability and bending strength(Youngquistetal.1997).In our study,we used a mixture of Borax and Boric acid to study the effectoffire retardants on mechanicalproperties of wood.

    When using low density polyethylene(LDPE)in composite board production there are many factors that influence board quality,including mixing ratio,temperature, time,pressure,and type of coupling agent(Atuanya et al. 2011;Benthien and Thoemen 2012;Zhang et al.2013; Yang et al.2013).In our study,the mixing ratio,pressing time and fire retardant were evaluated in production of sawdust LDPE composite.

    Statisticalexperimentaldesign has been used in manufacturing ofwood compositesin severalstudies(Zhao etal.2008; Tabarsa etal.2011;Azizietal.2011;Nirdosha etal.2011). Butthe use of modern industrialoptimization tools has been limited in identifying the factors responsible for the quality production ofwood composites.This has resulted in wastage of raw materials and reagents,and increases in other production-oriented costs.This has adversely affected forest resources and biodiversity(Islam etal.2012).Response surface methodology(RSM)is a toolthatincludes collection of statisticaland mathematical techniques used for developing, improving and optimizing processes.It evaluates the relationships between a group of controlled experimentalfactors and the observed results of one or more selected criteria (Myers and Montgomery 2001).We aimed to optimize the process parameters of wood composite board production by using multi-response optimization process.Box–Behnken design was performed as the response surface methodology (RSM)to discoverthe optimum combination ofmixing ratio, pressing time and fire retardants that affect mechanical and physicalproperties of WPC production.

    Materials and methods

    Materials

    Sawdust of mahogany(Swietenia macrophylla)was collected from a local sawmill,boric acid and borax from the local market of Khulna,and LDPE(low density polyethylene)was sourced from Dhaka,Bangladesh.The sawdust and plastic powder were screened through a 35 mesh(500 micron or 0.5 mm).A multi-daylight hot press that was digital and electrically heated(model-XLB,Manufacture no.120049,Qingdaoyadong,China)was used to manufacture the boards.A Universal Testing Machine(Model UTN100,Fuel Instruments and Engineers Pvt.Ltd.India) of Khulna University of Engineering and Technology (KUET)was used to determine the mechanical properties (MOR and MOE)of the boards according to the ASTM D790-10(2010)standard.The physical properties such as moisture content,density,linear expansion,thickness swelling and water absorption of manufactured WPC boards were determined according to the ASTM D1037-12 (2012).

    Experimental design

    Three levels of sawdust:LDPE mixing ratios(70:30,60:40, 50:50)were used to manufacture WPC boards.Fire retardants(Boric acid+Borax ata ratio of 50:50)were used as 0,3 and 6%of the total weight of raw materials.Three durations of pressing time were used(7,9 and 11 min). Press temperature and pressure were fixed at 150°C and 4 Mpa,respectively,according to the literature(Leu et al. 2011;Lee et al.2002;Pritchard 2004;Kuo et al.1998; Zhang et al.2013).

    Table 1 shows three levels(low,medium and high)ofthree factors(mixing ratio,pressing time and fire retardant).The corresponding Box–Behnken design matrix is shown with results in Table 2.The Box–Behnken design is a widely used RSMapproach developed by Box and Behnken(1960)forthree levelfactorsthatfitssecond-ordermodelsto the response.Box–Behnken design avoidsallhigh values ofthe variables(extreme treatmentconditions).The applied Box–Behnken consisted of 15 experiments(N=2 k(k-1)+Co=2*3(3-1)+ 3=15 runs(i.e.,15 composite boards),where N is the total number of experiments required,k is the number of factors or variables and Cois center point’s runs.

    STATISTICA(statistical software)was used for the design and analysis of the Box–Behnken design.To fit the response to the independent variables a second order polynomial model was used:

    Table 1 Factors with range and level of manufacturing of WPC boards

    Table 2 Design of studied variables used in the manufacture of the WPC boards

    where,Y is the response(MOE and MOR),β0is the intercept parameter andβi,βiiandβijare parameters for linear,squared and interaction factor effects,respectively.

    Results and discussion

    Box–Behnken design analysis and development of process model

    The processing variables of the experiment(mixing ratio, pressing time and fire retardantpercentages)had significant effects on the mechanical properties of boards.The interaction effects of different factors on bending properties of boards,particularly on MOR and MOE,were calculated by using the Box–Behnken design.

    The sufficiency of the model was evaluated through analysis of variance(ANOVA).The lack of fit(LOF)was not significant relative to the pure error,indicating good response to the model.The modelregression co-efficientof determination of(R2)of 0.9282 for MOR and 0.9236 for MOE was in reasonable agreement with the experimental results,indicating 92.82 and 92.36%of the variability can be revealed by the model,leaving 7.18 and 7.64%residual variability for MOR and MOE,respectively.

    We conclude from the above results that the Box–Behnken design was adequate to predict the board strength (MOR and MOE)within the range of variables studied. The final predicted process models in terms of actual significant factors for MOR and MOE are given in Eqs.2 and 3,respectively.

    where,a is the mixing ratio,b is the pressing time,and c is the fire retardant.

