• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Carbon stock and rate of carbon sequestration in Dipterocarpus forests of Manipur,Northeast India

    2015-06-05 08:54:04SupriyaDeviYadava
    Journal of Forestry Research 2015年2期

    L.Supriya Devi?P.S.Yadava

    Carbon stock and rate of carbon sequestration in Dipterocarpus forests of Manipur,Northeast India

    L.Supriya Devi1?P.S.Yadava1

    We examined the carbon stock and rate of carbon sequestration in a tropical deciduous forest dominated by Dipterocarpus tuberculatus in Manipur, North East India.Estimation of aboveground biomass was determined by harvest method and multiplied with density of tree species.The aboveground biomass was between 18.27–21.922 t ha-1and the carbon stock ranged from 9.13 to 10.96 t C ha-1across forest stands.Aboveground biomass and carbon stock increased with the increase in tree girth.The rate of carbon sequestration varied from 1.4722 to 4.64136 t ha-1year-1among the dominant tree species in forest stands in tropical deciduous forest area. The rate of carbon sequestration depends on species composition,the density of large trees in different girth classes, and anthropogenic disturbances in the present forest ecosystem.Further work is required to identify tree species having the highest potential to sequester CO2from the atmosphere,which could lead to recommendations for tree plantations in a degraded ecosystem.

    Carbon budget·Carbon sequestration· Dipterocarpus·Biomass·Net production

    Introduction

    Tropical forests play an important role in reducing atmospheric carbon because they dominate the dynamics of the terrestrial carbon cycle.Tropical forests have the largest potential among the world’s forests to mitigate change through conservation of existing carbon pools,expansion of carbon sinks,and substitution of wood products for fossil fuels(Brown et al.1996,2000).Forests contain about 50%of the carbon stored in vegetation and about 50%of the carbon stored in the soil(TBFRA 2000). Biomass is the organic matter fixed by trees and is the source of all other productivity in the forest.Biomass can be used to:(a)determine energy fixation in forest(Brown and Lugo 1984;Brown 1997);(b)quantify increment in forest yield,growth,or productivity(Burkhart and Strud 1973;Thokchom and Yadava 2013;Debajit et al.2014), and(c)assess changes in forest structure(Brown 1997).

    About1–2 Gtofcarbon are sequestered annually on land in temperate and boreal regions(Bousquet et al.2000). Tipper(1998)estimated thatdeforestation contributes about 1.8 Gt of carbon per year to the atmosphere.1.1–1.8 Gt C per year can be sequestered in 50 years in tropical forests (Makundi et al.1998).By estimating the role of forest vegetation in the storage and sequestration of carbon in the different forest ecosystem of the world,especially in the tropics,the data generated may be used to compute carbon cycling at the regional as well as the global level.

    The forest under consideration is dominated by Dipterocarpus tuberculatus;other tree species are found but are not common,including Tectona grandis,Shorea robusta, and D.turbinatus etc.Limited information is available on the carbon budget and carbon sequestration of Dipterocarpus forests from India and,in particular Manipur, Northeast India(Supriya and Yadava 2006).The presentstudy was undertaken to evaluate carbon budgetand rate of sequestration of the Dipterocarpus forests of Manipur, North East India.We hypothesized that forests dominated by D.tuberculatus have higher biomass than the other codominant species due to the larger leaf area per tree basis. The species is fast growing and used as charcoal and timber;it also has high regeneration capacity through rootstock in spite of anthropogenic disturbance.

    Materials and methods

    The study site is located between 23°49′N and 24°28′N latitude and 93°45′E to 94°14′E longitude,at 300–360 m above the a.s.l.near Moreh town in the Chandel district, which is 108 km from Imphal,the capital of Manipur.The present forest is dominated by D.tuberculatus and occupies an area of 750 sq.km.It is located in Manipur,along the Indo-Myanmar border and extends up to South Asian countries of Myanmar,Thailand,Indonesia,Malaysia,and Philippines.

    The climate of the area is dominated by monsoons,with warm moist summers and cool dry winters.The mean maximum temperature varies from 24.15°C(January)to 35.9°C(May)and the mean minimum temperature ranges from 4.5°C(December)to 21.1°C(August).The mean monthly rainfall ranges from 4.79 mm(January)to 195.88 mm(July).The mean annual rainfall is 1244.99 mm.The average relative humidity varies between 61.5%(February)to 82.8%(July).The length of dry period is 6 months.Soils are sandy in texture and acidic in nature.Soil moisture varies from 13.93±1.32 to 14.15±1.11%and soil organic carbon ranges from 3.44 to 4.41%.Total N and P ranges between 0.50–0.60 and 0.21–0.24%,respectively in the soils(Table 1).

    Two forest stands of 0.1 ha each were chosen randomly for the presentstudy:Foreststand Iis on a flathilltop whilestand II is on a southern hill slope facing the Myanmar border.The forestis dominated by D.tuberculatus(locally known as Khangra)and represents young secondary forest, maintained by burning and sparse felling of trees by local inhabitants.In India,Dipterocarpus forests are recorded from the Western Ghats and north eastern states of India (Champion and Seth 1968).

    Table 1 Physico-chemicalcharacteristics of soil in foreststand I and II(mean±SE)

    To measure tree density,20 quadrats of 10 m×10 m were laid out randomly,based on line transects in each forest.The harvesting was done between October and November in both 2008 and 2009.Three individuals of each tree species were harvested from the quadrats for each girth class for all the species present in the forest stands. After harvesting,various parameters like diameter of the bole,at the base,the middle or center of the bole,total height of the tree,and total numbers of the leaves were recorded.The fresh weight of all boles,branches,leaves and fruits were determined at the site.

