• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    載氣對(duì)炭/炭復(fù)合材料沉積速率、體密度和微觀結(jié)構(gòu)的影響

    2015-06-05 14:36:36侯振華郝名揚(yáng)羅瑞盈商海東許懷哲
    新型炭材料 2015年4期
    關(guān)鍵詞:載氣振華微觀

    侯振華, 郝名揚(yáng), 羅瑞盈, 向 巧, 楊 威, 商海東, 許懷哲

    載氣對(duì)炭/炭復(fù)合材料沉積速率、體密度和微觀結(jié)構(gòu)的影響

    侯振華, 郝名揚(yáng), 羅瑞盈, 向 巧, 楊 威, 商海東, 許懷哲

    (北京航空航天大學(xué)物理科學(xué)與核能工程學(xué)院,北京100191)

    分別采用H2和CO2作為載氣,CH4為前軀體,通過等溫化學(xué)氣相滲積制備炭/炭復(fù)合材料,通過偏光顯微鏡、拉曼光譜、X射線衍射和透射電鏡對(duì)材料微觀結(jié)構(gòu)表征以及滲積過程密度變化,研究載氣對(duì)沉積速率、體密度和微觀結(jié)構(gòu)的影響規(guī)律。結(jié)果表明:在滲積前50 h,CH4-H2體系的沉積速率明顯大于CH4-CO2體系,但在其余滲積時(shí)間里,CH4-H2體系的沉積速率小于CH4-CO2體系。當(dāng)載氣從H2變成CO2時(shí),復(fù)合材料的體密度從1.626 g/cm3增加到1.723 g/cm3,最大徑向密度梯度從0.074 g/cm3減小到0.056 g/cm3。同時(shí),基體炭從純的粗糙體炭轉(zhuǎn)變?yōu)殡s化粗糙體炭含有過度生長錐,且平均石墨化度從62.7%下降到50.8%。這些顯著的變化是由于CO2的氧化作用降低了表面沉積速率,卻沒有降低孔內(nèi)沉積速率,同時(shí)大量的缺陷形成于層狀石墨烯結(jié)構(gòu)中導(dǎo)致形成過度生長錐,降低了熱解炭織構(gòu)。

    炭/炭復(fù)合材料;微觀結(jié)構(gòu);化學(xué)氣相滲積;載氣

    1 Introduction

    It is of prime importance to achieve high bulk densities of carbon/carbon(C/C)composites with rough laminar(RL)pyrolytic carbon(PyC),which is the key point for fabricating C/C braking materials with high mechanical,outstanding thermal and braking properties[1-5].But the high bulk density is frequently limited by blocking of the pore entrances through chemical vapor infiltration(CVI)route.To overcome this problem,the reduction of the infiltration rates on the surface and inhibition an overgrowthof the pore entrances from the outside are recommended[6].Therefore,the new processes,such as temperature and pressure gradients,forced and pulsed flow processes,have been investigated[7,8], but they do not replace the conventional isothermal CVI techniques for mass production of carbon brake disks due to their homogeneous deposition of PyC. Moreover,Zhang[6]have proved that the inside-out infiltration can be obtained by adjusting the processing parameter(e.g.temperature,pressure,residence time and the ratio of C/H).Further,the new carrier gas,H2,has been proposed by Becker et al.[9]because it can inhibit carbon deposition by blocking the free active sites,and they obtained the high bulk density C/C composites in the laboratory[10].Tang et al[11]has employed hydrogen as carrier gas to prepare large size carbon brake disks fabricated by thermal gradient CVI.The average bulk density,the radial density gradient and the texture of PyC with H2as carrier gas were improved compared with N2.

    Although numerous works have been devoted to improve traditional CVIefficiency and reduce the processing time,the high bulk density usually comes off second-best.To gain the high bulk density,especially above 1.70 g/cm3,brake disk often needs to remove the surface crusts in the last stage of infiltration.Unfortunately,this is very inefficient and even futile.In this work,a new carrier,CO2,was proposed because it can obviously reduce the surface deposition and do not obviously inhibit the in-pore infiltration,and the effect of the type of carrier gas(H2and CO2)on the densification rate,bulk density and microstructure of the carbon disks fabricated by isothermal CVI was investigated.

    2 Experimental

    2.1Preparation of C/C composites

    In the present work,a quasi three dimensional needled carbon fiber preform was used as a substrate for CVI.The density of the preform was about 0.55 g/cm3.The size of preforms isΦ450-Φ230× 20 mm.Carbon fiber preforms were firstly heat-treated at 2 300℃for 2 h,and infiltrated by isothermal CVI at 1 080-1 130℃with a total pressure of 1-3 kPa.Methane(CH4)was used as the precursor. H2and CO2were used as carrier gases.The ratio of precursor to carrier gas was about 7∶1.All the infiltration experiments were performed stepwise.The density of preforms was tested after each infiltration run of 50 h.The preforms were machined with 300# corundum abrasive papers after an initial infiltration for 50 h in order to measure the bulk volume.The preforms were notmachined to remove the crustin the rest infiltration time in order to obtain the real surface topography and density gradient.Finally,the carbon disks were graphitized at2 300℃for 2 h.

    2.2Characterization of C/C composites

    Specimens of 20×10×6 mm3were sliced from each sample at different positions along the radialand thickness directions as shown in Fig.1,to evaluate the homogeneity of density.The surface topography of the composites was characterized by scanning electron microscopy(SEM,S-4800).The microstructure of the composites perpendicular to needle punched surface was observed under a polarized light microscope(PLM,Neophot21).Then,the polished surfaces of C/C composites were analyzed by Raman spectroscopyu(LabRAM,HR800),with two laser excitation wavelengths of 514.5 nm and 325 nm. Meanwhile,the powder samples were examined by X-ray diffraction(XRD,D/M-2200)between 15° and 80°(2θ)with monochromatic(40 kV,40 mA) Cu Kαradiation to determined d002-spacing and crystallite size(Lc).Powdered samples of the composites were characterized by transmission electron microscopy(TEM,JEOL2100).