    Factors affecting MOR

    The factors affecting the MOR of boards are shown in ANOVA(Table 3),and also represented by a standardized Pareto chart developed by the software and shown in Fig.1.The quadratic effect of pressing time and quadratic effect of mixing ratio had positive significant effects on MOR.The linear effect of the mixing ratio had a negative significant effect on MOR.The interaction between linear effects of pressing time and fire retardant on MOR had a positive significanteffecton MOR.The positive interaction effect of pressing time and fire retardant on MOR is presented in Fig.2.MOR attained the highest value of 12 N mm-2for pressing time of 8–9 min and fire retardant proportion of 2–3%(Fig.2).The increases of pressing time increased the MOR whereas increases of fire retardant decreased the MOR sharply.Similar observation was also reported by Ayrilmis et al.(2012)that the MOR of uncoupled(without polypropylene)specimens declines with increasing fire retardant content and uncoupled control specimens yield the highest MOR.In one study by Atuanya et al.(2011)investigated the production of WPCat140°C,pressure of 4 MPa,pressing time of 10 min and at 60/40 wood particles/LDPE ratios that yielded the highest MOR of 20.31 N mm-2.Zhang et al.(2013)also reported MOR value of 21 N mm-2when the hot pressing time was 10 min,hot pressing temperature was 180°C, and hotpressing pressure was 3.0 MPa in WPC production with low density polyethylene.

    Table 3 ANOVA for MOR

    Fig.1 Standardized Pareto Chart for MOR

    Factors affecting MOE

    The quadratic effects of pressing time and mixing ratio had positive significant effects on MOE and the linear effect of fire retardant and mixing ratio had a significant negative effect on MOE(see ANOVA and Standardized Pareto Chart,Table 4;Fig.3).The interaction between linear effect of mixing ratio and fire retardant on MOE had significant and negative effect on MOE.

    Fig.2 The effect of pressing time and fire retardanton MOR

    The negative interaction effect of mixing ratio and fire retardanton MOE is illustrated in Fig.4.MOE attained the highest value,1,800 N mm-2for mixing ratio ranges from 1.5 to 2.5%and fire retardantproportion from 2 to 4%.As the mixing ratio declined from 1.5 to 1%or increased from 2.5 to 3%and as the fire retardant decreased from 2%to 0 or increased from 4 to 7%,MOE declined sharply.This finding suggested that the addition of LDPE to the wood particles increased the stiffness of the composite boards.Similar observations for MOE (1,617 N mm-2)was found by the Atuanya et al.(2011)in the production of WPC where wood particles and LDPE mixing ratio was maintained of 70:30.In another report by Obidiegwu and Nwosu(2012)stated that the tensile properties of board increased with increasing wood fiber content from 0 to 20%while Young’s Modulus ofelasticity showed progressive increase after initial reduction of wood fiber content percentage.

    Table 4 ANOVA for MOE

    Fig.3 Standardized Pareto Chart for MOE

    Fig.4 The effect of pressing time and fire retardant on MOE

    Optimization

    The optimization process was followed by the software profile and desirability option.The theory and concept of the desirability function were reviewed by Islam et al. (2009,2010).The best optimized conditions were found to be a mixing ratio of 2%(wood plastic mixing ratio 60:40), pressing time of 9 min and fire retardants at 0.This also optimized MOR and MOE at13.129 and 1,781.0 N mm-2, respectively(Fig.5).Finally,by using optimized levels of parameters(mixing ratio 60:40 without fire retardants, pressing time of 9 min,temperature of 150°C and press pressure of 4 MPa)a WPC board was produced and found the closestvalues similar to optimized MOR and MOE that indicated good fit to the predicted model.

    Effects on physical properties

    Density

    Mixing ratio had a remarkable effect on density(Fig.6). Density increased with increasing content of plastic and reached a peak at a level of 2(ratio of sawdust:LDPE of 60:40),and then declined with further increase in LDPE content.Density increased with increasing pressing time, with highest density at approximately 9 min.Density declined with further increase in pressing time.Fire retardanthad an irregular effecton density.Highestdensity was achieved when fire retardant content was 0,and reduced sharply with increases in fire retardant.Density increased slightly when fire retardantcontentwas 5–6%.The highest WPC board density was observed 0.81 mg cm-3.

    Fig.5 Desirability profile for optimization of process parameters for MOE and MOR

    Fig.6 Effects of production parameters on density

    Moisture content

    The mixing ratio had a remarkable effect on moisture content(Fig.7).Moisture content declined with increasing plastic content and reached a peak at the level 1(the ratio of sawdust:LDPE was 70:30.Pressing time had no such effect on moisture content.Fire retardant

    content had an irregular effect on moisture content;with highest moisture content when fire retardant was 6%.