    The sub-samples(three replicates)of different components were broughtto the laboratory in polythene bags.All the sub-samples were oven dried at 80°C to constant weight.Leaves of varying size(15 leaves)were also taken from each tree of different constituent tree species for determining leaf area.The biomass estimates for the standing crop of different tree species were computed using wood density values of different girth classes(Newbould 1967). The tree biomass was computed by multiplying tree density with biomass at each girth class of the species on hectare basis(Table 2).

    The stand biomass was calculated by summing the biomass value across the girth class of all the species. Herbs and shrubs were harvested and weighed.Average biomass for herb and shrub species was multiplied by its respective density(individual ha-1)in the stand.Litter was collected from permanently laid quadrats of 1 m×1 m (10 each)randomly from both the stands and samples were oven dried at80°C to constant weight.Estimated biomass was used to estimate carbon stock(Brown 1997).

    Aboveground net primary production was estimated by summing up the annual increment in the biomass and the corresponding litter fall deposited on the forest floor.Annual biomass increment was calculated by subtracting biomass in(year 1)from that of(year 2).The net productivity data is used to estimate the rate of sequestration by using a conversion factor of 50%.

    Results

    Tree layer biomass

    Biomass increased consistently with the increase in the girth classes of all the three species.The biomass value ofD.tuberculatus in different girth classes ranged from 1233.05 to 3993.56 kg ha-1in stand I and 136.018–9581.085 kg ha-1in stand II.In Ardisia paniculata,it was 255.48–483.49 kg ha-1in stand I and 163.09–2388.51 kg ha-1in stand II in different girth classes.Wendlandia wallichii exhibited a biomass of 769.27 kg ha-1in the girth class of 10.1–20 cm.The total biomass for the tree species were recorded in the following order:bole>branch>leaf,except for D.tuberculatus (bole>leaf>branch).The total aboveground biomass of trees in site I was recorded to be 15.601 t ha-1and out of the total biomass,bole contributed 90.27%,branch 4.91%,and leaf 4.80%.In stand II,it was recorded to be 15.844 t ha-1,out of the total aboveground,bole contributed 60.68%,branch 13.25%,and leaf 26.50%.

    Table 2 Total biomass of plant components in different diameter classes by tree species in forest site I(kg ha-1)(dry weight)

    DBH/biomass allometric equation

    In the two foreststands,the allometric relationship between increase in DBH and increase in biomass of different components was found to be highly significant.The value of r2was highly significant except in leaf of D.tuberculatus and A.paniculata and bole of W.wallichii in stand I. However,in stand II,only leaf of A.paniculata was found to be non significant.Thus it shows that with the increase in DBH,the biomass of the tree is also increased i.e.,DBH of the tree species and biomass of the tree components are positive correlation(Table 3).

    Shrub and herb layer biomass

    The shrub layer biomass in stand I was recorded to be of 6.35 t ha-1contributed by seven shrub species and in stand II,it was 1.432 t ha-1contributed by three shrub species (Table 4).Of these,Elaeocarpus chinensis and Actiphella exelsa exhibited the maximum biomass in stand Iand stand II,respectively.Albizia saman and Gynocardia odorata exhibited the minimum biomass in stand I and II,respectively.In herbaceous layer in stand I,nine herb species contributed a totalbiomass of 0.552 t ha-1,whereas a total biomass of 0.999 t ha-1was contributed in stand II. Among the herbs,Arundinella setosa and Kyllinga triceps contributed the maximum biomass in stand I and Imperata cylindrica in stand II.

    Non-photosynthetic/photosynthetic ratio

    The non-photosynthetic/photosynthetic ratio ranged from 2.098 to 7.852 for D.tuberculatus and 6.01 to 15.78 for A. peniculata for different girth classes;D.tuberculatus clearly exhibits the higher growth rate in comparison to other species.

    Wet/dry ratio of biomass of different tree species in forest stand I and II

    The wet/dry ratio of biomass of the tree species—D.tuberculatus,A.paniculata and W.wallichii—were recordedto be 2.35,2.42,and 2.40,respectively in foreststand Iand 2.17 for D.tuberculatus and 2.19 for A.paniculata in forest stand II(Table 5).

    Table 3 Allometric relationship between DBH(X, cm)and biomass of tree components(Y,kg·tree-1)in foreststand I

    Total forest aboveground biomass

    In the forest stand I,out of the total aboveground biomass, trees contributed 68.51%,shrubs 28.96%,and herbs 2.5%.In the forest stand II,trees contributed 86.69%, shrubs contributed 7.83%,and herbs contributed 5.46% of the total biomass(Table 6).

    Litter biomass

    Annual litterfall varied from 5.33 to 6.20 t ha-1a-1in the two stands:D.tuberculatus shared 89.80%,A.paniculata 8.56%,and W.wallichii1.63%in stand I;D.tuberculatus contributed 96.74%and A.paniculata 3.25%in stand II (Table 7).Peak litter fall occurred in February coinciding with the cool and dry period of the year.

    Net primary production

    The total aboveground production was recorded to be 9282.73,848.80,and 294.44 kg ha-1year-1for D.tuberculatus,A.paniculata and W.wallichii respectively in stand I.The net primary production in different components of tree species and total aboveground net production of differentspecies in foreststands Iand IIhave been estimated and setin Table 5.In foreststand II,the net primary production in different components and total aboveground net production of D.tuberculatus and A. paniculata was recorded to be 5756.94 and 684.41 kg-1ha-1a-1respectively.Out of the total aboveground net primary production,the bole contributes 31.86%,branch 29.67%,and leaf 38.69%of the total net production in stand I.In stand II,the bole exhibited 32.64%,branch 31.72%,and leaf 35.63%outof the totalaboveground net production(Table 8).The distribution of total annual net primary productivity(TANPP)of different components is recorded in a sequence of leaf>branch>bole on both sites.

