• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of plant roots on soilpreferentialpathways and soilmatrix in forest ecosystems

    2015-06-05 08:54:04
    Journal of Forestry Research 2015年2期

    Effects of plant roots on soilpreferentialpathways and soilmatrix in forest ecosystems

    Yinghu Zhang?Jianzhi Niu?Weili Zhu?Xiaoqing Du?Jiao Li

    To characterize effects of plant roots on preferential flow(PF),we measured root length density(RLD) and root biomass(RB)in Jiufeng National Forest Park, Beijing,China.Comparisons were made for RLD and RB between soil preferential pathways and soil matrices.RLD and RB declined with the increasing soil depth(0–10, 10–20,20–30,30–40,40–50,50–60 cm)in all experimentalplots.RLD was greater in soilpreferentialpathways than in the surrounding soil matrix and was 69.5,75.0 and 72.2%for plant roots of diameter(d)<1,1<d<3 and 3<d<5 mm,respectively.Fine root systems had the most pivotal influence on soil preferential flow in this forestecosystem.In allexperimentalplots,RB contentwas the sum of RB from soil preferential pathways and the soil matrix in each soil depth.With respect to 6 soil depth gradient(0–10,10–20,20–30,30–40,40–50,50–60 cm)in each plot,the number of soil depth gradient that RB content was greater in soil preferential pathways than in the soil matrix was characterized,and the proportion was 68.2%in all plots.

    Preferential flow·Preferential pathways· Soil matrix·Root length density·Root biomass

    Introduction

    Studies of plant roots with respect to edaphology and plant hydrological responses have been hampered by difficulties associated with mechanisms of water movementand solute transport,especially preferential flow(Bundt et al.2001). Preferential flow describes preferential channels for water movement and solute transport from soils to roots.Pores formed by plant roots play an important role in hydrologicalresponses.Studies of the functions of plantroots began in the early eighteenth century and gradually increased in number.Plant roots play a pivotal role in water uptake, nutrients acquisition,solute retention and soilconservation during plant growth.Plant roots grow into soil pores to form continuous channels for water and nutrient uptake (Tracy et al.2011).The relationships between plant roots and soil preferential flow were described by Aber et al. (1985),Steudle(1994),Stokes et al.(2009),and Ceccon et al.(2011).Li and Ghodrati(1994)used breakthrough curve methods to demonstrate the effects of channels formed by plant roots on preferential transport of nitrates. Price and Hendrick(1998)found that root biomass(RB) varied by season and that living root length density(RLD) was greatest in autumn while dead RLD was greatest in winter.Volkmar(1993)confirmed that RLD had no absolute correlation with soil bulk density.J?rgensen et al. (2002)reported that soil profiles containing root channels enhanced solute transportand water movement to a greater extent than soilprofiles without root channels.Dusˇek et al. (2006)reported that plant root zones led to more water movement.Bogner et al.(2010)used stained patterns to determine that RLD reflected preferential flow extent and that RLD was larger in preferential pathways than in the soil matrix.Both living and decayed roots provide preferred paths for soil water and solute transport(Tippku¨tter1983;Angers and Caron 1998),and there is an important relationship between living and decayed roots.Bottner et al.(1999)demonstrated that living roots had effects on soil carbon metabolism during decayed root decomposition.Compared with decayed roots,living roots released more dissolved organic carbon(DOC)(Hsieh and Yang 1992)and this accelerated decomposition of dead roots. However,decayed roots prompted more water movement than living roots(Mitchell et al.1995).Edwards et al. (1988)demonstrated that the proportion of decayed root channels of diameter<1 mm was 80%per m2in soil preferential pathways.

    There are increased interests in evaluating plant roots of forest ecosystems because of their role in regulating the cycling of water and nutrients for plants growth,but plant roots are difficult to measure in any forest ecosystems (Cairns et al.1997).The upper diameter limit of fine roots varies among differentstudies and ranges from 1 to 5 mm. Following the original studies,data are available for two diameter limits:roots<2 mm and roots<5 mm(Kurz etal. 1996).Tufekcioglu et al.(1999)reported that fine and small roots(<5 mm)and coarse roots(>5 mm)are two major components of plant roots,and their vertical distributions modified soil physical and biological properties. Meanwhile,they sorted roots into diameter classes of 0–2 mm(fine root)and 2–5 mm(small root).Vanninen and Ma¨kela¨(1999)classified fine root compartments as: small fine roots(diameter 0–2 mm),large fine roots (diameter 2–5 mm)and total fine roots(diameter 0–5 mm). Fine roots’share of total biomass rarely represents more than 5%of total biomass of trees(Lo′pez et al.2001), while Santantonio et al.(1977)and Fogel(1983)reported that coarse and fine roots as a proportion of total tree biomass varied between 18 and 45%.Brassard et al. (2011)stated that coarse root biomass(diameter>1 mm) could account for approximately 30%of total biomass in forestecosystems.Maybe fine plantroots has been found to vary above in relation to forest stand characteristics,i.e. tree species,stand age,density,basal area and soil properties,or environmental factors,chiefly air temperature, amount of precipitation,geographical location and elevation(Vogt et al.1996;Jackson et al.1997;Leuschner and Hertel 2003).Jackson et al.(1997)estimated fine root biomass and reported that live fine root biomass ranged from 130 g m-2in deserts to 950 g m-2in temperate grasslands.

    Many studies of the relation of plantroots to preferential flow have been conducted in farmland ecosystems to characterize the effects of soil compaction,tillage systems and management on preferential flow.Few studies concentrated on forest soils that contain more plant roots and stones.Noguchi et al.(1997)reported that at least 70%of the macropores(>2 mm)in topsoil and 55%in subsoil in forest soils were associated with plantroots.Hagedorn and Bundt(2002)showed that preferential flow paths in a structured forest soil persisted for decades.Beven and Germann(1982)observed that macropores formed by forest tree roots could persist for at least 50–100 years. Studies on preferential flow in forest ecosystems,especially stony lands,are few.In these systems,soil matrix flow and preferential flow are pivotal flow patterns influencing water and solute transport.In forest ecosystems, channels formed by plant roots can contribute to physical non-equilibrium at the individual plot scale(Jarvis et al. 2012).Our study aimed to determine if plant roots have greater biomass and/or occur in greater density in preferential pathways than in the soil matrix.We conducted field dye tracing experiments in a forest ecosystem in Jiufeng National Forest Park,Beijing,China,using the food dye Brilliant Blue FCF(Colour Index 42090)to trace preferential flow(stained areas)and soil matrix flow(unstained areas)(Hagedorn and Bundt2002).Jiufeng National Forest Park is an important water conservation area which influences the groundwater security of Beijing.The objectives of our study were to:(1)compare RLD and RB of roots of diameter<1,1–3,and 3–5 mm between preferential pathways and the soilmatrix;and(2)determine which root diameter class contributes most to preferential flow.