    Fig.7 Effects of production parameters on moisture content%

    Thickness swelling

    Thickness swelling(%)decreased with increasing mixing ratio(Fig.8).Swelling was highest at the mixing ratio level 1(70:30),and declined with increasing LDPE content.Pressing time had no remarkable effect on thickness swelling.It increased slightly and,after reaching a certain limit,decreased with further increase in pressing time. Content of fire retardant also had no remarkable effect on thickness swelling(Ayrilmis et al.2011).

    Fig.8 Effects of production parameters on thickness swelling

    Linear expansion

    Linear expansion(%)decreased with increasing content of LDPE(Fig.9),and was highest at mixing ratio level 1 (70:30).Linear expansion was greatest at pressing time of 7 min,and then decreased with the increasing pressing time and after a certain time itdecreased with the further increase in pressing time.Again it has been observed that the linear expansion percentage decreased with the increasing content of fire retardant.

    As atlevel1 which contains 70%ofsawdust,soak water more than level 3 which contains 50%of LDPE.So,the linear expansion is high at mixing ratio level 1.Pressing time has an irregular effect on linear expansion as it has a complex interaction with the other factors.The effectof fire retardant has got almost a similar trend with the water absorption.With the increase of fire retardant the linear expansion decreases gradually as the water absorption.

    Water absorption

    Fig.9 Effects of production parameters on linear expansion

    Fig.10 Effects of production parameters on water absorption

    Water absorption is very important parameters for the quality of WPCs in application.Several efforts have been made by different researchers to describe the water absorption behavior of the WPC(Najafiet al.2007;Tamrakar and Lopez-Anido 2011).The water absorption declined with increasing LDPE content(Fig.10).It was highest at the mixing ratio level of 1(70:30).Water absorption was highest at a pressing time of 11 min.It initially declined slightly with increasing pressing time and then sharply increased with increased pressing time.Water absorption declined with increasing contentof fire retardant.

    Conclusion

    Sawdust-incorporated WPC was manufactured in our study by applying a statistical optimization tool which helped to reduce the waste of raw materials.The maximum optimized MOE and MOR were achieved at a mixing ratio of 60:40, pressing time of 9 min and fire retardants of 0.The optimized MOR and MOE were 13.129 and 1,781.0 N mm-2, respectively.The pressing time and maxing ratio also had influenced on the all studied physical properties whereas fire retardanthas irregular effects on the physicalproperties of WPCs.Timber shortage is a growing global issue and scientific use of timber processing waste such as sawdustin composite board production can contribute greatly to meet demand for wood products.This study suggested that the mahogany sawdust incorporation with low density polyethylene(LDPE)is a very potential alternative to produce quality WPC.

    ASTM D1037-12(2012)Standard test methods for evaluating properties of wood-base fiber and particle panel materials. ASTM International,West Conshohocken

    ASTM D790-10(2010)Standard test methods for flexuralproperties of unreinforced and reinforced plastics and electrical insulating materials.ASTM International,West Conshohocken

    Atuanya CU,Ibhadode AOA,Igboanugo AC(2011)Potential of using recycled low-density polyethylene in wood composites board.Afr J Environ Sci Technol 5(5):389–396

    Ayrilmis N,Benthien JT,Thoemen H,White RH(2011)Effects of fire retardants on physical,mechanical,and fire properties offlatpressed WPCs.Eur J Wood Wood Prod 70:215–224

    Ayrilmis N,Akbulut T,Dundar T,White RH,Mengeloglu F, Buyuksari U,Candan Z,Avci E(2012)Effect of boron and phosphate compounds on physical,mechanical,and fire properties of wood–polypropylene composite.Constr Build Mater 33:63–69

    Azizi K,Tabarsa T,Ashori A(2011)Performance characterizations of particleboards made with wheat straw and waste veneer splinters.Compos B 42(7):2085–2089

    Benthien JT,Thoemen H(2012)Effects of raw materials and process parameters on the physical and mechanical properties of flat pressed WPC panels.Compos A Appl SciManuf43(4):570–576

    Box GP,Behnken DW(1960)Some new three level design for the study of quantitative variables.Technometrics 2(4):456–475

    Chen JH,Zhong JC,Cai YH,Su WB,Yang YB(2007)Morphology and thermal properties in the binary blends of poly(propyleneco-ethylene)copolymer and isotactic polypropylene with polyethylene.Polymer 48(10):2946–2957

    Islam MA,Sakkas V,Albanis TA(2009)Application of statistical design of experimentwith desirability functions for the removal of organophosphorus pesticide from aqueous solution by low cost material.J Hazard Mater 170(1):230–238

    Islam MA,Nikoloutsou Z,Sakkas V,Papatheodorou M,Albanis TA (2010)Statistical optimization by combination of response surface methodology and desirability function for removal of azo dye from aqueous solution.Int J Environ Anal Chem 90:495–507

    Islam MA,Alam MR,Hannan MO(2012)Multiresponse optimization based on statistical response surface methodology and desirability function for the production of particleboard.Compos B Eng 43(3):861–868

    Kuo M,Adams D,Myers D,Curry D,Heemstra K,Smith J,Bian Y (1998)Properties of wood agricultural fiberboard bonden with soybean-based adhesives.For Prod J 48(2):71–75