    Carbon budget

    The carbon content of the present study ranges from 0.127 to 3.500 t ha-1for stand I and 0.081 to 4.790 t ha-1for stand II,following the same proportional pattern as the total biomass of all the tree species on both the forest stands(Table 9).Like biomass,carbon density increases with increasing girth size for all of the tree species for both stands,except for D.tuberculatus in stand I,in which highest carbon content was recorded in the 30–40 cm girth class due to the presence of high density value.

    Table 4 Density and biomass contributed by shrubs and herbs species in forest stand I and II

    Table 5 Wet/dry ratio of biomass of different tree species in forest stand Iand II

    Rate of sequestration

    The rate of carbon sequestration varied from 147.22 to 4641.36 kg ha-1year-1in forest stand I,whereas in forest stand II,it varied from 677.18 to 3753.34 kg ha-1year-1(Table 9).The maximum rate of sequestration was recorded in D.tuberculatus,followed by A.paniculata,W. wallichii in forest stands I and II.

    Table 6 Biomass contribution by trees,shrubs and herbs in forest site I and II

    Discussion

    The density of herbs and shrubs was less in forest stand II as compared to stand I;the reason may be that a higher density of tree species was recorded in forest stand II.The number of saplings are higher than the number of big trees in foreststand I because itis situated ata plain topography,people used to cut the bigger trees for charcoal,fuel wood, and timber.The higher biomass contribution by D.tuberculatus in both forest stands may be due to the availability of higher girth classes and higher density in comparison to the other two species,A.paniculata and W.wallichii.In forest stand II,W.wallichii was present only on seedling stage.The present forest is very young,that is,secondary forestand biomass of differentplantcomponents as wellas total biomass increased with the increase in girth class.

    Dipterocarpus tuberculatus contributed a higher percentage of total biomass in different girth classes in both foreststands,this may be due to the large leaf area per tree basis,high regeneration capacity from rootstock,and fastgrowing species.D.tuberculatus is a broad-leaf tree species exhibiting maximum leaf area and biomass even though it has fewer leaves in comparison to A.paniculata and W.wallichii.Though the higher value of tree biomass was recorded in forest stand II,the total biomass (tree+shrub+herb)was higher in stand I,which may be due to the presence of higher contribution from shrubs species in stand I than that of stand II.

    The standing crop biomass of the present forest stands was lower than the value for dry deciduous forest and salforest reported by Singh et al.(1992),Singh and Yadava 1994 for mixed oak forest in Manipur,India,Kawahara et al.(1981)for lowland Dipterocarp forest,in the Philippines.However the value is higher than the value reported by Lim and Md.Basri(1985)for the secondary forest in Sibu,which was dominated by macaranga,mallotus,ficus, and vitex.The forest is at early stage of succession.The presentvalue in kg tree-1for both forestsites lie within the value reported by Misra et al.(1967).The value reported for aboveground biomass of several other species ranged 34.2–599.6 kg tree-1for sub-tropical broad leaf trees at Yona,Japan(Kawavabe 1977).

    Table 7 Annuallitterfall and%contribution in forest stand Iand II

    The values of total annual litter biomass in the present forest lies well within the value reported by Golley et al. (1962)for tropical forests and dry deciduous forests reported by Singh et al.(1992).The present value of net primary productivity lies near the value reported by Singh et al.(1992)for dry deciduous and sal forests in India and lower than the value reported for mixed oak forest(Manipur,India)by Singh and Yadava(1994)and Whittaker and Wood(1969).Artand Marks(1971)reported 8.59 and 7.12 t ha-1a-1in two differenttemperate deciduous forest stand of Brookhaven in New York.The low value of net primary production in the present study site may be due to young forest trees and the fact that the forest is at successional stage owing to biotic disturbance.

    The carbon stock in the present dipterocarp forest is lower than the value of dipterocarp forest of Philippines (Lasco and Pulhin 2003;Lasco etal.2006),the dipterocarp forest of Mindanao(Kawahara et al.1981),Seima protection forest,Cambodia(Khun et al.2012)and for Indian forest i.e.,Dipterocarpus forest,S.robusta and Boswellia serrata(Manhas et al.2006),and the secondary tropicalforest of Singapore(Ngo et al.2013).The value of the present study is lower because the forest is a secondary forestand though dominated by fast-growing species of D. tuberculatus,it is subject to logging and shifting cultivation.However,the present value lies near the value reported by Racelis(2000),for the Dipterocarp forest of Makiling,Philippines.

    Table 8 Net production in tree species and net production in different plant components of tree layer on forest stand I and II(percentage contribution of different species kg ha-1a-1)

    The rate of carbon sequestration is highly variable and depends on the species composition,age of the forest tree and climatic factors.Data are still limited on carbon sequestration compared to carbon stocks.The rate of sequestration in the present forest is higher than the value reported by Lasco and Pulhin(2003)for natural forests in the Philippines and Racelis(2000)for the Dipterocarp forest of Makiling,Philippines.However,it is lower than the data reported by Lasco and Pulhin(2003)for fastgrowing tree plantations in the Philippines and by Miah et al.(2011)for forests in Bangladesh.