    Materials and methods

    Study area

    Our study was a forest ecosystem in Jiufeng National Forest Park(116°28′E,39°34′N),Beijing,China.Jiufeng National Forest Park is part of Beijing Forestry University and is used for teaching and scientific research.Elevation ranges from 60 to 1,100 m a.s.l.The climate is temperate continental with mean annual precipitation of 630 mm, mean annual temperature 11.6°C,and mean annual potential evapo-transpiration of 19,000 mm.The dominant vegetation at elevations<800 m a.s.l.was plantation of Platycladas orientalis,Pinus tabulaeformis,Quercus spp., Robinia pserdoacacia containing shrubs Prunus armniaca and Vitex chinensis.Above 800 m a.s.l.,P.tabulaeformis, Popular chinensis,Lespedeza bicolon,Spiraca trilobata, Caragana rosea dominated the sparse forest cover.The soil has been described as sandy loam containing approximately 30%rock fragments and gravels(Li et al.2013).

    Experimental treatment

    In July 2012,we established six experimentalplots within a 10×10 m quadrat situated in representative vegetation at 260 m a.s.l.Plots 1 and 2 were located in Sophorajaponica,plots 3 and 4 in P.orientalis,and plots 5 and 6 in Quercus dentata sections of the quadrat.Preferential flow was identified by monitoring the movement of coloured solution added to each plot.Brilliant Blue FCF dye solution(5 g L-1)was applied to the experimentalplots during the growth season.The solution was uniformly applied to a 1.2×1.2 m area centered on the experimental trees to avoid border effects(Hagedorn and Bundt 2002;Legout et al.2009).Horizontal and vertical soil profiles were excavated when the solution had infiltrated the soil(Hu et al.2013).Horizontal profiles were extracted from 0.5×0.5 m quadrats and vertical profiles with maximum dying depth were extracted from points centered on the experimental trees one day after dye tracer application (Hagedorn and Bundt2002).For the horizontaland vertical sections,soil cores were extracted from preferential pathways and the soil matrix.Preferential pathways were identified by stained areas and soil matrices by unstained areas(Hagedorn and Bundt 2002).We used a camera to record preferential pathway distributions(Fig.1).

    Root parameters

    RLD and RB are pivotal indices of water and solute transport in forest ecosystems,especially of preferential flow.Soil-free roots were dried for 48 h in an oven at 70°C to constant weight(Castellanos et al.2001;Helmisaari et al.2007)and then weighed using an electronic balance(DV215CD(81 g/0.01 mg))to obtain plant roots. RB(g m-2)(Makkonen and Helmisaari 2001)was usually measured by oven drying(Livesley etal.1999).Fine RB is calculated on the basis of the cross-sectional area of soil cores.RLD(totalrootlength per soilvolume)(Mosaddeghi et al.2009;Glab 2013)was measured using WinRHIZO (STD4800)(Himmelbauer et al.2004;Yan et al.2011).

    Fig.1 Identification of preferential pathways and soil matrix from stained areas and unstained areas by applying Brilliant Blue solution. The flow patterns show the stained flow paths in black:stained areas as preferential pathways and unstained areas as soil matrix.Part A was used as a horizontal profile and part B as a vertical profile

    Root sampling

    Each plot was excavated from horizontal cross sections in 10 cm depth increments 24 h after application of Brilliant Blue FCF dye solution.Undisturbed soil samples were taken at each depth using soil corers(7 cm diameter, 5 cm height,200 cm3volume)with two replications in preferential pathways and the soil matrix.Samples were taken to a depth of 60 cm(0–10,10–20,20–30,30–40, 40–50,50–60 cm)in all experimental plots.Soil cores were stored at-2°C(Castellanos et al.2001)and soil was separated from roots using 5 mm sieves.When necessary,samples were placed in dishes with 4–5 mm deep water so that roots spread and soil particles could easily be removed(Castellanos et al.2001;Yan et al. 2011).We defined fine root diameter as≤5 mm,as commonly used in other studies(Kurz et al.1996;Fine′r et al.2011).

    Root contribution to preferential flow

    The contribution of plant roots to preferential flow represented an index evaluating which kinds of root diameter functions the largest positively.Firstly,all plantroots from preferentialpathways in each plotwere described,and total sum of plant roots in preferential pathways obtained. Afterwards,the contribution of plant roots to preferential flow was monitored:total sum of plantroots in preferential pathways divided by plant roots d<1,1<d<3, 3<d<5 mm,respectively.

    Root general comparison

    General comparison(GC)evaluated in this paper represented an index determining the difference of plant roots content between preferential pathways and the soil matrix. On the basis of the index,it is not complex to discriminate which one of plantroots contentwas greater in preferential pathways and the soil matrix.The simplified equation will be given as follows:

    whereηis GC(%),αPPis plantroots contentin preferential pathways,αSMis plant roots content in the soil matrix.In general,willbe applied to whenαPPis smaller thanαSM,while whenαPPis larger thanαSM,will be applied to.

    Fig.2 Proportion of RLD by three classes of root diameter(d<1,1–3,3–5 mm)in preferential pathways and in the soil matrix in six plots, Sophora japonica Linn for plots 1 and 2,Platycladus orientalis Franco for plots 3 and 4,Quercus dentata Thunb for plots 5 and 6

    Statistical analysis

    One-way ANOVA was used to assess differences in mean RLD and RB between preferential pathways and the soil matrix and to characterize the effects of root parameters on preferential flow.Data were analzyed using SPSS software.