    Lee H,Kim HJ,Park HJ(2002)Performance of paper sludge/ polypropylene fiber/linocellulosic fiber composites.J Ind Eng Chem 8(1):50–56

    Leu SY,Yang TH,Lo SF,Yang TH(2011)Optimized material composition to improve the physical and mechanical properties of extruded wood–plastic composites(WPCs.).Constr Build Mater 29:120–127

    Myers RH,Montgomery DC(2001)Response surface methodology: process and product optimization using designed experiments, 2nd edn.Wiley,New York

    NajafiSK,Kiaefar A,Hamidina E,Tajvidi M(2007)Water absorption behavior of composites from sawdust and recycled plastics.J Reinf Plast Compos 26(3):341–348

    Nirdosha G,Setunge S,Jollands M(2011)Design of experiments (DOE)for investigating particleboard production.In:Fragomeni S,Venkatesan S,Lam NTK,Setunge S(eds)Incorporating sustainable practice in mechanics of structures and materials. Taylor&Francis Group,London

    Obidiegwu MU,Nwosu CT(2012)Mechanical and flammability properties of low density polyethylene/ALSTONIA BOONEI wood fiber composite.Asian J Nat Appl Sci1(2):53–62

    Panshin AJ,De Zeewe C(1980)Textbook of wood technology,4th edn.McGraw–Hill Book Company,Inc,New York,pp 1–402

    Pramila R,Ramesh KV(2011)Biodegradation of low density polyethylene(LDPE)by fungi isolated from municipal landfill area.J Microbiol Biotechnol 1(4):131–136

    Pritchard G(2004)Two technologies merge:wood plastic composites.Plast Addit Compd 6(4):18–21

    Rahim S(2009)Wood waste utilization for wood composite industries in Malaysia.Paper presented at Asia Pacific Forest Products Workshop,14 Dec

    Stark NM,White HR,Mueller SA,Osswald TA(2010)Evaluation of various fire retardants for use in wood flour-polyethylene composites.Polym Degrad Stab 95(9):1903–1910

    Tabarsa T,Ashori A,Gholamzadeh M(2011)Evaluation of surface roughness and mechanical properties of particleboard panels made from bagasse.Compos B Eng 42(5):1330–1335

    Tamrakar S,Lopez-Anido RA(2011)Water absorption of wood polypropylene composite sheet piles and its influence on mechanical properties.Constr Build Mater 25(10):3977–3988

    Yamashita Y,Watanabe H,Takeda S(1999)Rubber wood characteristics of its supply and development of its utilization.For Resour 71:65–70

    Yang WJ,Xie YJ,Wang HG,Liu BY,Wang QW(2013)Impacts of freezing and thermaltreatments on dimensionaland mechanical properties of wood flour-HDPE composite.J For Res 24(1):143–147

    Youngquist JA,Krzysik AM,Chow P,Meimban R(1997)Properties of composite panels.In:Roger RM et al(eds)Paper and composites from agro-based resources.CRC Lewis Publisher, Boca Raton,pp 309–311

    Yuan FP,Ou RX,Xie YJ,Wang QW(2013)Reinforcing effects of modified Kevlar?fiber on the mechanical properties of woodflour/polypropylene composites.J For Res 24(1):149–153

    Zhang ZT,Sun ZB,Yang XH,Dong YH(2013)Manufacturing composite from regenerated wood fiber and polyethylene via paten-pressing process.Adv Mater Res 645:39–42

    Zhao J,Wang XM,Chang JM,Zheng K(2008)Optimization of processing variables in wood–rubber composite panel manufacturing technology.Bioresour Technol 99(7):2384–2391

    15 October 2013/Accepted:16 December 2013/Published online:27 January 2015

    ?Northeast Forestry University and Springer-Verlag Berlin Heidelberg 2015

    The online version is available at http://www.springerlink.com

    Corresponding editor:Yu Lei

    Sofina-E-Arab·Md.A.Islam(?)

    Forestry and Wood Technology Discipline,Khulna University, Khulna 9208,Bangladesh e-mail:iazharul@gmail.com