    The current study shows that Dipterocarpus forests have considerable potential to store carbon,due to the relatively young age of the forests and high rate of productivity.Reforestation will be required to sequester more carbon.Ongoing anthropogenic activities—such as shifting cultivation,extraction of fuel wood,and charcoal production—that lead to increases in CO2in the atmosphere can also be sequestered by increasing the rate of reforestation.

    AcknowledgmentsThe first author was grateful to Department of Science and Technology,Government of India,New Delhi for providing me financial assistance as Woman Scientist.

    Arts WH,Marks PI(1971)A summary table of biomass and net annualprimary production in forest biomass studies.In:Young HE(ed)Life sciences and agricultural experiment station,Univ. Maine,Orono,pp 3–32

    Bousquet P,Peylin P,Ciais P,Quere CL,Friedlingstein P,Tans PP (2000)Regional changes in carbon dioxide fluxes of land and oceans since 1980.Science 290:1342–1346

    Brown S(1997)Estimating biomass and biomass change of tropical forests.FAO Forestry Paper 134.A forestresources assessment publication,Rome,p 1

    Brown S,Lugo AE(1984)Biomass of tropicalforest:a new estimates based on forest volumes.Science 223:1290–1293

    Brown S,Masera Sathaye OJ(2000)Project based activities.In: Watson R,Noble I,Verardo D(eds)Land use,land use Change and forestry,vol 5.Cambridge University Press,Cambridge, pp 283–338

    Brown S,Sathaye J,Cannel M,Kauppi P(1996)Management of forest mitigation of green house gas emissions,Chapter 24.In: Watson RT,Zinyowera MC,Moss RH(eds)Climate change 1995:impacts,adaptations and mitigation of climate change: scientific-technicalanalyses.Contribution ofworking group IIto the second assessmentreportofthe IPCC.Cambridge University Press,Cambridge,pp 775–797

    Burkhart HE,Strud MR(1973)Dry weight yield estimation for loblolly pine:a comparison of two techniques.In:IUFRO biomass studies,Univ.Maine,Crona,Maine,pp 27–40

    Champion HG,Seth SK(1968)The foresttype of India.The manager publications,Delhipp 35

    Debajit R,Nepolion B,Ashesh KD(2014)Assessment of aboveground and soil organic carbon stocks in Dipterocarpus forests of Barak Valley,Assam,Northeast India.Int J Ecol Environ Sci 40(1):15–28

    Devi SL,Yadava PS(2006)Floristic diversity assessment and vegetation analysis of tropical semievergreen forest of Manipur NE India.Trop Ecol 47(1):89–98

    Golley FB,Odum HT,Wilson RF(1962)The structure and metabolism of a Puerto Recan red mangrove forest in May. Ecology 43:9–19

    Kawahara KT,Kanazama Y,Sakurai S(1981)Biomass and net production ofthe man made forests in Philippines.J Jpn For Soc 63(9):320–327

    Kawanabe S(1977)A sub-tropical broad leaf forest of Yona, Okinawa.In:Shidie T,Kira T(eds)Primary productivity of terrestrial communities.Tokyo Univ.,Tokyo,pp 268–279

    Khun V,Lee DK,Hyun OJ,Park YD,Combalicer MS(2012)Carbon storage of Dipterocarpus tuberculatus,Terminalia tomentosa and Pentacme siamensis in Seima protection forest,Cambodia. J Environ Sci Manag Spec Issue 1:68–76

    Lasco RD,Pulhin FB(2003)Philippine forestecosystem and climate changes:carbon stock,rate of sequestration and Kyoto protocol. Annu Trop Res 25(2):37–51

    Lasco RD,MacDicken KG,Pulhin FB,Guillermo IQ,Sales RF,Cruz RVO(2006)Carbon stock assessment of selectively logged Dipterocarpus forest and wood processing mills in the Philippines.J Trop For Sci 18(4):212

    Lim MT,Mohd BH(1985)Biomass accumulation in naturally regenerating lowland secondary forest and an Acacia mangium stand in Sarawak.Pertanika 8(2):237–242

    Makundi W,Razali W,Jones DJ,Pinso C(1998)Tropical forests in the Kyoto protocol.Trop For Update 8(4):5–8

    Manhas RK,Negi JDS,Rajesh K,Chauhan PS(2006)Temporal assessmentofgrowing stock,biomass and carbon stock of Indian forests.Clim Chang 74(1–3):191–221

    Miah M,Danesh M,Shin MY,Koike M(2011)Carbon sequestration in forestof Bangladesh.In:Miah M,Danesh M etal(eds)Forestto climate change mitigation.Springer,Berlin/Heidelberg,pp 51–79

    Misra R,Singh JS,Singh KP(1967)Preliminary observation on the production of dry matter by sal(Shorea robusta Gaertn F.).Trop Ecol 8:94–104

    Newbould PJ(1967)Methods of estimating the primary production of forests.Black Well Scientific Publications,Oxford and Edinburgh

    Ngo KM,Turner BL,Muller-Landau HC,Davies SJ,Larjavaara M, Hassan NFBN,Lum S(2013)Carbon stocks in primary and secondary tropical forests in Singapore.For Ecol Manag 296:81–89

    Racelis EL(2000)Carbon stock assessmentof Large leaf Mahogany and Dipterocarp plantations in the Mt Makiling forest reserve. Master’s Thesis,University of Philippines,Los Banos.College, Laguna,Philippines

    Singh EJ,Yadava PS(1994)Structure and function of Oak forest ecosystem of north eastern India:I biomass dynamics and net primary production.Oecol Mont 3:1–9