    Fig.1 Configuration of specimens sliced from the carbon disk for density measurements.

    3 Results and discussion

    3.1Effect of carrier gases on densification rate and bulk density

    The effect of carrier gases on the densification rate of the carbon disks is shown in Fig.2.In the initial 50 h,the densification rate obtained from CH4-H2is obviously higher than that from CH4-CO2,while the densification rate from CH4-H2is lower than that from CH4-CO2in the rest of infiltration time,especially in the last 200 h.The average bulk density of the carbon disk obtained from CH4-H2(1.626 g/cm3)is obviously lower than that obtained from CH4-CO2(1.723 g/cm3).In comparison to H2, CO2acting as an oxidizing carrier gas,plays a quitedifferent role in CVI.H2can inhibitboth the homogeneous pyrolysis reactions and the heterogeneous deposition reactions.For the gas-solid heterogeneous reaction,on the one hand,CO2favors the CO2+C(PyC) =2CO reaction leading to a reduction of the carbon deposition rate effectively.For the homogeneous pyrolysis reactions,on the other hand,CO2plays an active role in the methane pyrolysis[12].Only a small fraction of reactive species formed by pyrolysis of CH4in the gas phase can be chemisorbed on out surface of the preform under a low ratio of the surface area to the deposition volume([A/V]).A large fraction of the reactive species is removed by the flowing gases.Because of a much high ratio of [A/V]inside the preform,the reaction species formed should immediately be chemisorbed and pyrolyzed into PyC by several complex gas-solid heterogeneous reactions inside pores.Therefore,the gas-gas homogeneous reaction only plays a minor role,and the adsorption and gas-solid surface reactions play a critical role in CVI.

    Fig.2 Average bulk densities of the carbon disks obtained from CH4-H2and CH4-CO2as a function of infiltration time.

    In the initial stage,the low densification rate from CH4-CO2may resultfrom the oxidizing effect of CO2because the CVI are controlled by chemical reaction.With an increase of the degree of pore filling, diffusion gradually becomes dominant,and the diffusion rate of the reaction species largely determines the densification rate.The diffusion rate of H2is so much high that the inhibition effectof H2willnotobviously decrease.While the oxidizing effect of CO2gradually reduces with increasing depth of pores or decreasing diameter of pores due to the low diffusion rate of CO2and the volume expansion feature of CH4pyrolysis. Thus,the in-pore deposition rate of CH4-CO2will be obviously higher than that of CH4-H2.Moreover,the small amount of CO2even promote pyrolysis of CH4in the pore because of the special pyrolysis feature of CH4,in which the first step is a“third-body enhanced”reaction:CH4+M=CH3+H+M[13].Thus, the high densification rate is obtained from CH4-CO2in the restof infiltration time.

    It should be pointed out that the bulk density difference of the carbon disks is mainly resulted from the unfilled pores,not from the intrinsic density of PyC.Moreover,the CVI parameters are optimized for the desired RL PyC in this work.Therefore,it is reliable to conclude that the different densification levels are caused by different carrier gases.The higher average bulk density of the carbon disks from CH4-CO2than that from CH4-H2may result from the higher ratio of the in-pore to the surface deposition rate and the architecture of the preforms.Obviously,the surface deposition rate from CH4-H2should be higher than that from CH4-CO2because the oxidizing effect of CO2is stronger than the inhibition effect of H2. Moreover,the in-pore deposition rate from CH4-CO2is higher than that from CH4-H2,which is mentioned above.Thus,the homogeneous infiltration from outside to inside is obtained easier from CH4-CO2than from CH4-H2.In this work,the needled carbon fiber felts were used as preforms,which is a typical architecture that the macro-pores in the non-woven long carbon fiber cloth and the micro-pores in the short-cut fiber web are alternately superposed in the thickness direction.The diffusion in the thickness directions mainly depends on the macro-pores formed by the needle punching.The blocking of these macro-pore entrances often means the end of the pore infiltration.

    The surface topography in the center of carbon disks after 250 h infiltration is given in Fig.3.The crusts obtained from CH4-H2have been formed(Fig. 3(a))and the macro-pores are almost sealed off (Fig.3(b)).However,a large proportion of the surfaces obtained from CH4-CO2are not covered by crusts(Fig.3(c)).Moreover,the macro-pores can maintain permeability,and the inside-out infiltration is observed in the macro-pores(Fig.3(d)).These results further indicate that a high bulk density of the carbon disks is expected from CH4-CO2.The crusts both from CH4-H2and CH4-CO2are formed because the precursor concentration on the surface is apparently higher than that in pores in CVI,and the concentration gradient between surface and pores increases gradually with a reduction of pore diameter.Therefore the blocking ofsmallpore entrances is inevitable.

    3.2Effect of carrier gases on bulk density distribution

    Fig.4 presents the density distribution of the carbon disks obtained from CH4-H2and CH4-CO2.For the density distribution obtained from CH4-H2(Fig.4(a)),the average bulk density of the carbon disk is 1.626 g/cm3,and the radial density gradient of the bottom,middle and top regions are 0.067, 0.074 and 0.068 g/cm3,respectively.

    Fig.3 Surface topography images of the center of carbon discs after 250 h infiltration,(a)and(b)CH4-H2,(c)and(d)CH4-CO2.

    Fig.4 Bulk density distributions of(a)CH4-H2and(b)CH4-CO2.

    The thickness direction density gradientof specimens 1#,3#and 5#are 0.002,0.005 and 0.002 g/cm3,respectively.In the radial direction, the small-region density exhibits a minimum with increasing the distance from 120 to 220 mm(from the inner to middle,then to exterior).In the thickness direction,the small-region density exhibits a maximum from the bottom to the top atthe inner and exterior direction of the disk,while the small-region density exhibits a minimum from the bottom to the top near the middle direction of disk.