    Results

    RLD in preferential pathways and the soil matrix

    Differences in RLD by root diameter class(<1,1–3 and 3–5 mm)in six experimental plots containing three types of vegetation are shown in Fig.2.On the whole,RLDdeclined with increasing soil depth for all three root diameter classes.RLD from soil preferential pathways and the soil matrix in each soil depth also showed a similar tendency.From Fig.2,greatest RLD was recorded in the upper soil layers to a depth 30 cm(topsoil).Meanwhile, plantroots of diameter<1 mm were mostly distributed on the soil surface.With respect to all experimental plots, RLD content for plant roots of diameter(d)<1,1<d<3 and 3<d<5 mm was also the sum of RLD from soil preferentialpathways and the soilmatrix in each soildepth. For 6 soil depth gradient(0–10,10–20,20–30,30–40, 40–50,50–60 cm)in each plot,the number of soil depth gradient that RLD content for plant roots of diameter (d)<1,1<d<3 and 3<d<5 mm was greater in soil preferential pathways than in the soil matrix was quantified.The characterizing results were illustrated in Table 1. The proportion of RLD in preferential pathways was greater than in the soil matrix in 69.5%of plots for roots of diameter<1 mm,in 75%of plots for roots of diameter 1–3 mm,and in 72.2%of plots for roots of diameter 3–5 mm.As shown in Fig.2 and Table 2,roots of diameter<1 mm were the predominant component for preferential flow in all experimental plots.Roots of diameter<1 mm accounted for almost 95.0%of preferential flow.

    Table 1 The proportion of the number of soil depth gradients(0–10, 10–20,20–30,30–40,40–50,50–60 cm)where RLD content was greater in soil preferential pathways than in the soil matrix among those 6 soil depth gradients(0–10,10–20,20–30,30–40,40–50, 50–60 cm)in each experimental plot

    Table 2 Root contribution to preferential flow in all experimental plots

    RB in preferential pathways and the soil matrix

    RB of fine roots(d<5 mm)was densely concentrated in the upper soil layers and varied by forest type.On the whole,RB declined with increasing soil depth whether in soilpreferentialpathways or in the soilmatrix(Table 3).In allexperimental plots,RB contentwas the sum of RB from soil preferential pathways and the soil matrix in each soil depth.With respectto six soildepth gradient(0–10,10–20, 20–30,30–40,40–50,50–60 cm)in each plot,the number of soil depth gradient that RB content was greater in soil preferential pathways than in the soil matrix was characterized,and the proportion was 68.2%in all plots.The difference of plant roots content(e.g.,RB,d<5 mm) between preferential pathways and the soil matrix was illustrated in Fig.3.From Table 3,22 surveyed data of RB from soil preferential pathways and the soil matrix in all experimental plots were characterized.And GC was also calculated by means of Eq.(1).Average GC was 83% calculated from 22 surveyed data.As it was shown in Fig.3,shaded circles represented that root general comparison of RB was higher than 83%;and the other open circles are below 83%.From Fig.3,the number of shaded circles whose root general comparison of RB higher than 83%was thirteen,while the number of open circles was nine.Those surveyed data whose GC was above 83% accounted for 59.1%among 22 surveyed data.However,it was ambivalent when GC was below 83%.From Fig.3, we implied that there were nine surveyed data whose GC was below 83%.

    Discussion

    In our results,on the whole,plant roots(e.g.,root length density and root biomass)declined with increasing soil depth whether in preferential pathways and in the soil matrix.These results were in agreementwith Himmelbauer et al.(2010)and Bengough(2012).Meanwhile,greatest plant roots were recorded in the upper soil layer to a depth of 30 cm(topsoil).This result was similar to that reported by Lipiec et al.(2003)and Bonger et al.(2008,2010).

    Our results also confirmed thatplantroots in preferential pathways were higher than in the soil matrix to some extent,particularly those distributed in the upper soil layers,because plant roots there were mostly decayed or decaying to form more preferential channels.During root decomposition,more channels are formed along the root surface.Preferential pathways provide pores or cracks and this encourages rootgrowth.The surrounding soilmatrix is too compacted for rootgrowth.Meanwhile,our results also implied thatmore and more fine plantroots were located on the soilsurface.This resultsupports the findings of Raizadaet al.(2013).With respect to fine plant roots in this paper, its growth cycle is shorter than coarse plantroots.Thus fine plant roots will become decaying even decayed roots gradually.During the process,plant roots will decompose more organic matters to form more root channels.

    Table 3 Root biomass(g m-2) in preferential pathways and the soil matrix by soil depth(0–10, 10–20,20–30,30–40,40–50, 50–60 cm)

    Fig.3 Root general comparison of RB in all experimental plots. Shaded circles representthatrootgeneralcomparison of RB is higher than 83%;and the other open circles is below 83%

    Preferential pathways in forest ecosystems include higher organic carbon content and microbial biomass compared with soil matrix(Backna¨s et al.2012).By accumulating soil organic matters and redistributing nutrients in the soil profile,preferential pathways play significantrole in their surrounding environments,particularly the soil matrix(Persson 2000).Our field experiments were carried outduring heavy rain,soilwater flow in preferential pathways and cracks increases,and fine roots may become asphyxiated even die.Clusters of fine roots are sometimes observed along or atthe end of coarse roots and correspond to zones of major organic nutrients and water uptake.Fine roots have high decay and emission rates,and clusters may soak up water during rainy season and may contribute to decayed flow paths(Ghestem et al.2011).

    Conclusions

    RLD and RB declined with increasing depth of soil.Roots were concentrated in topsoil(0–30 cm).RLD and RB were greater in topsoil than in deeper soils.Roots of diameter<1 mm accounted for the greatest proportion of all roots. RLD and RB were larger in soil preferential pathways than in the soil matrix.The contribution to preferential flow of roots of diameter<1 mm was greatest.

    AcknowledgmentsWe thank the Key Laboratory Soil and Water Conservation and Desertification Combating,Ministry of Education, China for laboratory assistance.