    Singh L,Singh KP,Singh JS(1992)Biomass productivity and nutrientcycling in four contrasting forestecosystem of India.In: Singh KP,Singh JS(eds)Tropical ecosystem,ecology and management.Wiley Eastern Limited,New York,pp 415–430

    TBFRA(2000)Forest resources of Europe,CIS,North America, Australia,Japan and New Zealand(industrialized temperate/boreal countries).In:UN-ECE/FAO contributions to global forest resources assessment,New York,pp 155–171

    Thokchom A,Yadava PS(2013)Biomass and carbon stock assessmentin the sub-tropicalforests of Manipur,North East India.Int J Ecol Environ Sci 39(2):107–113

    Tipper R(1998)Update on carbon offsets.Trop For Update 8(1):2–4

    Whittaker RH,Woodwell GM(1969)Structure,production and diversity of Oak-Pine forest at Brook Haven,New York.J Ecol 57:155–174

    20 August 2013/Accepted:16 February 2014/Published online:30 April 2015

    ?Northeast Forestry University and Springer-Verlag Berlin Heidelberg 2015

    The online version is available at http://www.springerlink.com.

    Corresponding editor:Hu Yanbo.

    ?L.Supriya Devi supriya_lus@yahoo.com

    1Department of Life Sciences,Manipur University, Imphal 795003,India

    av在线老鸭窝| 亚洲一区二区三区欧美精品| 久久久久久久久大av| 人人澡人人妻人| 狂野欧美激情性bbbbbb| 久久国产精品男人的天堂亚洲 | 久久精品熟女亚洲av麻豆精品| 亚洲在久久综合| 成人毛片a级毛片在线播放| 亚洲美女视频黄频| 免费观看a级毛片全部| 亚洲av男天堂| 欧美另类一区| 在线观看国产h片| 久久午夜福利片| 婷婷色综合www| 卡戴珊不雅视频在线播放| av国产精品久久久久影院| 亚洲欧美日韩卡通动漫| 18禁在线无遮挡免费观看视频| 午夜91福利影院| 午夜免费鲁丝| 久久国产亚洲av麻豆专区| 一区二区三区免费毛片| 国产老妇伦熟女老妇高清| 国产精品一区www在线观看| 国产黄色视频一区二区在线观看| 人妻系列 视频| 美女视频免费永久观看网站| 亚洲av成人精品一区久久| 免费人成在线观看视频色| 免费大片黄手机在线观看| 久久久久久久久久人人人人人人| 永久免费av网站大全| 亚洲精品日韩av片在线观看| 精品久久久久久久久亚洲| 日本色播在线视频| 国产亚洲5aaaaa淫片| 日产精品乱码卡一卡2卡三| 国产黄频视频在线观看| 99热国产这里只有精品6| 我的女老师完整版在线观看| 一边亲一边摸免费视频| 噜噜噜噜噜久久久久久91| 嫩草影院新地址| 国产成人免费无遮挡视频| 热99国产精品久久久久久7| 特大巨黑吊av在线直播| 人人妻人人澡人人爽人人夜夜| 99热国产这里只有精品6| 91在线精品国自产拍蜜月| 99热这里只有是精品在线观看| 97超碰精品成人国产| 午夜日本视频在线| 久久97久久精品| 国产一级毛片在线| h日本视频在线播放| 视频区图区小说| 亚洲高清免费不卡视频| 老熟女久久久| 人妻夜夜爽99麻豆av| 亚洲av福利一区| 亚洲av免费高清在线观看| 欧美精品高潮呻吟av久久| 国产有黄有色有爽视频| 一边亲一边摸免费视频| 韩国高清视频一区二区三区| 国产在线视频一区二区| 日日撸夜夜添| 人妻人人澡人人爽人人| 一级爰片在线观看| 亚洲激情五月婷婷啪啪| 91在线精品国自产拍蜜月| 特大巨黑吊av在线直播| 性高湖久久久久久久久免费观看| 日韩大片免费观看网站| 午夜福利影视在线免费观看| 日韩一区二区视频免费看| 欧美精品人与动牲交sv欧美| 久久人人爽av亚洲精品天堂| 亚洲av在线观看美女高潮| 夫妻性生交免费视频一级片| 