    When CO2is used as a carrier gas,the average bulk density of the carbon disk is 1.723 g/cm3, which is obvious higher than that obtained from CH4-H2.The maximum radial density gradient found at the bottom area is 0.056 g/cm3,which is improved as compared with H2.But the maximum thickness direction density gradient in the inner areas is 0.010 g/cm3,which is higher than that obtained from CH4-H2.The most important of all is that the highest small-region density is always at the middle for both the radialand thickness direction(Fig.4(b)).

    In order to better understand the density distribution,the preforms can be approximately divided into 9 zones as shown in Fig.5,in the radial and thickness directions.For infiltration from CH4-H2,2Mregion is the most difficult deposition zone because of the strongly diffusion limited process.The carbon deposition rates of1T,1B,3Tand 3Bzones are expected to be higher than thatof1M,3M,2Tand 2Bdue to the higher concentration gradient of the reaction species and the more surface porosity.Taking the temperature gradientarising from the gas flow during CVI into account,the deposition rate of 3Tand 3Bshould be higher than that of 1Tand 1B.Thus,the density distribution of the carbon disk has the following characteristics:

    Fig.5 Schematic illustration of(a)regional division and (b)gas flow direction in the free fluid domain during CVI (arrows stand for gas flow direction).

    ρ3T≈ρ3B>ρ1T≈ρ1B>ρ3M≈ρ1M>ρ2B>ρ2M(ρrepresents the bulk density of the small-region).When CO2is used as carrier gas,the deposition rate of the PyC on the surface(1B,1M,1T,2T,3T,2B,3B,3Mand 3Tregions)is reduced effectively due to theoxidizing effectof CO2,especially in the 1T,1B,3Tand 3Bzones.This means that the blocking of the surface pores is delayed.As a result,2Mregion is most adequately deposited in a sharp contrastwith CH4-H2, where 2Mis the lowest density zone.Correspondingly,the density of the rest regions is increased due to the higher ratio of the in-pore deposition rate than the surface deposition rate.However,the thickness direction density gradient(1 and 3 zones)is also increased because the most serious oxidation is found in the 1T, 1B,3Tand 3Bzones.

    3.3Effect of carrier gases on the microstructureThe radial optical microstructure of the specimens obtained from CH4-H2and CH4-CO2are shown in Fig.6 and 7,respectively.In the case of H2,a pure single RL PyC is observed both in specimen 1# (Fig.6(a))and 3#(Fig.6(b)).When CO2is used as a carrier gas,a complex hybrid RL PyC with overgrowth cones can be observed in the specimens (Fig.7).

    Fig.6 Radial distribution of the PyC microstructure obtained from CH4-H2,(a)specimen 1#and(b)specimen 3#.

    Fig.7 Radial distribution of the PyC microstructure obtained from CH4-CO2,(a)specimen 1#and(b)specimen 3#.

    These indicate that no matter which of these two carrier gases used,the texture distribution of PyC is uniform,but the anisotropy of PyC is apparently different.This can be further confirmed by the results of Raman spectra in Fig.8 and 9.

    Fig.8 Raman spectra of the PyC obtained from CH4-H2,(a)specimen 1#and(b)specimen 3#.

    Allthe firstorder Raman spectra were fitted with Lorentzian functions for the D and G peaks.It can be observed that the intensity ratios(R=ID/IG)of specimens from CH4-H2is obviously lower that of specimens from CH4-CO2,which suggests that the defects density in the graphene of specimens from CH4-H2is lower than that of specimens from CH4-CO2.

    Fig.9 Raman spectra of the PyC obtained from CH4-CO2,(a)specimen 1#and(b)specimen 3#.

    As for the specimens from CH4-CO2,two new peaks at 1 140 and 1 450 cm-1are observed,which are either taken as a simple criterion for a nanocrystalline diamond phase in deposited diamond films[14],or considered as the modes originating from trans-polyacetylene in the diamond films[15].To further investigate the state of these two peaks,the UV Raman spectra were used to characterize the hybrid matrix,as shown in Fig.10.

    Fig.10 UV Raman spectra of the PyC obtained from CH4-CO2,(a)specimen 1#and(b)specimen 3#.

    The UV Raman spectra only show the two features,at approximately 1 395 and 1 580 cm-1,which are labeled as the D and G peaks,respectively.The T peaks at 1 060 cm-1that is due to C—C sp3vibrations does not appear,which further confirms that the distinct Raman peak around 1 140 and 1 450 cm-1is not resulted from a nanocrystalline diamond phase,and indirectly supports the view of the modes originating from trans-polyacetylene.But it is very unthinkable for the existence of trans-polyacetylene in the PyC matrix after the high temperature treatment.Altogether,these two peaks are not clearly known,and they can be attributed to some faulty structures that deteriorate the integrity of the graphitic stacking and enhance the defect density in the graphene layers.These can be further confirmed by the results of the TEM images of the different matrices,as shown in Fig.11.

    For the H2-prepared composites,the straight graphene stripes are observed(Fig.11(a)),on the other hand,some ring-like graphene stripes are formed for the CO2-prepared composites(Fig.11(b)),and the nuclei responsible for the formation of the overgrowth cones is observed.Those results indicate that the texture of Pyc is deteriorated by the introduction of CO2in gas phase.This view can be also confirmed by the results of XRD given in Table 1.The d002-spacing is higher and Lcis lower for the specimens obtained from CH4-CO2than those from CH4-H2.

    It has been generally recognized that the microstructure of PyC is determined by the composition of the gas phase within the porous preforms.RL PyC arises from a gas with an optimum ratio of small light hydrocarbon(especially acetylene C2)to the aromatic hydrocarbons(especially benzene C6).It has beenreported that H2,as a reaction product,has a direct influence on the reaction kinetics,especially on the formation of benzene from acetylene[9].Thus,a pure single RL PyC is obtained when H2is used as a carrier gas.While CO2,as an oxidizing gas,has a significant effect on the PyC deposition,but a limited effect on the composition of the gas phase within the porous preforms due to the low diffusion rate of CO2.Therefore,the RL PyC is also produced,but defects are formed in the laminar deposit in presence of CO2, starting from nodules around which overgrowth cones are formed according to the model of Coffin[16], where defects are amplified layer after layer with progress of deposition.