    日本黄色日本黄色录像| 满18在线观看网站| 91成人精品电影| 国产午夜精品一二区理论片| 午夜免费观看性视频| 中文字幕久久专区| 午夜免费观看性视频| 尾随美女入室| 国产成人精品久久久久久| 久久久久久久久久久久大奶| 国产黄色免费在线视频| 七月丁香在线播放| 99热网站在线观看| 一区在线观看完整版| 满18在线观看网站| 久久99一区二区三区| 亚洲成人av在线免费| 成人亚洲欧美一区二区av| 99热国产这里只有精品6| 国产综合精华液| 亚洲五月色婷婷综合| 久久狼人影院| 成人毛片a级毛片在线播放| 久久久久久久久大av| 日本爱情动作片www.在线观看| 99热全是精品| a级片在线免费高清观看视频| 国产免费福利视频在线观看| 国产精品免费大片| 麻豆乱淫一区二区| 久久av网站| 亚洲精品自拍成人| 中国国产av一级| 麻豆乱淫一区二区| 亚洲在久久综合| 91aial.com中文字幕在线观看| 久久久精品94久久精品| 一级黄片播放器| 少妇的逼水好多| 久久久久久久久久久久大奶| 在线观看国产h片| 狂野欧美激情性bbbbbb| a级片在线免费高清观看视频| 最新的欧美精品一区二区| a级毛片免费高清观看在线播放| 国产成人aa在线观看| 青春草视频在线免费观看| 日本-黄色视频高清免费观看| 日本wwww免费看| 丝袜美足系列| 老熟女久久久| 狠狠婷婷综合久久久久久88av| 九九久久精品国产亚洲av麻豆| 91精品伊人久久大香线蕉| 亚洲国产欧美日韩在线播放| 大香蕉久久网| 一本—道久久a久久精品蜜桃钙片| 日韩欧美精品免费久久| av黄色大香蕉| 全区人妻精品视频| 国产一区亚洲一区在线观看| 老司机影院成人| tube8黄色片| 不卡视频在线观看欧美| 熟妇人妻不卡中文字幕| 亚洲av男天堂| 国国产精品蜜臀av免费| 啦啦啦在线观看免费高清www| 男女边吃奶边做爰视频| 高清欧美精品videossex| 极品人妻少妇av视频| 少妇被粗大的猛进出69影院 | 国产 精品1| 一二三四中文在线观看免费高清| 久久人人爽av亚洲精品天堂| 中国国产av一级| 亚洲精品国产色婷婷电影| 多毛熟女@视频| av在线播放精品| 99热全是精品| 人妻一区二区av| 欧美精品一区二区免费开放| 亚洲国产最新在线播放| 免费人成在线观看视频色| 国产女主播在线喷水免费视频网站| 2018国产大陆天天弄谢| 在线观看www视频免费| 亚洲,欧美,日韩| 男人操女人黄网站| 美女福利国产在线| 伊人久久国产一区二区| 日本黄大片高清| 大片电影免费在线观看免费| 国产精品一二三区在线看| 麻豆成人av视频| 欧美日韩视频精品一区| 插阴视频在线观看视频| 久久毛片免费看一区二区三区| 免费高清在线观看视频在线观看| 久久 成人 亚洲| 三上悠亚av全集在线观看| 色94色欧美一区二区| 99热网站在线观看| 少妇人妻精品综合一区二区| 免费看光身美女| 亚洲天堂av无毛| 中文字幕av电影在线播放| 丝瓜视频免费看黄片| 免费高清在线观看日韩| 中文字幕精品免费在线观看视频 | 精品国产露脸久久av麻豆| 日日撸夜夜添| 少妇人妻精品综合一区二区| 国产免费现黄频在线看| 少妇的逼好多水| 51国产日韩欧美| 亚洲欧美成人精品一区二区| 九九久久精品国产亚洲av麻豆| 我要看黄色一级片免费的| 日韩电影二区| 街头女战士在线观看网站| 久久97久久精品| 涩涩av久久男人的天堂| 午夜日本视频在线| 在线观看美女被高潮喷水网站| 中文字幕亚洲精品专区| 全区人妻精品视频| 久久人人爽av亚洲精品天堂| 免费黄频网站在线观看国产| 这个男人来自地球电影免费观看 | 日本免费在线观看一区| 久久人人爽人人爽人人片va| 国产精品久久久久久久久免| 久久99一区二区三区| 国产精品一区二区在线不卡| 99久久人妻综合| 欧美日韩一区二区视频在线观看视频在线| 精品熟女少妇av免费看| 自拍欧美九色日韩亚洲蝌蚪91| 欧美xxxx性猛交bbbb| 久久av网站| 搡女人真爽免费视频火全软件| 午夜福利视频精品| 日韩精品免费视频一区二区三区 | 一区二区av电影网| 五月天丁香电影| 国产又色又爽无遮挡免| 成人国产av品久久久| 亚洲第一区二区三区不卡| 国产精品三级大全| 免费看av在线观看网站| 男女免费视频国产| 啦啦啦中文免费视频观看日本| 国产乱人偷精品视频| 亚洲欧美精品自产自拍| 