国产成人精品婷婷| 51国产日韩欧美| 欧美高清成人免费视频www| av在线观看视频网站免费| 丰满迷人的少妇在线观看| 另类精品久久| 少妇高潮的动态图| 一本色道久久久久久精品综合| 国产精品久久久久成人av| 国产日韩欧美在线精品| a级毛片在线看网站| 97在线视频观看| 久久精品国产亚洲网站| 国产精品一区二区三区四区免费观看| 成人国产麻豆网| 精品卡一卡二卡四卡免费| 精品亚洲成国产av| 寂寞人妻少妇视频99o| 日韩av免费高清视频| a 毛片基地| 人人妻人人看人人澡| 老司机影院毛片| 亚洲欧美精品专区久久| 一区二区三区四区激情视频| 精品亚洲成国产av| 国产免费一级a男人的天堂| 久久人人爽人人爽人人片va| 大片电影免费在线观看免费| 最近2019中文字幕mv第一页| 观看免费一级毛片| 久久毛片免费看一区二区三区| 欧美激情国产日韩精品一区| 最近中文字幕2019免费版| 婷婷色麻豆天堂久久| 日本vs欧美在线观看视频 | 高清在线视频一区二区三区| 成年女人在线观看亚洲视频| 人人妻人人澡人人爽人人夜夜| 色网站视频免费| 男的添女的下面高潮视频| 日韩伦理黄色片| 日韩中文字幕视频在线看片| 最近中文字幕高清免费大全6| 久久久久网色| 久久 成人 亚洲| 97精品久久久久久久久久精品| 丝瓜视频免费看黄片| 少妇的逼水好多| 亚洲成人av在线免费| 在线观看av片永久免费下载| 久久人人爽人人爽人人片va| 国产精品熟女久久久久浪| 久久久久久久久久久丰满| 亚洲电影在线观看av| 一边亲一边摸免费视频| 丝袜在线中文字幕| 国产精品一区二区性色av| 久久ye,这里只有精品| 美女视频免费永久观看网站| 久久国产精品大桥未久av | 中文资源天堂在线| 国产成人91sexporn| 男人爽女人下面视频在线观看| 少妇的逼水好多| av免费观看日本| videossex国产| 久久国产精品男人的天堂亚洲 | 九九在线视频观看精品| 日韩中文字幕视频在线看片| 亚洲av综合色区一区| 色94色欧美一区二区| 97超视频在线观看视频| 天堂俺去俺来也www色官网| 女性生殖器流出的白浆| 丰满乱子伦码专区| 涩涩av久久男人的天堂| 日本与韩国留学比较| 卡戴珊不雅视频在线播放| 国产成人精品一,二区| 一级,二级,三级黄色视频| 久久精品久久精品一区二区三区| 婷婷色av中文字幕| 高清毛片免费看| 免费观看无遮挡的男女| 老司机亚洲免费影院| 丝袜在线中文字幕| 午夜视频国产福利| 亚洲成色77777| 亚洲精品久久久久久婷婷小说| 日本vs欧美在线观看视频 | 99热6这里只有精品| 极品少妇高潮喷水抽搐| 在线观看免费视频网站a站| av福利片在线观看| 91aial.com中文字幕在线观看| 我的女老师完整版在线观看| 欧美日韩视频高清一区二区三区二| 欧美 亚洲 国产 日韩一| 中文字幕亚洲精品专区| 中文资源天堂在线| 亚洲av国产av综合av卡| 精品久久久久久久久av| 99九九在线精品视频 | 成人国产麻豆网| 麻豆成人午夜福利视频| 黑丝袜美女国产一区| 一级毛片电影观看| 乱码一卡2卡4卡精品| 日韩一本色道免费dvd| 一二三四中文在线观看免费高清| 国产午夜精品一二区理论片| 女人精品久久久久毛片| 国产精品久久久久久精品电影小说| 免费人成在线观看视频色| 女性生殖器流出的白浆| 亚洲电影在线观看av| 精品久久久久久电影网| 国产精品女同一区二区软件| 99久久精品国产国产毛片| a级毛色黄片| 成人综合一区亚洲| 亚洲电影在线观看av| 少妇人妻 视频| av国产精品久久久久影院| 水蜜桃什么品种好| 亚洲三级黄色毛片| 国产熟女欧美一区二区| 久久精品国产自在天天线| 亚洲精品久久午夜乱码| 性色av一级| 久久久精品免费免费高清| 久久久久久久久久人人人人人人| 亚洲av男天堂| 欧美日韩国产mv在线观看视频| 少妇精品久久久久久久| 国产一区二区在线观看日韩| 午夜激情福利司机影院| 免费观看在线日韩| 91久久精品国产一区二区成人| 成人综合一区亚洲| 久久久久久伊人网av| 99热全是精品| 纵有疾风起免费观看全集完整版| 男男h啪啪无遮挡| 精品一品国产午夜福利视频| 桃花免费在线播放| 99热这里只有精品一区| 黄片无遮挡物在线观看| 狂野欧美激情性bbbbbb| 三级国产精品欧美在线观看| 午夜91福利影院| 国产毛片在线视频| 国产精品三级大全| 国产一区有黄有色的免费视频| av播播在线观看一区| 2021少妇久久久久久久久久久| 十八禁网站网址无遮挡 | 国产伦理片在线播放av一区| 九色成人免费人妻av| 午夜精品国产一区二区电影| 国产亚洲5aaaaa淫片| 免费观看的影片在线观看| 麻豆成人av视频| 777米奇影视久久| 亚洲av不卡在线观看| a级毛片在线看网站| av国产久精品久网站免费入址| 尾随美女入室| 丰满乱子伦码专区| 精品视频人人做人人爽| 亚州av有码| 久久久久久久国产电影| 国产亚洲5aaaaa淫片| 2021少妇久久久久久久久久久| 日韩,欧美,国产一区二区三区| 2018国产大陆天天弄谢| 