    Aber JD,Melillo JM,Nadelhoffer KJ,McClaugherty CA,Paster J (1985)Fine root turnover in forest ecosystems in relation to quantity and form of nitrogen availability:a comparison of two methods.Oecologia(Berlin)66:317–321

    Angers DA,Caron J(1998)Plant-induced changes in soil structure: processes and feedbacks.Biogeochemistry 42:55–72

    Backna¨s S,Laine-Kaulio H,Kl?ve B(2012)Phosphorus forms and related soil chemistry in preferential flow paths and the soil matrix of a forested podzolic till soil profile.Geoderma 189–190:50–64

    Bengough AG(2012)Water dynamics of the root zone:rhizosphere biophysics and its control on soil hydrology.Vadose Zone J 11(2),doi:10.2136/vzj2011.0111

    Beven K,Germann P(1982)Macropores and water flow in soils. Water Resour Res 18:1311–1325

    Bogner C,Wolf B,Schlather M,Huwe B(2008)Analysing flow patterns from dye tracer experiments in a forest soil using extreme value statistics.Eur J Soil Sci 59:103–113

    Bogner C,Gaul D,Kolb A,Schmiedinger I,Huwe B(2010) Investigating flow mechanisms in a forest soil by mixed-effects modeling.Eur J Soil Sci 61:1079–1090

    Bottner P,Pansu M,Sallih Z(1999)Modelling the effect of active roots on soilorganic matter turnover.Plant Soil216:15–25

    Brassard BW,Chen HYH,Bergeron Y,Pare D(2011)Coarse root biomass allometric equations for Abies balsamea,Picea mariana,Pinus banksiana,and Populus tremuloides in the boreal forest of Ontario,Canada.Biomass Bioenergy 35:4189–4196

    Bundt M,Widmer F,Pesaro M,Zeyer J,Blaser P(2001)Preferential flow paths:biological‘hotspots’in soils.Soil Biol Biochem 33(6):729–738

    Cairns MA,Brown S,Helmer EH,Baumgardner GA(1997)Root biomass allocation in the world’s upland forests.Oecologia 111:1–11

    Castellanos J,Jaramillo VJ,Sanford RL Jr,Kauffman JB(2001) Slash-and-burn effects on fine rootbiomass and productivity in a tropical dry forestin Me′xico.For Ecol Manag 148:41–50

    Ceccon C,Panzacchi P,Scandellari F,PrandiL,Ventura M,Russo B, Millard P,Tagliavini M(2011)Spatial and temporal effects of soil temperature and moisture and the relation to fine rootdensity on rootand soilrespiration in a mature apple orchard.Plant Soil 342:195–206

    Dusˇek J,Vogel T,Lichner L,Dohnal M,′A(2006)Simulated cadmium transport in macroporous soil during heavy rainstorm using dual-permeability approach.Biologia 61:S251–S254

    Edwards WM,Norton LD,Redmond CE(1988)Characterizing macropores thataffectinfiltration into nontilled soil.Soil Sci Soc Am J 52:483–487

    Fine′r L,Ohashi M,Noguchi K,Hirano Y(2011)Fine rootproduction and turnover in forest ecosystems in relation to stand and environmental characteristics.For Ecol Manag 262:2008–2023

    Fogel R(1983)Root turnover and productivity of coniferous forest. Plant Soil71:75–85

    Ghestem M,Sidle RC,Stokes A(2011)The influence of plant root systems on subsurface flow:implications for slope stability. Bioscience 61:869–879

    Glab T(2013)Impact of soil compaction on root development and yield of meadow-grass.Int Agrophys 27:7–13

    Hagedorn F,Bundt M(2002)The age of preferential flow paths. Geoderma 108:119–132

    Helmisaari HS,Derome J,No¨jd P,Kukkola M(2007)Fine root biomass in relation to site and stand characteristics in Norway spruce and Scots pine stands.Tree Physiol 27:1493–1504

    Himmelbauer ML,Loiskandl W,Kastanek F(2004)Estimating length,average diameter and surface area of roots using two different image analyses systems.Plant Soil 260:111–120

    Himmelbauer ML,Loiskandl W,Rousseva S(2010)Spatial root distribution and water uotake of maize grown on field with subsoil compaction.J Hydrol Hydromech 58:163–174

    Hsieh YP,Yang CH(1992)A method for quantifying living roots of Spartina(Cordgrass)and Juncus(Needlerush).Estuaries Coasts 15(3):414–419

    Hu B,Han CL,Jia Y,Zhao ZH,Li FM,Siddique KHM(2013) Visualization ofthethree-dimensionalwater-flowpathsin calcareous soilusing iodide watertracer.Geoderma 200–201:85–89

    Jackson RB,Mooney HA,Schulze ED(1997)A global budget for fine root biomass,surface area and nutrient contents.Proc Natl Acad Sci USA 94:7362–7366

    Jarvis NJ,Moeys J,Koestel J,Hollis JM(2012)Preferentialflow in a pedological perspective.Hydropedology,75–120

    J?rgensen PR,Hoffmann M,Kistrup JP,Bryde C,Bossi R,Villholth KG(2002)Preferentialflow and pesticide transportin a clay-rich till:field,laboratory,and modeling analysis.Water Resour Res 38:1246–1261

    Kurz WA,Beukema SJ,Apps MJ(1996)Estimation of root biomass and dynamics for the carbon budget model of the Canadian forest sector.Can J For Res 26:1973–1979

    Legout A,Nys C,Picard JF,Turpault MP,Dambrine E(2009)Effects of storm lothar(1999)on the chemicalo composition of soil solution and on herbaceous cover,humus and soils(Fougeres, France).For Ecol Mang 257:800–810

    Leuschner C,Hertel D(2003)Fine root biomass of temperate forests in relation to soil acidity and fertility,climate,age and species. Prog Bot 64:405–438

    Li YM,Ghodrati M(1994)Preferential transport of nitrate through soil columns containing root channels.Soil Sci Soc Am J 58(3):653–659

    LiX,Niu JZ,Xie BY(2013)Study on hydrologicalfunctions oflitter layers in North China.PLoS One 8(7):e70328.doi:10.1371/ journal.pone.0070328

    Lipiec J,Medvedev VV,Birkas M,Dumitru E,Lyndina TE, Rousseva S,Fulajtar E(2003)Effect of soilcompaction on root growth and crop yield in Central and Eastern Europe.Int Agrophys 17:61–69

    Livesley SJ,Stacey CL,Gregory PJ,Buresh RJ(1999)Sieve size effects on root length and biomass measurements of maize(Zea mays)and Grevillea robusta.Plant Soil 207:183–193

    Lo′pez B,Sabate′S,Gracia CA(2001)Annual and seasonal changes in fine root biomass of a Quercus ilex L.forest.Plant Soil 230:125–134

    Makkonen K,HelmisaariHS(2001)Fine rootbiomassand production in Scots pine stands in relation to stand age.Tree Physiol 21:193–198

    Mitchell AR,Ellsworth TR,Meek BD(1995)Effectof root systems on preferential flow in swelling soil.Commun Soil Sci Plant Anal 26:2655–2666