天美传媒精品一区二区| 亚洲国产毛片av蜜桃av| 亚洲精品日韩av片在线观看| 婷婷色综合www| 赤兔流量卡办理| 制服诱惑二区| 99久国产av精品国产电影| 日韩在线高清观看一区二区三区| 一本色道久久久久久精品综合| 狂野欧美激情性bbbbbb| 免费av不卡在线播放| 啦啦啦在线观看免费高清www| 日本黄色片子视频| 亚洲欧美一区二区三区黑人 | 777米奇影视久久| 一级黄片播放器| 国产精品一区二区三区四区免费观看| 一级a做视频免费观看| 999精品在线视频| 精品国产一区二区三区久久久樱花| 一级片'在线观看视频| 性色av一级| 免费av不卡在线播放| 大码成人一级视频| 中文字幕制服av| 日本-黄色视频高清免费观看| 成人漫画全彩无遮挡| 乱人伦中国视频| 在线看a的网站| 精品少妇久久久久久888优播| av在线app专区| 天天躁夜夜躁狠狠久久av| 在线观看美女被高潮喷水网站| av在线app专区| 亚洲av中文av极速乱| 91精品国产国语对白视频| 亚洲三级黄色毛片| 国产精品偷伦视频观看了| av国产久精品久网站免费入址| 日韩视频在线欧美| 亚洲美女视频黄频| 久久精品久久久久久久性| 插逼视频在线观看| 久久精品久久精品一区二区三区| 国产av一区二区精品久久| 少妇人妻 视频| av女优亚洲男人天堂| 色5月婷婷丁香| 国产精品国产三级国产av玫瑰| 韩国高清视频一区二区三区| 满18在线观看网站| 国产av国产精品国产| 国产日韩欧美在线精品| 国产午夜精品久久久久久一区二区三区| 亚洲,一卡二卡三卡| 久久久国产欧美日韩av| 久久精品国产自在天天线| 在线 av 中文字幕| 黑丝袜美女国产一区| 青春草亚洲视频在线观看| 久久久久久久久久久丰满| 亚洲精品乱码久久久久久按摩| 国产免费视频播放在线视频| 久久这里有精品视频免费| 日韩不卡一区二区三区视频在线| 亚洲五月色婷婷综合| 亚洲经典国产精华液单| 亚洲欧洲日产国产| 中文字幕人妻熟人妻熟丝袜美| 汤姆久久久久久久影院中文字幕| 热99国产精品久久久久久7| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产精品一区二区三区四区免费观看| 男女国产视频网站| 大又大粗又爽又黄少妇毛片口| 成人黄色视频免费在线看| 成人无遮挡网站| 亚洲国产精品999| 国产欧美另类精品又又久久亚洲欧美| 香蕉精品网在线| 我的老师免费观看完整版| 天美传媒精品一区二区| 国产精品不卡视频一区二区| 桃花免费在线播放| 热re99久久精品国产66热6| 久久人妻熟女aⅴ| 综合色丁香网| 蜜桃在线观看..| 久久久久久久久大av| 在线观看www视频免费| 免费观看av网站的网址| 丝袜美足系列| 亚洲中文av在线| 搡老乐熟女国产| 国产亚洲av片在线观看秒播厂| 亚洲美女黄色视频免费看| a 毛片基地| 岛国毛片在线播放| 黄色怎么调成土黄色| 久久狼人影院| 国产成人免费观看mmmm| 啦啦啦啦在线视频资源| av网站免费在线观看视频| 欧美日韩国产mv在线观看视频| 国产伦理片在线播放av一区| √禁漫天堂资源中文www| 国产在线一区二区三区精| av播播在线观看一区| 欧美 亚洲 国产 日韩一| 大香蕉久久网| 91在线精品国自产拍蜜月| 赤兔流量卡办理| 爱豆传媒免费全集在线观看| 自线自在国产av| 天天躁夜夜躁狠狠久久av| 精品国产国语对白av| 日日摸夜夜添夜夜添av毛片| 欧美国产精品一级二级三级| 国产色婷婷99| 各种免费的搞黄视频| 99热这里只有精品一区| 免费观看a级毛片全部| 国产精品99久久99久久久不卡 | 熟女人妻精品中文字幕| 亚洲av日韩在线播放| 男男h啪啪无遮挡| 久久久久久久久久成人| 18禁在线播放成人免费| 青春草视频在线免费观看| 国产一区二区在线观看av| 人妻系列 视频| 两个人的视频大全免费| 2021少妇久久久久久久久久久| 亚洲中文av在线| 人人澡人人妻人| h视频一区二区三区| 亚洲综合色惰| 乱人伦中国视频| 五月伊人婷婷丁香| 女的被弄到高潮叫床怎么办| av免费观看日本| 99热全是精品| 汤姆久久久久久久影院中文字幕| 亚洲精品成人av观看孕妇| 永久免费av网站大全| 丰满少妇做爰视频| 少妇高潮的动态图| 免费观看性生交大片5| 熟女av电影| 国产国拍精品亚洲av在线观看| 十八禁高潮呻吟视频| 一区在线观看完整版| 