    Fig.11 TEM images of the specimens,(a)from CH4-H2and(b)from CH4-CO2.

    Table 1 Microcrystalline parameters of the specimens sliced from the sample disks from CH4-H2and CH4-CO2.

    4 Conclusions

    The effects of the type of carrier gases on the densification rate,bulk density and microstructure of C/C composites fabricated by isothermal CVI,have been comprehensively evaluated,and the following conclusions are drawn from the present work:

    In the initial 50 h,the densification rate obtained from CH4-H2is obviously higher than that from CH4-CO2,while the densification rate from CH4-H2is lower than that from CH4-CO2with a further increase of infiltration time.The average bulk density of the disk from CH4-CO2(1.723 g/cm3)is higher than that (1.626 g/cm3)from CH4-H2and the maximum radial density gradient is lower for the former (0.056 g/cm3)than that for the latter (0.074 g/cm3).However,the maximum thickness direction density gradient is higher(0.010 g/cm3) for the former than the latter(0.005 g/cm3).These significant changes are caused by the fact that CO2can effectively reduce the surface deposition rate due to the oxidizing effect,but does not inhibit the in-pore infiltration due to its lowe diffusion rate.When the carrier gas is switched from H2to CO2,the matrix is changed from the pure RL to hybrid RL PyC with overgrowth cones,and the average degree of graphitization reduces from 62.7%to 50.8%.These are resulted from the fact that defects are formed in the deposits by introducing CO2in the gas phase and the overgrowth cones deteriorate the texture degree of Pyc.

    [1] Delhaes P.Chemical vapor deposition and infiltration processes of carbon materials[J].Carbon,2002,40(5):641-657.

    [2] Luo R Y,Liu T,Li J S,et al.Thermophysical properties of carbon/carbon composites and physical mechanism of thermal expansion and thermal conductivity[J].Carbon,2004,42 (14):2887-2895.

    [3] SUN Chao,ZHANG Bo,YANG Xiao-guang,et al.Effect of cycle time of in-situ polymerization of naphthalene on the densification and performance of C/C composites[J].New Carbon Materials,2012,27(1):49-54.

    (孫 超,張 博,楊曉光,等.原位聚合增密次數(shù)對(duì)C/C復(fù)合材料性能的影響[J].新型炭材料,2012,27(1):49-54.)

    [4] Reuge N,Vignoles G L.Modeling of isobaric-isothermalchemical vapor infiltration:effects of reactor control parameters on a densification[J].Journal of Materials Processing Technology, 2005,166(1):15-29.

    [5] Ozcan S D,Tezcan J,Filip P.Microstructure and elastic properties of individual components of C/C composites[J].Carbon, 2009,47(15):3403-3414.

    [6] Zhang W G,Hüttinger K J.Simulation studies on chemical va-por infiltration of carbon[J].Composites Science and Technology,2002,62(15):1947-1955.

    [7] Rovillain D,Trinquecoste M,Bruneton E,et al.Film boiling chemical vapor infiltration:An experimental study on carbon/ carbon composite materials[J].Carbon,2001,39(9):1355-1365.

    [8] Dupel P,Bourrat X,Pailler R.Structure of pyrocarbon infiltraed by pulse-CVI[J].Carbon,1995,33(9):1193-1204.

    [9] Becker A,Hu Z,Hüttinger K J.A hydrogen inhibition modelof carbon deposition from light hydrocarbons[J].Fuel,2000,79 (13):1573-1580.

    [10] Zhang WG,Hu Z J,Hüttinger K J.Chemical vapor infiltration of carbon fiber felt:optimization of densification and carbon microstructure[J].Carbon,2002,40(14):2529-2545.

    [11] Tang Z H,Xiong X,Zhang H B.Effect of carrier gas on bulk densiy and microstructure distribution of carbon/carbon composties fabricated by thermal gradient chemical vapor infiltration [J].Carbon,2012,50(3):1243-1252.

    [12] Kermiotis Ch,Vourliotakis G,Skevis G,et al.Experimental and computationalstudy of methane mixtures pyrolysis in a flow reactor under atmospheric pressure[J].Energy,2002,43(1): 103-110.

    [13] Vignoles G L,Langlais F,Descamps C,et al.CVD and CVI of pyrocarbon from various precursors[J].Surface and Coatings Technology,2004,188-189:241-249.

    [14] Ferrari A C.Determination of bonding in diamond-like carbon by Raman spectroscopy[J].Diamond and Related Materials, 2002,11(3-6):1053-1061.

    [15] Kuzmany H,Pfeiffer R,Salk N,et al.The mystery of the 1 140 cm-1Raman line in nanocrystalline diamond films[J]. Carbon,2004,42(5-6):911-917.

    [16] Coffin L F.Structure-property relations for pyrolytic graphite [J].Journal of the American Ceramic Society,1964,47 (10):473-478.

    Effect of carrier gases on densification rate,bulk density and microstructure of carbon/carbon composites

    HOU Zhen-hua, HAO Ming-yang, LUO Rui-ying, XIANG Qiao, YANG Wei, SHANG Hai-dong, XU Huai-zhe
    (SchoolofPhysicsandNuclearEnergyEngineering,BeijingUniversityofAeronauticsandAstronautics,Beijing100191,China)

    Effect of carrier gases(H2and CO2)on the densification rate,bulk density and microstructure of carbon/carbon composites fabricated by isothermalchemical vapor infiltration from methane(CH4)was investigated.In the initial 50 h,the densification rate obtained from CH4-H2is obviously higher than that from CH4-CO2,while the densification rate from CH4-H2is lower than that from CH4-CO2with a further increase of infiltration time.When the carrier gas is switched from H2to CO2,the average bulk density of the compositeincreases from 1.626 to 1.723 g/cm3,the maximum radial density gradient decreases from 0.074 to 0.056 g/cm3,the matrix changes from the pure rough laminar to hybrid rough laminar pyrocarbon with overgrowth cones,and the average degree of graphitization reduces from 62.7%to 50.8%.These significant changes are caused by the fact that CO2can effectively reduce the surface deposition rate but does not inhibit the in-pore infiltration,and thatdefects are formed in the deposits by a CO2introduction in gas phase and the resulting overgrowth cones deteriorate the texture degree of pyrocarbon.