    Mosaddeghi MR,Mahboubi AA,Safadoust A(2009)Short-term effects of tillage and manure on some soil physical properties and maize rootgrowth in a sandy loam soilin western Iran.Soil Tillage Res 104:173–179

    Noguchi S,Tsuboyama Y,Sidle RC,Hosoda I(1997)Spatially distributed morphologicalcharacteristics of macropores in forest soils of Hitachi Ohta Experimental Watershed,Japan.J For Res 2:207–215

    Persson H(2000)Adaptive tactics and characteristics of tree fine roots.Dev Plant Soil Sci 33:337–346

    Price JS,Hendrick RL(1998)Fine root length production,mortality and standing root crop dynamics in an intensively managed sweetgum(Liquidambar styraciflua L.)coppice.Plant Soil 205:193–201

    Raizada A,Jayaprakash J,Rathore AC,Tomar JMS(2013)Distribution of fine rootbiomass of fruitand forest tree species raised on old river bed lands in the north west Himalaya.Trop Ecol 54(2):251–261

    Santantonio D,Hermann RK,Overton WS(1977)Root biomass studies in forest ecosystems.Pedobiologia 17:1–31

    Steudle E(1994)Water transport across roots.Plant Soil 167:79–90

    Stokes A,Atger C,Bengough AG,Fourcaud T,Sidle RC(2009) Desirable plant root traits for protecting natural and engineered slopes against landslides.Plant Soil 324:1–30

    Tippku¨tter R(1983)Morphology,spatial arrangement and origin of macropores in some Hapludalfs,West Germany.Geoderma 29: 355–371

    Tracy SR,Black CR,Roberts JA,Mooney SJ(2011)Soilcompaction: a review of past and present techniques for investigating effects on root growth.J Sci Food Agric 91:1528–1537

    Tufekcioglu A,Raich JW,Isenhart TM,Schultz RC(1999)Fine root dynamics,coarse root biomass,root distribution,and soil respiration in a multispecies riparian buffer in Central Iowa, USA.Agrofor Syst 44:163–174

    Vanninen P,Ma¨kela¨A(1999)Fine rootbiomass of Scots pine stands differing in age and soil fertility in southern Finland.Tree Physiol 19:823–830

    Vogt KA,Vogt DJ,Palaiotto PA,Boon P,J,Asbjornsen H (1996)Review ofrootdynamics in forestecosystems grouped by climate,climatic forest type and species.Plant Soil187:159–219

    Volkmar KM(1993)A comparison of minirhizotron techniques for estimating root length density in soils of different bulk density. Plant Soil157:239–245

    Yan HF,Li K,Ding H,Liao CS,Li XX,Yuan LX,Li CJ(2011)Root morphological and proteomic responses to growth restriction in maize plants supplied with sufficient N.J Plant Physiol 168:1067–1075

    23 January 2013/Accepted:19 October 2013/Published online:30 January 2015

    ?Northeast Forestry University and Springer-Verlag Berlin Heidelberg 2015

    Project funding:This research was supported by a grant from the Natural Science Foundation of China(41271044).

    The online version is available at http://www.link.springer.com

    Corresponding editor:Hu Yanbo

    Y.Zhang·J.Niu(?)·W.Zhu·X.Du·J.Li

    Key Laboratory Soiland Water Conservation and Desertification Combating,Ministry of Education,College of Soil and Water Conservation,Beijing Forestry University,Beijing 100083, China e-mail:nexk@bjfu.edu.cn