久久久久久久亚洲中文字幕| 国产精品秋霞免费鲁丝片| 青春草国产在线视频| 一级毛片黄色毛片免费观看视频| 91在线精品国自产拍蜜月| 国产av一区二区精品久久| 亚洲av男天堂| 老熟女久久久| 日韩精品有码人妻一区| 欧美成人精品欧美一级黄| 国产永久视频网站| 免费观看的影片在线观看| 九草在线视频观看| 日韩成人av中文字幕在线观看| 秋霞伦理黄片| 国产亚洲91精品色在线| 涩涩av久久男人的天堂| 国产一区二区在线观看av| 欧美丝袜亚洲另类| 久久久午夜欧美精品| 国产精品熟女久久久久浪| 女性生殖器流出的白浆| 国精品久久久久久国模美| 日韩在线高清观看一区二区三区| 国国产精品蜜臀av免费| 精品一区二区三卡| 亚洲国产欧美在线一区| 在线观看人妻少妇| 亚洲av男天堂| 又爽又黄a免费视频| 亚洲天堂av无毛| 精品人妻熟女av久视频| 两个人的视频大全免费| 婷婷色综合www| 精品酒店卫生间| 在线观看国产h片| 男女无遮挡免费网站观看| 亚洲伊人久久精品综合| 国产爽快片一区二区三区| 中文欧美无线码| 丝袜脚勾引网站| 精品熟女少妇av免费看| 国语对白做爰xxxⅹ性视频网站| 亚洲性久久影院| 国产亚洲午夜精品一区二区久久| 国产淫语在线视频| 777米奇影视久久| 精品人妻一区二区三区麻豆| 国产精品秋霞免费鲁丝片| 国产一级毛片在线| 一区在线观看完整版| 免费在线观看成人毛片| 亚洲精品乱码久久久久久按摩| 亚洲精品日本国产第一区| 插逼视频在线观看| 午夜91福利影院| 亚洲中文av在线| 亚洲情色 制服丝袜| 国产欧美日韩精品一区二区| 亚洲精品乱久久久久久| 国产精品麻豆人妻色哟哟久久| 日韩精品有码人妻一区| 香蕉精品网在线| 免费高清在线观看视频在线观看| 国产乱来视频区| 久久免费观看电影| 少妇 在线观看| 天天操日日干夜夜撸| 亚洲综合精品二区| 一级毛片黄色毛片免费观看视频| 亚洲欧美清纯卡通| 国产熟女欧美一区二区| 美女cb高潮喷水在线观看| 免费av不卡在线播放| 久久6这里有精品| 十八禁网站网址无遮挡 | 人体艺术视频欧美日本| 人妻人人澡人人爽人人| 免费观看av网站的网址| 一本大道久久a久久精品| 波野结衣二区三区在线| av国产久精品久网站免费入址| 亚洲中文av在线| 国产高清有码在线观看视频| 国产在线免费精品| 美女福利国产在线| .国产精品久久| av卡一久久| 女性生殖器流出的白浆| 好男人视频免费观看在线| 国产探花极品一区二区| 嫩草影院新地址| 亚洲在久久综合| 久久人人爽av亚洲精品天堂| 99re6热这里在线精品视频| 18禁在线播放成人免费| 国产成人一区二区在线| 日本av手机在线免费观看| 亚洲国产精品999| 中国国产av一级| av视频免费观看在线观看| 夫妻午夜视频| 91精品一卡2卡3卡4卡| 国产高清国产精品国产三级| 麻豆成人av视频| 久久综合国产亚洲精品| 久久鲁丝午夜福利片| 国产高清有码在线观看视频| 三级经典国产精品| 欧美日韩国产mv在线观看视频| 老司机影院毛片| 国模一区二区三区四区视频| 美女脱内裤让男人舔精品视频| av国产久精品久网站免费入址| av福利片在线观看| 高清欧美精品videossex| 亚洲电影在线观看av| 亚洲精品国产av成人精品| 高清午夜精品一区二区三区| 欧美 亚洲 国产 日韩一| 成年美女黄网站色视频大全免费 | 国产一区有黄有色的免费视频| 各种免费的搞黄视频| 丝袜喷水一区| 国产亚洲欧美精品永久| 成人午夜精彩视频在线观看| 99九九线精品视频在线观看视频| 不卡视频在线观看欧美| 久久国产亚洲av麻豆专区| 国产白丝娇喘喷水9色精品| 美女福利国产在线| 高清午夜精品一区二区三区| 国产老妇伦熟女老妇高清| 国产女主播在线喷水免费视频网站| 国产淫片久久久久久久久| av网站免费在线观看视频| 最近2019中文字幕mv第一页| 国产精品成人在线| 如何舔出高潮| 色婷婷av一区二区三区视频| 又黄又爽又刺激的免费视频.| 十分钟在线观看高清视频www | 国产一区二区在线观看日韩| 老熟女久久久| 亚洲自偷自拍三级| 欧美变态另类bdsm刘玥| 一级毛片久久久久久久久女| 国产欧美亚洲国产| 好男人视频免费观看在线| 国产有黄有色有爽视频| 老司机亚洲免费影院| 91久久精品电影网| 秋霞在线观看毛片| 一区在线观看完整版| 中文字幕免费在线视频6| 日韩制服骚丝袜av| 精品久久久噜噜| 国产亚洲午夜精品一区二区久久| 色5月婷婷丁香| 久久久久久久精品精品| 久久女婷五月综合色啪小说| 一本一本综合久久| 日韩av不卡免费在线播放| 国产中年淑女户外野战色| 欧美精品一区二区免费开放| 九九爱精品视频在线观看| 久久久久久久久大av| 免费少妇av软件| 国产亚洲午夜精品一区二区久久| 国产伦在线观看视频一区| av国产精品久久久久影院| 黄色一级大片看看| 久久久欧美国产精品| av天堂久久9| 伊人久久精品亚洲午夜| 午夜老司机福利剧场| 成年美女黄网站色视频大全免费 | 久热这里只有精品99| 亚洲精品国产成人久久av| 午夜福利,免费看| 国精品久久久久久国模美| 国产男女超爽视频在线观看| 在现免费观看毛片| 这个男人来自地球电影免费观看 | 岛国毛片在线播放| 日韩免费高清中文字幕av| 国产女主播在线喷水免费视频网站| 亚洲精品第二区| 欧美日韩视频精品一区| 又爽又黄a免费视频| 啦啦啦在线观看免费高清www| 欧美变态另类bdsm刘玥| 亚洲精品久久午夜乱码| 成人亚洲欧美一区二区av| 国产亚洲精品久久久com| 在线观看av片永久免费下载| tube8黄色片| 菩萨蛮人人尽说江南好唐韦庄| 又黄又爽又刺激的免费视频.