    Carbon/carbon composites;Microstructure;Chemical vapor deposition;Carrier gas

    LUO Rui-ying,Professor.E-mail:ryluo@buaa.edu.cn

    TQ342+.76

    A

    1007-8827(2015)04-0364-08

    國家自然科學(xué)基金(21071011).

    羅瑞盈,教授.E-mail:ryluo@buaa.edu.cn

    侯振華,博士研究生.E-mail:houzhenhualove@126.com

    Received date:2015-02-25;Revised date:2015-07-20

    Foundation item:National Natural Science Foundation of China(21071011).

    Author introduction:HOU Zhen-hua,Ph.D.E-mail:houzhenhualove@126.com

    English edition available online ScienceDirect(http://www.sciencedirect.com/science/journal/18725805).

    10.1016/S1872-5805(15)60196-2

    猜你喜歡
    載氣振華微觀
    不同載氣對(duì)GaN薄膜外延生長影響的研究進(jìn)展
    家住西安
    聚丙烯裝置載氣壓縮機(jī)安裝質(zhì)量控制
    甘肅科技(2020年21期)2020-04-13 00:33:32
    氣相色譜儀的故障問題分析及解決辦法
    Cole-Hopf Transformation Based Lattice Boltzmann Model for One-dimensional Burgers’Equation?
    一種新的結(jié)合面微觀接觸模型
    高壓下不同載氣多原料超濃相氣力輸送機(jī)理及流動(dòng)特性研究
    科技資訊(2016年4期)2016-06-11 06:26:56
    微觀的山水
    詩選刊(2015年6期)2015-10-26 09:47:10
    “杯”慘
    微觀中國
    浙江人大(2014年8期)2014-03-20 16:21:15
    日韩av在线大香蕉| 女性生殖器流出的白浆| 午夜免费观看网址| 天天躁夜夜躁狠狠躁躁| 亚洲成a人片在线一区二区| 国产成人欧美在线观看| 婷婷丁香在线五月| 人人澡人人妻人| 老司机深夜福利视频在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 男女午夜视频在线观看| 亚洲激情在线av| 欧美日韩亚洲综合一区二区三区_| 国产精品自产拍在线观看55亚洲| 这个男人来自地球电影免费观看| 国产麻豆69| 免费av中文字幕在线| 色综合婷婷激情| 国产亚洲av高清不卡| 久久人人97超碰香蕉20202| 国产主播在线观看一区二区| 久久香蕉国产精品| 电影成人av| 亚洲色图 男人天堂 中文字幕| 香蕉国产在线看| 中出人妻视频一区二区| 女人被狂操c到高潮| 高清在线国产一区| 又紧又爽又黄一区二区| 88av欧美| 在线观看免费日韩欧美大片| 精品第一国产精品| 悠悠久久av| 久久中文看片网| 午夜福利在线观看吧| 欧美另类亚洲清纯唯美| 色老头精品视频在线观看| 女人高潮潮喷娇喘18禁视频| 中文字幕人妻丝袜制服| 人妻久久中文字幕网| 国产精品久久久久成人av| 精品人妻1区二区| videosex国产| 久久这里只有精品19| 黄色毛片三级朝国网站| 午夜精品国产一区二区电影| 久久久国产精品麻豆| 精品熟女少妇八av免费久了| 91九色精品人成在线观看| 黑人巨大精品欧美一区二区蜜桃| 国产欧美日韩精品亚洲av| 久久精品亚洲av国产电影网| xxx96com| 精品一区二区三区视频在线观看免费 | 狠狠狠狠99中文字幕| 在线av久久热| 久久久久国产精品人妻aⅴ院| 亚洲国产精品999在线| 午夜福利在线免费观看网站| 老司机午夜十八禁免费视频| 99久久99久久久精品蜜桃| 悠悠久久av| 亚洲精品国产精品久久久不卡| 黄片大片在线免费观看| 中文字幕最新亚洲高清| 一进一出抽搐gif免费好疼 | 国产精品久久久久成人av| 国产成人系列免费观看| 中文字幕另类日韩欧美亚洲嫩草| 人妻久久中文字幕网| 亚洲色图av天堂| 国产主播在线观看一区二区| tocl精华| 啦啦啦在线免费观看视频4| www日本在线高清视频| 久久久久亚洲av毛片大全| 久久精品国产清高在天天线| 婷婷六月久久综合丁香| 一级毛片女人18水好多| 9191精品国产免费久久| 97人妻天天添夜夜摸| 巨乳人妻的诱惑在线观看| 国产成人精品在线电影| av网站免费在线观看视频| 亚洲色图 男人天堂 中文字幕| 桃色一区二区三区在线观看| 天堂√8在线中文| 亚洲欧美日韩无卡精品| 国产精品九九99| 国产精品成人在线| www.