    亚洲aⅴ乱码一区二区在线播放 | 亚洲片人在线观看| 国产亚洲欧美在线一区二区| 国产蜜桃级精品一区二区三区| 国内毛片毛片毛片毛片毛片| 午夜免费激情av| 国产亚洲欧美98| 黄色怎么调成土黄色| 脱女人内裤的视频| 搡老乐熟女国产| 日韩免费高清中文字幕av| 变态另类成人亚洲欧美熟女 | 天堂影院成人在线观看| 国产在线精品亚洲第一网站| 久久国产亚洲av麻豆专区| 中文字幕高清在线视频| 99久久99久久久精品蜜桃| 久久国产精品人妻蜜桃| 国产区一区二久久| 国产国语露脸激情在线看| 人人妻人人澡人人看| 制服诱惑二区| 视频在线观看一区二区三区| 国产精品秋霞免费鲁丝片| 女人精品久久久久毛片| 久久久精品国产亚洲av高清涩受| 免费搜索国产男女视频| 午夜免费激情av| 欧美日韩一级在线毛片| 久久精品国产亚洲av高清一级| 国产精品爽爽va在线观看网站 | 久久精品aⅴ一区二区三区四区| 亚洲精品国产区一区二| 国产成+人综合+亚洲专区| 亚洲欧美一区二区三区久久| 一区二区三区国产精品乱码| 欧美日韩亚洲国产一区二区在线观看| 欧美在线一区亚洲| 一区福利在线观看| 12—13女人毛片做爰片一| 无遮挡黄片免费观看| 欧美日韩亚洲高清精品| 国产精品99久久99久久久不卡| 欧美人与性动交α欧美软件| 一本综合久久免费| 欧美中文综合在线视频| 久久久久国产一级毛片高清牌| 欧美丝袜亚洲另类 | 99精品欧美一区二区三区四区| 国产欧美日韩精品亚洲av| 人成视频在线观看免费观看| 欧美一级毛片孕妇| 久久国产亚洲av麻豆专区| 欧美日韩精品网址| 黄色丝袜av网址大全| 欧美日韩瑟瑟在线播放| 大码成人一级视频| 中文字幕最新亚洲高清| 精品一区二区三区视频在线观看免费 | 麻豆一二三区av精品| av国产精品久久久久影院| 欧美乱色亚洲激情| 神马国产精品三级电影在线观看 | 国产精品一区二区三区四区久久 | 长腿黑丝高跟| 中文字幕人妻丝袜制服| 人人妻人人澡人人看| 丰满人妻熟妇乱又伦精品不卡| 久久人人爽av亚洲精品天堂| 久久精品亚洲熟妇少妇任你| 国产99白浆流出| 国产三级在线视频| 国产亚洲欧美在线一区二区| 性色av乱码一区二区三区2| 丝袜在线中文字幕| 精品久久久久久久毛片微露脸| 很黄的视频免费| 在线播放国产精品三级| www日本在线高清视频| 亚洲欧美激情在线| 亚洲国产毛片av蜜桃av| 久久久久久大精品| 亚洲五月婷婷丁香| 很黄的视频免费| 国产成人av激情在线播放| 久久精品国产99精品国产亚洲性色 | 婷婷六月久久综合丁香| 亚洲狠狠婷婷综合久久图片| 美女 人体艺术 gogo| 国产国语露脸激情在线看| 亚洲色图综合在线观看| 精品国产亚洲在线| 亚洲男人天堂网一区| 日韩欧美一区二区三区在线观看| 久久中文字幕人妻熟女| 黄色片一级片一级黄色片| 精品久久久久久久久久免费视频 | 日韩三级视频一区二区三区| 免费日韩欧美在线观看| 亚洲精品在线美女| 久久婷婷成人综合色麻豆| 十八禁网站免费在线| 交换朋友夫妻互换小说| 国产亚洲欧美98| 在线观看免费午夜福利视频| 精品久久久久久成人av| 又黄又爽又免费观看的视频| a级片在线免费高清观看视频| 国产成人精品久久二区二区91| 午夜免费激情av| 成人亚洲精品av一区二区 | 久久中文字幕一级| 色精品久久人妻99蜜桃| 一级作爱视频免费观看| 在线观看舔阴道视频| 久久国产精品影院| 欧美+亚洲+日韩+国产| 精品一区二区三卡| 国产成人精品久久二区二区91| 操出白浆在线播放| 欧美成人免费av一区二区三区| 亚洲自偷自拍图片 自拍| 人人澡人人妻人| 国产免费男女视频| 纯流量卡能插随身wifi吗| 欧美日本中文国产一区发布| 久久香蕉激情| 黄色怎么调成土黄色| 激情在线观看视频在线高清| 亚洲国产欧美日韩在线播放| 国产精品二区激情视频| 国产免费av片在线观看野外av| 亚洲美女黄片视频| 欧美成人免费av一区二区三区| 女人精品久久久久毛片| 如日韩欧美国产精品一区二区三区| 五月开心婷婷网| 日本黄色日本黄色录像| 亚洲,欧美精品.| 水蜜桃什么品种好| 日日爽夜夜爽网站| aaaaa片日本免费| 久99久视频精品免费| 别揉我奶头~嗯~啊~动态视频| 日韩大码丰满熟妇| 久久精品91无色码中文字幕| 一个人观看的视频www高清免费观看 | 亚洲情色 制服丝袜| 精品国产国语对白av| 一边摸一边做爽爽视频免费| 视频区欧美日本亚洲| 香蕉国产在线看| 国产免费男女视频| 久久人人97超碰香蕉20202| 亚洲欧美日韩另类电影网站| 50天的宝宝边吃奶边哭怎么回事| 国产成人一区二区三区免费视频网站| 亚洲avbb在线观看| 在线观看www视频免费| 午夜福利免费观看在线| 欧美日韩福利视频一区二区| 国产在线精品亚洲第一网站| 亚洲精品久久成人aⅴ小说| 国产激情久久老熟女| 1024香蕉在线观看| 日本vs欧美在线观看视频| 久久久久久大精品| 亚洲人成网站在线播放欧美日韩| 亚洲精品国产色婷婷电影| 9191精品国产免费久久| 国产精品秋霞免费鲁丝片| 久久久久久久久中文| 亚洲精品粉嫩美女一区| 成人av一区二区三区在线看| 欧美大码av| 狠狠狠狠99中文字幕| 亚洲美女黄片视频| 亚洲精品一卡2卡三卡4卡5卡| 精品高清国产在线一区| 亚洲国产精品sss在线观看 | 两人在一起打扑克的视频| 久久久久久人人人人人| 久久香蕉激情| 亚洲 欧美 日韩 在线 免费| 日本撒尿小便嘘嘘汇集6| 免费搜索国产男女视频| 久久人人97超碰香蕉20202| 久久香蕉激情| 国产精品二区激情视频| 欧美日韩av久久| 制服诱惑二区| 亚洲av日韩精品久久久久久密| 91成人精品电影| 久久久精品国产亚洲av高清涩受| 亚洲第一av免费看| 精品电影一区二区在线| 在线十欧美十亚洲十日本专区| 精品久久蜜臀av无| 麻豆av在线久日| 777久久人妻少妇嫩草av网站| 欧美成人免费av一区二区三区| 久久久精品欧美日韩精品| 女人被躁到高潮嗷嗷叫费观| 中文字幕最新亚洲高清| 