99热全是精品| 在线观看免费日韩欧美大片 | 最黄视频免费看| 麻豆乱淫一区二区| 亚洲精品自拍成人| 一级黄片播放器| 男的添女的下面高潮视频| 大香蕉97超碰在线| 亚洲欧美一区二区三区黑人 | 久久精品久久精品一区二区三区| 不卡视频在线观看欧美| 91在线精品国自产拍蜜月| 伦精品一区二区三区| 搡老乐熟女国产| 国产av一区二区精品久久| 国产国拍精品亚洲av在线观看| 乱码一卡2卡4卡精品| 成人国产麻豆网| 国产精品蜜桃在线观看| 精品久久久久久久久亚洲| 国产亚洲一区二区精品| 日本av免费视频播放| 99热全是精品| 久久99蜜桃精品久久| 少妇 在线观看| 亚洲av日韩在线播放| 99久久精品国产国产毛片| 99精国产麻豆久久婷婷| 婷婷色综合www| 99视频精品全部免费 在线| 久久 成人 亚洲| 亚洲在久久综合| 黄片播放在线免费| 亚洲精品美女久久av网站| 人人妻人人添人人爽欧美一区卜| 亚洲久久久国产精品| 久久久久人妻精品一区果冻| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 男女啪啪激烈高潮av片| 少妇 在线观看| 日韩人妻高清精品专区| 51国产日韩欧美| 久久久亚洲精品成人影院| 欧美日韩av久久| 久久99一区二区三区| 老司机亚洲免费影院| 天堂中文最新版在线下载| 夜夜骑夜夜射夜夜干| 久久久久久久久久人人人人人人| av卡一久久| 日韩熟女老妇一区二区性免费视频| 日日摸夜夜添夜夜爱| 看免费成人av毛片| 久久 成人 亚洲| av有码第一页| 大片免费播放器 马上看| 成人亚洲精品一区在线观看| 王馨瑶露胸无遮挡在线观看| 国产熟女欧美一区二区| 亚洲综合精品二区| 我的老师免费观看完整版| 国产片特级美女逼逼视频| 我的老师免费观看完整版| 国产老妇伦熟女老妇高清| 免费观看av网站的网址| 久久久久精品性色| 2022亚洲国产成人精品| 免费看av在线观看网站| 最新中文字幕久久久久| 乱人伦中国视频| 色婷婷av一区二区三区视频| 午夜福利视频在线观看免费| 国产亚洲欧美精品永久| 久久久精品免费免费高清| 丰满乱子伦码专区| 欧美人与善性xxx| 日韩成人av中文字幕在线观看| 亚洲,欧美,日韩| 免费观看性生交大片5| 黄色一级大片看看| 成人无遮挡网站| 夜夜看夜夜爽夜夜摸| 日本欧美国产在线视频| 中文天堂在线官网| 国产精品国产三级国产专区5o| 国产极品天堂在线| 亚洲av综合色区一区| 欧美人与性动交α欧美精品济南到 | 久久久久国产网址| 一二三四中文在线观看免费高清| 人体艺术视频欧美日本| 老司机亚洲免费影院| 伊人亚洲综合成人网| 免费黄色在线免费观看| 哪个播放器可以免费观看大片| 欧美 日韩 精品 国产| 国产国语露脸激情在线看| 中文字幕制服av| 亚洲国产av新网站| 免费少妇av软件| 精品久久久久久久久av| 国产不卡av网站在线观看| 黄片播放在线免费| 人人妻人人澡人人爽人人夜夜| 18禁在线无遮挡免费观看视频| 精品国产露脸久久av麻豆| 一本一本综合久久| 日韩av在线免费看完整版不卡| 韩国av在线不卡| 大香蕉久久成人网| 亚洲av不卡在线观看| 菩萨蛮人人尽说江南好唐韦庄| 97在线人人人人妻| 国产精品免费大片| 亚洲,欧美,日韩| 日日摸夜夜添夜夜爱| 亚洲经典国产精华液单| 女性被躁到高潮视频| 伊人亚洲综合成人网| 国产精品国产三级国产专区5o| 在线观看免费日韩欧美大片 | 亚洲综合色网址| 久热这里只有精品99| 亚洲国产精品一区三区| 少妇被粗大的猛进出69影院 | 夜夜骑夜夜射夜夜干| 午夜福利网站1000一区二区三区| a级毛色黄片| 3wmmmm亚洲av在线观看| 久久久久久久久久久丰满| 国产一区二区在线观看av| 亚洲av成人精品一区久久| 欧美另类一区| 一个人看视频在线观看www免费| 毛片一级片免费看久久久久| 肉色欧美久久久久久久蜜桃| 97精品久久久久久久久久精品| 久久99精品国语久久久| 欧美3d第一页| 又大又黄又爽视频免费| 久久久久久久亚洲中文字幕| a级毛片免费高清观看在线播放| 亚洲久久久国产精品| 美女内射精品一级片tv| 三级国产精品欧美在线观看| 秋霞在线观看毛片| 少妇被粗大猛烈的视频| 在线观看一区二区三区激情| 亚洲精品国产色婷婷电影| 亚洲久久久国产精品| 天堂8中文在线网| 大香蕉久久网| 