精华液| 女人爽到高潮嗷嗷叫在线视频| a级毛片黄视频| 午夜精品国产一区二区电影| 男女床上黄色一级片免费看| 亚洲精品中文字幕一二三四区| 久久精品91无色码中文字幕| 桃红色精品国产亚洲av| 女警被强在线播放| 亚洲欧美精品综合久久99| 久久青草综合色| 又紧又爽又黄一区二区| 亚洲第一av免费看| 黄色视频不卡| 亚洲国产欧美一区二区综合| 精品无人区乱码1区二区| 国产av一区在线观看免费| 9191精品国产免费久久| 12—13女人毛片做爰片一| 在线观看免费视频网站a站| 国产精品爽爽va在线观看网站 | 亚洲中文字幕日韩| 日韩 欧美 亚洲 中文字幕| 午夜福利在线观看吧| 人人澡人人妻人| 精品电影一区二区在线| 高清黄色对白视频在线免费看| √禁漫天堂资源中文www| 九色亚洲精品在线播放| 男人舔女人的私密视频| 久久国产亚洲av麻豆专区| 精品欧美一区二区三区在线| avwww免费| 欧美在线黄色| 一个人免费在线观看的高清视频| 亚洲国产精品一区二区三区在线| 久久天躁狠狠躁夜夜2o2o| 日本vs欧美在线观看视频| 我的亚洲天堂| 精品福利观看| 男女午夜视频在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲avbb在线观看| 中文字幕高清在线视频| 国产亚洲精品综合一区在线观看 | 国产午夜精品久久久久久| 亚洲aⅴ乱码一区二区在线播放 | 国产精品免费视频内射| 巨乳人妻的诱惑在线观看| av在线天堂中文字幕 | 精品久久久精品久久久| 久久人人97超碰香蕉20202| 成年人免费黄色播放视频| 91国产中文字幕| 久久久国产一区二区| 99久久99久久久精品蜜桃| 亚洲精品在线观看二区| 一个人免费在线观看的高清视频| 99香蕉大伊视频| 大码成人一级视频| 亚洲aⅴ乱码一区二区在线播放 | 人成视频在线观看免费观看| 久久精品亚洲av国产电影网| 国产麻豆69| 精品久久久久久成人av| 亚洲 欧美一区二区三区| 成人av一区二区三区在线看| 亚洲精品久久成人aⅴ小说| 午夜a级毛片| 国产av在哪里看| 久久久久亚洲av毛片大全| 国产伦人伦偷精品视频| 高清av免费在线| 日韩免费高清中文字幕av| 老汉色∧v一级毛片| 午夜免费观看网址| 交换朋友夫妻互换小说| 性欧美人与动物交配| 精品国内亚洲2022精品成人| 女同久久另类99精品国产91| 国产在线观看jvid| 黑丝袜美女国产一区| 国产熟女午夜一区二区三区| av天堂久久9| 曰老女人黄片| 男女下面进入的视频免费午夜 | 亚洲中文日韩欧美视频| 精品久久久久久,| 一边摸一边抽搐一进一小说| av国产精品久久久久影院| 国产av在哪里看| 国产精品久久视频播放| 欧美人与性动交α欧美软件| 亚洲精品国产精品久久久不卡| 大码成人一级视频| 欧美+亚洲+日韩+国产| 国产精品久久久久久人妻精品电影| 两个人看的免费小视频| 欧美+亚洲+日韩+国产| 亚洲中文av在线| 日韩欧美一区二区三区在线观看| 最新在线观看一区二区三区| 亚洲av五月六月丁香网| 亚洲 欧美 日韩 在线 免费| 美女午夜性视频免费| 国产成人精品在线电影| 三级毛片av免费| 久久久久久久久免费视频了| 黄网站色视频无遮挡免费观看| 一进一出好大好爽视频| 久久久久久久久久久久大奶| av网站在线播放免费| 手机成人av网站| 国产不卡一卡二| 亚洲aⅴ乱码一区二区在线播放 | 免费一级毛片在线播放高清视频 | 国产成人系列免费观看| 国产黄色免费在线视频| 丝袜美足系列| 人人妻人人爽人人添夜夜欢视频| 欧美黄色淫秽网站| 亚洲 国产 在线| 交换朋友夫妻互换小说| 亚洲一区二区三区不卡视频| 国产一区二区三区综合在线观看| 人妻久久中文字幕网| 欧美日韩亚洲高清精品| 18禁裸乳无遮挡免费网站照片 | 视频区图区小说| 国产精品一区二区精品视频观看| 亚洲九九香蕉| 脱女人内裤的视频| 另类亚洲欧美激情| 成人三级做爰电影| 好男人电影高清在线观看| cao死你这个sao货| 国产免费男女视频| 亚洲人成77777在线视频| 久久午夜综合久久蜜桃| 亚洲片人在线观看| 国产亚洲欧美98| 一区二区三区激情视频| a级毛片在线看网站| 99久久99久久久精品蜜桃| 亚洲成人国产一区在线观看| 性欧美人与动物交配| 久久婷婷成人综合色麻豆| 久久中文字幕一级| 欧美最黄视频在线播放免费 | 国产成人欧美在线观看| 波多野结衣高清无吗| 久久久久久久久久久久大奶| 精品久久久精品久久久| 亚洲av日韩精品久久久久久密| 黄色丝袜av网址大全| 久久人人97超碰香蕉20202| 这个男人来自地球电影免费观看| 激情在线观看视频在线高清| 欧美日韩乱码在线| 国产99久久九九免费精品| 神马国产精品三级电影在线观看 | 欧美日韩一级在线毛片| 别揉我奶头~嗯~啊~动态视频| 夫妻午夜视频| 黑人操中国人逼视频| 国产亚洲精品久久久久久毛片| 在线观看一区二区三区| av网站免费在线观看视频| 伦理电影免费视频| 不卡一级毛片| 亚洲熟妇中文字幕五十中出 | 欧美一区二区精品小视频在线| 色综合站精品国产| 