两人在一起打扑克的视频| 国产精品爽爽va在线观看网站 | av天堂久久9| 免费在线观看亚洲国产| 日韩三级视频一区二区三区| 一二三四在线观看免费中文在| 男女高潮啪啪啪动态图| 操美女的视频在线观看| 69av精品久久久久久| 天堂√8在线中文| 国产亚洲精品第一综合不卡| 亚洲欧美精品综合一区二区三区| 亚洲情色 制服丝袜| 免费在线观看黄色视频的| 国产精品爽爽va在线观看网站 | 欧洲精品卡2卡3卡4卡5卡区| 一级作爱视频免费观看| 高清黄色对白视频在线免费看| 成人亚洲精品一区在线观看| 精品人妻在线不人妻| 97碰自拍视频| 亚洲全国av大片| 欧美日韩黄片免| 免费在线观看日本一区| 女人精品久久久久毛片| 国产成人影院久久av| 欧美激情 高清一区二区三区| 亚洲精品一区av在线观看| 757午夜福利合集在线观看| 成人精品一区二区免费| 黑人欧美特级aaaaaa片| 国产激情久久老熟女| 亚洲一卡2卡3卡4卡5卡精品中文| 精品免费久久久久久久清纯| 女生性感内裤真人,穿戴方法视频| 日韩三级视频一区二区三区| 深夜精品福利| 亚洲中文字幕日韩| 久热爱精品视频在线9| 黑人操中国人逼视频| 午夜成年电影在线免费观看| 亚洲精品久久午夜乱码| 欧美另类亚洲清纯唯美| 国产精品av久久久久免费| 欧美日韩亚洲高清精品| 精品国产超薄肉色丝袜足j| 久久精品aⅴ一区二区三区四区| 午夜a级毛片| 琪琪午夜伦伦电影理论片6080| 丝袜美腿诱惑在线| 最近最新中文字幕大全免费视频| 无人区码免费观看不卡| 亚洲av片天天在线观看| 丰满迷人的少妇在线观看| 国产区一区二久久| 日本vs欧美在线观看视频| 国产蜜桃级精品一区二区三区| 亚洲av成人一区二区三| 成人影院久久| 制服人妻中文乱码| 精品一区二区三区四区五区乱码| 久久精品亚洲av国产电影网| 视频区欧美日本亚洲| 日本精品一区二区三区蜜桃| 长腿黑丝高跟| 老汉色av国产亚洲站长工具| 午夜福利,免费看| 日韩精品免费视频一区二区三区| 麻豆久久精品国产亚洲av | 国产成人精品久久二区二区免费| 我的亚洲天堂| 色尼玛亚洲综合影院| 日韩欧美在线二视频| 91老司机精品| 国产成人av教育| 国产国语露脸激情在线看| 久久久久久久午夜电影 | 嫩草影视91久久| 亚洲va日本ⅴa欧美va伊人久久| 久久伊人香网站| 久久精品国产亚洲av香蕉五月| 成人三级黄色视频| 亚洲少妇的诱惑av| 日本黄色日本黄色录像| 麻豆av在线久日| 十分钟在线观看高清视频www| 高清av免费在线| 黄色片一级片一级黄色片| 51午夜福利影视在线观看| 91av网站免费观看| 大香蕉久久成人网| 久久久久久亚洲精品国产蜜桃av| 欧美成人免费av一区二区三区| 国产激情欧美一区二区| 亚洲精品一卡2卡三卡4卡5卡| 夜夜看夜夜爽夜夜摸 | 久久人妻av系列| svipshipincom国产片| 性欧美人与动物交配| 成熟少妇高潮喷水视频| 丰满人妻熟妇乱又伦精品不卡| 人妻久久中文字幕网| 亚洲欧洲精品一区二区精品久久久| 国产亚洲欧美精品永久| 91大片在线观看| 高潮久久久久久久久久久不卡| 久久热在线av| 中文字幕av电影在线播放| 精品国产国语对白av| 妹子高潮喷水视频| 久热爱精品视频在线9| 人妻丰满熟妇av一区二区三区| 中文字幕av电影在线播放| 丰满饥渴人妻一区二区三| 亚洲片人在线观看| 成人免费观看视频高清| 中文字幕人妻丝袜制服| 久久久国产成人免费| 久久久国产成人精品二区 | 一级黄色大片毛片| 一区二区三区国产精品乱码| 热99国产精品久久久久久7| 夜夜看夜夜爽夜夜摸 | 久久久久久免费高清国产稀缺| 黄网站色视频无遮挡免费观看| 天天影视国产精品| 宅男免费午夜| 亚洲美女黄片视频| 免费在线观看完整版高清| 女生性感内裤真人,穿戴方法视频| 亚洲国产欧美一区二区综合| 成年人黄色毛片网站| 久久久久国产一级毛片高清牌| 99久久综合精品五月天人人| 制服人妻中文乱码| 国产亚洲精品综合一区在线观看 | 一个人免费在线观看的高清视频| a级毛片在线看网站| 无人区码免费观看不卡| 中文字幕最新亚洲高清| 国产乱人伦免费视频| 999久久久国产精品视频| 18禁观看日本| 免费少妇av软件| 亚洲激情在线av| 男女床上黄色一级片免费看| 另类亚洲欧美激情| 国产亚洲欧美在线一区二区| 国产精品av久久久久免费| 国产在线精品亚洲第一网站| www.精华液| 黄色 视频免费看| 国产亚洲精品久久久久5区| 成人18禁在线播放| 精品电影一区二区在线| 亚洲五月天丁香| 久久青草综合色| 日韩精品免费视频一区二区三区| 色综合站精品国产| 天堂影院成人在线观看| 99久久久亚洲精品蜜臀av| 中亚洲国语对白在线视频| 一级毛片女人18水好多| 一区二区日韩欧美中文字幕| 一级作爱视频免费观看| 亚洲欧美日韩另类电影网站| 成在线人永久免费视频| 午夜久久久在线观看| 女人被躁到高潮嗷嗷叫费观| 女生性感内裤真人,穿戴方法视频| 国产亚洲欧美98| 一区二区三区激情视频| 淫秽高清视频在线观看| 法律面前人人平等表现在哪些方面| 神马国产精品三级电影在线观看 | 国产精品久久视频播放| 亚洲av第一区精品v没综合| 天堂影院成人在线观看| 日韩成人在线观看一区二区三区| 在线观看免费日韩欧美大片| 日日爽夜夜爽网站| 久热这里只有精品99| aaaaa片日本免费| 日本黄色视频三级网站网址| 久久中文字幕人妻熟女| 校园春色视频在线观看| 91大片在线观看| 美女午夜性视频免费| 在线观看免费日韩欧美大片| 一本综合久久免费| 久久久久久人人人人人| 亚洲精品国产精品久久久不卡| 欧美中文综合在线视频| 999精品在线视频| 国产精品久久视频播放| 激情在线观看视频在线高清| 99国产综合亚洲精品| 日日摸夜夜添夜夜添小说| 亚洲成人国产一区在线观看| 色综合欧美亚洲国产小说| 岛国在线观看网站| 亚洲精品粉嫩美女一区| 首页视频小说图片口味搜索| 一进一出抽搐gif免费好疼 | 高清在线国产一区| 日本五十路高清| 