女性被躁到高潮视频| 免费高清在线观看视频在线观看| 亚洲美女搞黄在线观看| 久久久久久久久大av| 亚洲丝袜综合中文字幕| 青春草亚洲视频在线观看| 看免费成人av毛片| 热99国产精品久久久久久7| 午夜老司机福利剧场| 一级毛片黄色毛片免费观看视频| 黄色视频在线播放观看不卡| 欧美日韩视频精品一区| 一个人免费看片子| 中国国产av一级| 国产白丝娇喘喷水9色精品| 大香蕉97超碰在线| 国产黄频视频在线观看| 三上悠亚av全集在线观看| 免费不卡的大黄色大毛片视频在线观看| 丝袜喷水一区| a级毛片免费高清观看在线播放| 日本黄色日本黄色录像| 99久国产av精品国产电影| 汤姆久久久久久久影院中文字幕| 黑人巨大精品欧美一区二区蜜桃 | 亚洲欧美一区二区三区国产| 国产一区二区在线观看日韩| 精品久久久噜噜| 丰满乱子伦码专区| 国产免费现黄频在线看| 精品人妻熟女av久视频| 国产 一区精品| 中文字幕人妻熟人妻熟丝袜美| 97在线视频观看| 国产成人freesex在线| 夜夜骑夜夜射夜夜干| 18在线观看网站| 久久精品国产a三级三级三级| 精品久久久久久久久av| 九草在线视频观看| 美女国产高潮福利片在线看| 五月伊人婷婷丁香| 男人添女人高潮全过程视频| 综合色丁香网| 天堂中文最新版在线下载| 天堂俺去俺来也www色官网| 精品久久久久久电影网| 99久久精品一区二区三区| 亚洲欧美日韩卡通动漫| 亚洲精品aⅴ在线观看| 嘟嘟电影网在线观看| 99久久中文字幕三级久久日本| 亚洲精华国产精华液的使用体验| 王馨瑶露胸无遮挡在线观看| 亚洲av国产av综合av卡| 亚洲少妇的诱惑av| √禁漫天堂资源中文www| 少妇高潮的动态图| 熟女人妻精品中文字幕| 亚洲欧美成人综合另类久久久| 亚洲丝袜综合中文字幕| 在线观看免费高清a一片| 亚洲av日韩在线播放| 性色av一级| 国产精品国产三级国产av玫瑰| 日韩成人伦理影院| 丰满少妇做爰视频| 日本与韩国留学比较| 免费黄频网站在线观看国产| 久久久久人妻精品一区果冻| 久久国产精品大桥未久av| 亚洲精品第二区| 国产伦精品一区二区三区视频9| 欧美一级a爱片免费观看看| 日韩成人av中文字幕在线观看| 欧美xxⅹ黑人| 国产精品蜜桃在线观看| 精品久久国产蜜桃| 亚洲经典国产精华液单| 亚洲精品成人av观看孕妇| 草草在线视频免费看| 久热这里只有精品99| 丝袜美足系列| 欧美亚洲 丝袜 人妻 在线| 老熟女久久久| 久久影院123| 你懂的网址亚洲精品在线观看| 国内精品宾馆在线| 中文欧美无线码| 亚洲第一av免费看| 国产av国产精品国产| 久久久久久久久久久久大奶| 老熟女久久久| 亚洲av电影在线观看一区二区三区| 在线天堂最新版资源| 成人二区视频| 2018国产大陆天天弄谢| 色94色欧美一区二区| 少妇熟女欧美另类| 亚洲av.av天堂| 欧美人与善性xxx| 亚洲精品日本国产第一区| 99热国产这里只有精品6| 国产av一区二区精品久久| 99九九在线精品视频| av播播在线观看一区| 亚洲第一av免费看| 久久国产亚洲av麻豆专区| 久久免费观看电影| 精品亚洲成a人片在线观看| 综合色丁香网| 欧美精品一区二区大全| 国产在线一区二区三区精| 18禁在线播放成人免费| 亚洲国产精品一区二区三区在线| 如何舔出高潮| 一级片'在线观看视频| 国产白丝娇喘喷水9色精品| 少妇熟女欧美另类| 日韩中文字幕视频在线看片| 国产成人freesex在线| 欧美精品亚洲一区二区| 国产一区二区在线观看av| 午夜福利,免费看| 亚洲国产最新在线播放| 亚洲熟女精品中文字幕| 午夜免费观看性视频| 王馨瑶露胸无遮挡在线观看| 亚洲精品日韩在线中文字幕| 丁香六月天网| 亚洲色图综合在线观看| 亚洲av国产av综合av卡| 国产一区有黄有色的免费视频| 久久97久久精品| 日韩一本色道免费dvd| 十八禁高潮呻吟视频| 黄色怎么调成土黄色| 国产精品 国内视频| 精品人妻一区二区三区麻豆| xxxhd国产人妻xxx| 亚洲精品视频女| 午夜影院在线不卡| 国产成人a∨麻豆精品| av播播在线观看一区| 亚洲丝袜综合中文字幕| 国语对白做爰xxxⅹ性视频网站| 观看av在线不卡| 午夜视频国产福利| 一本久久精品| 免费观看a级毛片全部| 午夜免费男女啪啪视频观看| 亚洲欧美清纯卡通| 少妇丰满av| 亚洲无线观看免费| av女优亚洲男人天堂| 桃花免费在线播放|