97超级碰碰碰精品色视频在线观看| 又黄又粗又硬又大视频| 亚洲国产毛片av蜜桃av| 18美女黄网站色大片免费观看| 久久人人爽av亚洲精品天堂| 国产亚洲精品久久久久久毛片| 欧美日本中文国产一区发布| 亚洲欧美激情综合另类| 亚洲国产精品合色在线| 在线免费观看的www视频| 中文欧美无线码| 色综合欧美亚洲国产小说| 黑人巨大精品欧美一区二区mp4| 1024香蕉在线观看| 国内久久婷婷六月综合欲色啪| 亚洲成人免费av在线播放| 一级作爱视频免费观看| 悠悠久久av| av超薄肉色丝袜交足视频| 又黄又粗又硬又大视频| 欧美日韩亚洲综合一区二区三区_| 夜夜躁狠狠躁天天躁| 日本 av在线| 极品人妻少妇av视频| 999久久久精品免费观看国产| 男女下面插进去视频免费观看| 一区二区三区国产精品乱码| 久久精品国产亚洲av香蕉五月| 日本撒尿小便嘘嘘汇集6| 国产高清视频在线播放一区| 欧美人与性动交α欧美精品济南到| 777久久人妻少妇嫩草av网站| 久久中文字幕人妻熟女| 色播在线永久视频| 免费高清视频大片| 亚洲精品久久午夜乱码| 亚洲男人天堂网一区| 人妻久久中文字幕网| 欧美日本亚洲视频在线播放| 女人精品久久久久毛片| 99国产极品粉嫩在线观看| 欧美乱妇无乱码| 国产精品一区二区精品视频观看| 亚洲国产欧美一区二区综合| 免费日韩欧美在线观看| 亚洲一码二码三码区别大吗| 日韩精品中文字幕看吧| 久久人妻熟女aⅴ| 色播在线永久视频| 国产精品自产拍在线观看55亚洲| 黑人操中国人逼视频| 国产精品九九99| 黑人欧美特级aaaaaa片| 国产精品免费一区二区三区在线| 国产高清videossex| 免费少妇av软件| 夜夜夜夜夜久久久久| 嫩草影视91久久| 香蕉国产在线看| 亚洲熟女毛片儿| 夜夜爽天天搞| 欧美日韩av久久| 狠狠狠狠99中文字幕| 国产伦一二天堂av在线观看| 叶爱在线成人免费视频播放| 欧美乱色亚洲激情| 精品国产乱码久久久久久男人| 在线国产一区二区在线| 久久久久久大精品| 成人精品一区二区免费| 亚洲av电影在线进入| 精品国内亚洲2022精品成人| 国产一区二区激情短视频| 人人妻人人添人人爽欧美一区卜| 日本黄色日本黄色录像| 看免费av毛片| www.999成人在线观看| 国产男靠女视频免费网站| 欧美日韩一级在线毛片| 亚洲国产欧美日韩在线播放| 欧美日韩福利视频一区二区| 午夜精品国产一区二区电影| 久久久精品国产亚洲av高清涩受| 男人舔女人的私密视频| 日韩一卡2卡3卡4卡2021年| 日本免费一区二区三区高清不卡 | www.熟女人妻精品国产| 国产精品久久久人人做人人爽| 欧美中文综合在线视频| 男女做爰动态图高潮gif福利片 | 国产亚洲精品综合一区在线观看 | 欧美国产精品va在线观看不卡| 女性生殖器流出的白浆| 精品高清国产在线一区| 黄色视频,在线免费观看| 精品国产国语对白av| 一个人免费在线观看的高清视频| 精品卡一卡二卡四卡免费| 淫秽高清视频在线观看| 亚洲午夜理论影院| 欧美日韩乱码在线| 一边摸一边抽搐一进一出视频| 亚洲欧美一区二区三区黑人| 高清欧美精品videossex| 大陆偷拍与自拍| 50天的宝宝边吃奶边哭怎么回事| 国产一区在线观看成人免费| 欧美精品一区二区免费开放| 国产伦一二天堂av在线观看| 丰满的人妻完整版| bbb黄色大片| 亚洲午夜理论影院| 美女大奶头视频| 亚洲五月婷婷丁香| 久久青草综合色| 午夜免费成人在线视频| 90打野战视频偷拍视频| 精品一区二区三区av网在线观看| 波多野结衣av一区二区av| 欧美成狂野欧美在线观看| netflix在线观看网站| av欧美777| 操出白浆在线播放| 欧美精品亚洲一区二区| 大陆偷拍与自拍| 免费在线观看日本一区| 国产又色又爽无遮挡免费看| 免费在线观看黄色视频的| 国产精品国产高清国产av| 90打野战视频偷拍视频| 可以在线观看毛片的网站| 亚洲av美国av| 精品午夜福利视频在线观看一区| 大型黄色视频在线免费观看| 嫁个100分男人电影在线观看| 国产成+人综合+亚洲专区| www.999成人在线观看| 精品久久久久久成人av| 女人被躁到高潮嗷嗷叫费观| 日韩高清综合在线| 9热在线视频观看99| 露出奶头的视频| 99精品在免费线老司机午夜| 亚洲av成人av| 人妻丰满熟妇av一区二区三区| 1024香蕉在线观看| 法律面前人人平等表现在哪些方面| 精品人妻1区二区| 久久午夜亚洲精品久久| 变态另类成人亚洲欧美熟女 | 中文字幕人妻熟女乱码| 精品一区二区三区视频在线观看免费 | 久久精品亚洲av国产电影网| 亚洲色图综合在线观看| 一二三四社区在线视频社区8| 法律面前人人平等表现在哪些方面| 人人妻,人人澡人人爽秒播| 桃红色精品国产亚洲av| 亚洲精品一卡2卡三卡4卡5卡| 电影成人av| 欧美精品啪啪一区二区三区| 精品久久久久久久毛片微露脸| 久久久久久久久免费视频了| 国产精品免费一区二区三区在线| 国产精品久久久人人做人人爽| 国产亚洲欧美98| 亚洲少妇的诱惑av| 99香蕉大伊视频| 日韩中文字幕欧美一区二区| 国产精品av久久久久免费| 国产成人精品久久二区二区免费| 