女性生殖器流出的白浆| 欧美大码av| 亚洲自偷自拍图片 自拍| 涩涩av久久男人的天堂| 后天国语完整版免费观看| 中文字幕最新亚洲高清| 黄色a级毛片大全视频| 99久久久亚洲精品蜜臀av| 天堂中文最新版在线下载| 一区二区三区国产精品乱码| 久久国产精品男人的天堂亚洲| 国产精品久久久久久人妻精品电影| 精品高清国产在线一区| 日本 av在线| 中文字幕色久视频| 一区二区三区激情视频| 久久久久久大精品| 国产在线精品亚洲第一网站| 男女下面进入的视频免费午夜 | 久久久久久久精品吃奶| 黄色毛片三级朝国网站| 欧美精品亚洲一区二区| 少妇被粗大的猛进出69影院| 国产一区二区三区在线臀色熟女 | 另类亚洲欧美激情| 老司机午夜福利在线观看视频| 一区二区三区激情视频| 在线观看免费视频网站a站| 热99re8久久精品国产| 国产精品98久久久久久宅男小说| 99国产综合亚洲精品| 亚洲精品av麻豆狂野| 国产一区二区在线av高清观看| 亚洲精品国产色婷婷电影| 91成人精品电影| 在线观看免费日韩欧美大片| 亚洲一区二区三区不卡视频| 久久精品人人爽人人爽视色| 精品国产乱子伦一区二区三区| 午夜免费观看网址| 亚洲avbb在线观看| 日韩成人在线观看一区二区三区| 女警被强在线播放| 97人妻天天添夜夜摸| 一个人免费在线观看的高清视频| 脱女人内裤的视频| 国产成人系列免费观看| 两性夫妻黄色片| 超碰成人久久| 久久久久久久午夜电影 | 男人舔女人下体高潮全视频| 亚洲欧美激情综合另类| 久久人人97超碰香蕉20202| 国产精品偷伦视频观看了| 国产精品一区二区精品视频观看| 久久精品人人爽人人爽视色| 丰满迷人的少妇在线观看| 国产av一区二区精品久久| 成人三级做爰电影| 国产深夜福利视频在线观看| 欧美日韩福利视频一区二区| 亚洲国产精品合色在线| 国产一区二区三区在线臀色熟女 | 女生性感内裤真人,穿戴方法视频| 国产日韩一区二区三区精品不卡| 男人舔女人的私密视频| 欧美人与性动交α欧美精品济南到| 亚洲全国av大片| 国产精品秋霞免费鲁丝片| 国产成人系列免费观看| 老司机午夜十八禁免费视频| 日韩成人在线观看一区二区三区| 国产精品一区二区在线不卡| 久久精品人人爽人人爽视色| 老司机在亚洲福利影院| 亚洲五月婷婷丁香| 亚洲精品中文字幕在线视频| 女人被狂操c到高潮| 国产主播在线观看一区二区| 国产精品电影一区二区三区| 日日干狠狠操夜夜爽| 激情视频va一区二区三区| 欧美日韩一级在线毛片| 天天躁狠狠躁夜夜躁狠狠躁| 国产av一区在线观看免费| 亚洲av成人av| 亚洲va日本ⅴa欧美va伊人久久| 超色免费av| www.自偷自拍.com| 成人三级做爰电影| 欧美黄色片欧美黄色片| 麻豆一二三区av精品| 高清黄色对白视频在线免费看| 久久久久久免费高清国产稀缺| 人人妻人人澡人人看| 在线观看一区二区三区| 日日爽夜夜爽网站| 交换朋友夫妻互换小说| 三上悠亚av全集在线观看| 精品午夜福利视频在线观看一区| 十八禁网站免费在线| 国产精品久久久久成人av| 在线观看免费日韩欧美大片| 悠悠久久av| 亚洲免费av在线视频| 久久狼人影院| 窝窝影院91人妻| 国产亚洲精品久久久久5区| 亚洲精品一卡2卡三卡4卡5卡| 麻豆国产av国片精品| 亚洲全国av大片| 免费久久久久久久精品成人欧美视频| 亚洲成av片中文字幕在线观看| xxxhd国产人妻xxx| 亚洲一码二码三码区别大吗| 国产99白浆流出| 欧美中文日本在线观看视频| 国产精品二区激情视频| 好看av亚洲va欧美ⅴa在| 高清毛片免费观看视频网站 | 一区在线观看完整版| 国产三级在线视频| 91大片在线观看| 久久中文字幕一级| 欧美性长视频在线观看| 高清毛片免费观看视频网站 | 久久99一区二区三区| www日本在线高清视频| 无遮挡黄片免费观看| 欧美日韩亚洲综合一区二区三区_| 成人影院久久| 亚洲精品国产精品久久久不卡| 777久久人妻少妇嫩草av网站| 露出奶头的视频| 精品高清国产在线一区| 国产成人精品在线电影| 国产伦一二天堂av在线观看| 久久人妻熟女aⅴ| 女性被躁到高潮视频| 亚洲国产精品一区二区三区在线| 久久国产亚洲av麻豆专区| 十八禁网站免费在线| 可以在线观看毛片的网站| 国产欧美日韩精品亚洲av| 国产激情欧美一区二区| 国产午夜精品久久久久久| 搡老熟女国产l中国老女人| 在线天堂中文资源库| 国产成人免费无遮挡视频| 亚洲人成77777在线视频| 欧美精品啪啪一区二区三区| 大型av网站在线播放| 国产亚洲精品一区二区www| 极品教师在线免费播放| 色播在线永久视频| 人人妻人人爽人人添夜夜欢视频| 脱女人内裤的视频| 久久香蕉国产精品| 在线国产一区二区在线| 黄频高清免费视频| 欧美不卡视频在线免费观看 | 欧美日韩福利视频一区二区| 欧美日韩黄片免| 久久久国产成人免费| 久久久久亚洲av毛片大全| 久久草成人影院| 国产主播在线观看一区二区| 久久人妻av系列| 亚洲av成人av| 在线观看舔阴道视频| 黄频高清免费视频| 老熟妇乱子伦视频在线观看| 亚洲精华国产精华精| 亚洲 欧美 日韩 在线 免费| bbb黄色大片| 久久人人97超碰香蕉20202| 黄色片一级片一级黄色片| 精品一品国产午夜福利视频| 99久久99久久久精品蜜桃| 电影成人av| 日本免费一区二区三区高清不卡 | 在线观看66精品国产| 桃色一区二区三区在线观看| 一二三四社区在线视频社区8| 久久精品亚洲精品国产色婷小说| 一级作爱视频免费观看| 一进一出好大好爽视频| 日韩免费高清中文字幕av| 久久性视频一级片| 精品人妻1区二区| 成人影院久久| 日日干狠狠操夜夜爽| 亚洲专区中文字幕在线| 国产成人啪精品午夜网站| 亚洲精品美女久久av网站| 岛国在线观看网站| 精品一区二区三区四区五区乱码| 深夜精品福利| 亚洲自偷自拍图片 自拍| 国产熟女午夜一区二区三区| 男女下面进入的视频免费午夜 | 国产麻豆69| 午夜免费观看网址| 色婷婷久久久亚洲欧美| 极品人妻少妇av视频|