| 男女边吃奶边做爰视频| 精品少妇黑人巨大在线播放| 18禁在线无遮挡免费观看视频| 欧美xxⅹ黑人| 国产精品一二三区在线看| 看非洲黑人一级黄片| 精品亚洲成a人片在线观看| 中文精品一卡2卡3卡4更新| 国产av一区二区精品久久| 校园人妻丝袜中文字幕| 国产高清不卡午夜福利| a 毛片基地| 日本av免费视频播放| 丝瓜视频免费看黄片| 中文精品一卡2卡3卡4更新| 亚洲精品一二三| 国产高清有码在线观看视频| 欧美三级亚洲精品| 国产精品国产三级国产专区5o| 国产欧美日韩综合在线一区二区 | 国内揄拍国产精品人妻在线| 久久国产精品男人的天堂亚洲 | 午夜激情久久久久久久| 高清视频免费观看一区二区| 午夜老司机福利剧场| 在线观看av片永久免费下载| 女的被弄到高潮叫床怎么办| 最近最新中文字幕免费大全7| 国产伦精品一区二区三区四那| 校园人妻丝袜中文字幕| av.在线天堂| 久久精品国产亚洲网站| 日韩精品有码人妻一区| 青春草视频在线免费观看| 国产一区亚洲一区在线观看| 成人综合一区亚洲| 少妇的逼好多水| 十八禁高潮呻吟视频 | 亚洲四区av| 亚洲av欧美aⅴ国产| 在线免费观看不下载黄p国产| 国产精品福利在线免费观看| 婷婷色av中文字幕| 婷婷色综合大香蕉| 免费看av在线观看网站| 3wmmmm亚洲av在线观看| 亚洲精品456在线播放app| 少妇丰满av| 亚洲国产精品国产精品| 97超视频在线观看视频| 国产淫语在线视频| 久久ye,这里只有精品| 内射极品少妇av片p| 亚洲色图综合在线观看| 国产在线免费精品| 亚洲欧美日韩卡通动漫| 日本黄色日本黄色录像| 久久97久久精品| www.av在线官网国产| 国产黄片视频在线免费观看| 大香蕉久久网| 精品久久久精品久久久| av福利片在线观看| 一区二区三区免费毛片| 插逼视频在线观看| 日本欧美国产在线视频| 成年美女黄网站色视频大全免费 | 乱系列少妇在线播放| 在线观看av片永久免费下载| 最近2019中文字幕mv第一页| 最新的欧美精品一区二区| 亚洲精品成人av观看孕妇| 亚洲精品,欧美精品| 嘟嘟电影网在线观看| 日韩中字成人| 中文字幕制服av| 欧美精品一区二区免费开放| 国产精品久久久久久精品古装| 久久久久久久久久久久大奶| 国产黄色视频一区二区在线观看| 日韩av在线免费看完整版不卡| 国产中年淑女户外野战色| 欧美亚洲 丝袜 人妻 在线| 热re99久久精品国产66热6| 免费观看a级毛片全部| 精品99又大又爽又粗少妇毛片| 久久精品久久久久久噜噜老黄| 成年av动漫网址| 国产成人免费观看mmmm| 又黄又爽又刺激的免费视频.| 中文精品一卡2卡3卡4更新| 99久久精品一区二区三区| 男女国产视频网站| 国产精品不卡视频一区二区| 18禁在线播放成人免费| 久久鲁丝午夜福利片| 18禁在线无遮挡免费观看视频| 国产av码专区亚洲av| 国产精品熟女久久久久浪| 国产永久视频网站| 性色av一级| 日韩伦理黄色片| 涩涩av久久男人的天堂| 大片电影免费在线观看免费| 赤兔流量卡办理| 久久人人爽av亚洲精品天堂| 欧美日本中文国产一区发布| 国产精品久久久久久av不卡| 国产黄色免费在线视频| videos熟女内射| 观看美女的网站| 两个人的视频大全免费| 高清毛片免费看| 久久久久人妻精品一区果冻| 免费观看av网站的网址| 欧美 日韩 精品 国产| 夫妻午夜视频| 精品国产露脸久久av麻豆| 亚洲av综合色区一区| 国产成人精品婷婷| 久久久国产精品麻豆| 人妻系列 视频| 亚洲自偷自拍三级| 五月开心婷婷网| 久久久久国产精品人妻一区二区| 七月丁香在线播放| 国产在线视频一区二区| 日韩 亚洲 欧美在线| 亚洲av.av天堂| 欧美激情国产日韩精品一区| 下体分泌物呈黄色| 色婷婷av一区二区三区视频| 99国产精品免费福利视频| 欧美日韩av久久| 日本vs欧美在线观看视频 | 欧美日韩国产mv在线观看视频| 国产午夜精品久久久久久一区二区三区| 国产色爽女视频免费观看| 久久6这里有精品| 婷婷色麻豆天堂久久| 久久久久久久亚洲中文字幕| 久久 成人 亚洲| 欧美亚洲 丝袜 人妻 在线| 久久国产精品男人的天堂亚洲 | 亚洲情色 制服丝袜| 成人毛片60女人毛片免费| 丝瓜视频免费看黄片| 免费大片18禁| 永久免费av网站大全| 日日啪夜夜爽| av一本久久久久| www.av在线官网国产| 99久久精品国产国产毛片| 亚洲精品视频女| 中文字幕亚洲精品专区| 97超视频在线观看视频| av视频免费观看在线观看| 日韩成人av中文字幕在线观看|