国产成年人精品一区二区 | 国产高清激情床上av| 大码成人一级视频| 啦啦啦免费观看视频1| www国产在线视频色| 成人三级黄色视频| 欧美丝袜亚洲另类 | 一区二区三区国产精品乱码| 成人免费观看视频高清| 男男h啪啪无遮挡| 欧美日本中文国产一区发布| 脱女人内裤的视频| 国产精品九九99| 中文字幕高清在线视频| 精品久久久久久久毛片微露脸| 韩国av一区二区三区四区| 久久中文字幕一级| 超碰成人久久| 亚洲av熟女| 国产伦一二天堂av在线观看| 性色av乱码一区二区三区2| 不卡av一区二区三区| 中文字幕人妻丝袜制服| 美国免费a级毛片| 久久人妻熟女aⅴ| 日韩精品中文字幕看吧| 精品福利永久在线观看| a级毛片黄视频| a级毛片在线看网站| 色老头精品视频在线观看| av在线天堂中文字幕 | 国产男靠女视频免费网站| 国产欧美日韩一区二区精品| 黑人巨大精品欧美一区二区mp4| 狠狠狠狠99中文字幕| 黑人操中国人逼视频| 黄色视频不卡| 黄色怎么调成土黄色| 宅男免费午夜| 亚洲精品国产色婷婷电影| 精品国产一区二区三区四区第35| 女人精品久久久久毛片| 久久人人97超碰香蕉20202| 久99久视频精品免费| 一边摸一边抽搐一进一出视频| 午夜福利,免费看| 中文字幕最新亚洲高清| 亚洲欧美日韩无卡精品| 午夜免费激情av| 老司机在亚洲福利影院| 日日干狠狠操夜夜爽| 亚洲va日本ⅴa欧美va伊人久久| 久久中文字幕一级| 一本综合久久免费| 精品久久久久久久毛片微露脸| 日韩国内少妇激情av| 嫁个100分男人电影在线观看| www.自偷自拍.com| 国产视频一区二区在线看| 久久久国产成人免费| 在线视频色国产色| 久久久久久久久免费视频了| 丝袜美腿诱惑在线| 亚洲成人免费电影在线观看| 美女 人体艺术 gogo| 国产一区在线观看成人免费| 人妻丰满熟妇av一区二区三区| 亚洲九九香蕉| 亚洲成人免费电影在线观看| 桃色一区二区三区在线观看| 午夜福利一区二区在线看| 一级毛片精品| 精品福利永久在线观看| 精品电影一区二区在线| 精品久久久久久成人av| av有码第一页| 97人妻天天添夜夜摸| 丝袜人妻中文字幕| 97碰自拍视频| 黄色丝袜av网址大全| 成人亚洲精品一区在线观看| 亚洲欧美精品综合一区二区三区| 视频区图区小说| 一区福利在线观看| 亚洲在线自拍视频| 国产有黄有色有爽视频| 在线观看www视频免费| 两人在一起打扑克的视频| 99re在线观看精品视频| 精品国产乱子伦一区二区三区| 性色av乱码一区二区三区2| 精品一区二区三区视频在线观看免费 | 久久国产亚洲av麻豆专区| 精品福利永久在线观看| 伊人久久大香线蕉亚洲五| 欧洲精品卡2卡3卡4卡5卡区| 国产午夜精品久久久久久| 又黄又爽又免费观看的视频| 在线观看免费午夜福利视频| 亚洲精品久久成人aⅴ小说| 久久国产亚洲av麻豆专区| 久久久久久久久久久久大奶| 97碰自拍视频| 中文字幕最新亚洲高清| 久久人妻福利社区极品人妻图片| 亚洲精品在线美女| 99久久综合精品五月天人人| 中文字幕人妻丝袜一区二区| 757午夜福利合集在线观看| 午夜精品在线福利| 国产真人三级小视频在线观看| 免费在线观看日本一区| 精品福利永久在线观看| 日韩精品青青久久久久久| www.熟女人妻精品国产| 极品教师在线免费播放| 亚洲精品在线美女| 精品日产1卡2卡| 天堂√8在线中文| 欧美不卡视频在线免费观看 | 午夜a级毛片| 一区二区三区国产精品乱码| 丝袜人妻中文字幕| 在线视频色国产色| 亚洲色图综合在线观看| 电影成人av| 婷婷精品国产亚洲av在线| 国产日韩一区二区三区精品不卡| 中文字幕另类日韩欧美亚洲嫩草| 欧美亚洲日本最大视频资源| 婷婷丁香在线五月| 久久久久久久午夜电影 | 久99久视频精品免费| 久久精品国产亚洲av香蕉五月| 国产亚洲精品综合一区在线观看 | 国产野战对白在线观看| 久久热在线av| 久久人妻熟女aⅴ| 女人被躁到高潮嗷嗷叫费观| 日本三级黄在线观看| 亚洲狠狠婷婷综合久久图片| 天堂俺去俺来也www色官网| 久久草成人影院| 天堂√8在线中文| 欧美精品亚洲一区二区| 桃色一区二区三区在线观看| 亚洲熟妇中文字幕五十中出 | 亚洲人成电影免费在线| 免费av毛片视频| 欧美人与性动交α欧美软件| 男人操女人黄网站| 最好的美女福利视频网| 熟女少妇亚洲综合色aaa.| 88av欧美| 老熟妇乱子伦视频在线观看| 视频区图区小说| 国产真人三级小视频在线观看| 制服人妻中文乱码| 露出奶头的视频| 精品一区二区三区视频在线观看免费 | 色婷婷久久久亚洲欧美| 无人区码免费观看不卡| 午夜免费观看网址| 欧美精品啪啪一区二区三区| 美女 人体艺术 gogo| 88av欧美| 水蜜桃什么品种好| 欧美丝袜亚洲另类 | 日韩一卡2卡3卡4卡2021年| 自线自在国产av| 久久久国产一区二区| 岛国视频午夜一区免费看| 欧美最黄视频在线播放免费 | 欧美成人免费av一区二区三区| 两个人免费观看高清视频| 欧美最黄视频在线播放免费 | 9色porny在线观看| 成在线人永久免费视频| 色老头精品视频在线观看| a在线观看视频网站| 伊人久久大香线蕉亚洲五|