• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    載氣對(duì)炭/炭復(fù)合材料沉積速率、體密度和微觀結(jié)構(gòu)的影響

    2015-06-05 14:36:36侯振華郝名揚(yáng)羅瑞盈商海東許懷哲
    新型炭材料 2015年4期
    關(guān)鍵詞:載氣振華微觀

    侯振華, 郝名揚(yáng), 羅瑞盈, 向 巧, 楊 威, 商海東, 許懷哲

    載氣對(duì)炭/炭復(fù)合材料沉積速率、體密度和微觀結(jié)構(gòu)的影響

    侯振華, 郝名揚(yáng), 羅瑞盈, 向 巧, 楊 威, 商海東, 許懷哲

    (北京航空航天大學(xué)物理科學(xué)與核能工程學(xué)院,北京100191)

    分別采用H2和CO2作為載氣,CH4為前軀體,通過等溫化學(xué)氣相滲積制備炭/炭復(fù)合材料,通過偏光顯微鏡、拉曼光譜、X射線衍射和透射電鏡對(duì)材料微觀結(jié)構(gòu)表征以及滲積過程密度變化,研究載氣對(duì)沉積速率、體密度和微觀結(jié)構(gòu)的影響規(guī)律。結(jié)果表明:在滲積前50 h,CH4-H2體系的沉積速率明顯大于CH4-CO2體系,但在其余滲積時(shí)間里,CH4-H2體系的沉積速率小于CH4-CO2體系。當(dāng)載氣從H2變成CO2時(shí),復(fù)合材料的體密度從1.626 g/cm3增加到1.723 g/cm3,最大徑向密度梯度從0.074 g/cm3減小到0.056 g/cm3。同時(shí),基體炭從純的粗糙體炭轉(zhuǎn)變?yōu)殡s化粗糙體炭含有過度生長錐,且平均石墨化度從62.7%下降到50.8%。這些顯著的變化是由于CO2的氧化作用降低了表面沉積速率,卻沒有降低孔內(nèi)沉積速率,同時(shí)大量的缺陷形成于層狀石墨烯結(jié)構(gòu)中導(dǎo)致形成過度生長錐,降低了熱解炭織構(gòu)。

    炭/炭復(fù)合材料;微觀結(jié)構(gòu);化學(xué)氣相滲積;載氣

    1 Introduction

    It is of prime importance to achieve high bulk densities of carbon/carbon(C/C)composites with rough laminar(RL)pyrolytic carbon(PyC),which is the key point for fabricating C/C braking materials with high mechanical,outstanding thermal and braking properties[1-5].But the high bulk density is frequently limited by blocking of the pore entrances through chemical vapor infiltration(CVI)route.To overcome this problem,the reduction of the infiltration rates on the surface and inhibition an overgrowthof the pore entrances from the outside are recommended[6].Therefore,the new processes,such as temperature and pressure gradients,forced and pulsed flow processes,have been investigated[7,8], but they do not replace the conventional isothermal CVI techniques for mass production of carbon brake disks due to their homogeneous deposition of PyC. Moreover,Zhang[6]have proved that the inside-out infiltration can be obtained by adjusting the processing parameter(e.g.temperature,pressure,residence time and the ratio of C/H).Further,the new carrier gas,H2,has been proposed by Becker et al.[9]because it can inhibit carbon deposition by blocking the free active sites,and they obtained the high bulk density C/C composites in the laboratory[10].Tang et al[11]has employed hydrogen as carrier gas to prepare large size carbon brake disks fabricated by thermal gradient CVI.The average bulk density,the radial density gradient and the texture of PyC with H2as carrier gas were improved compared with N2.

    Although numerous works have been devoted to improve traditional CVIefficiency and reduce the processing time,the high bulk density usually comes off second-best.To gain the high bulk density,especially above 1.70 g/cm3,brake disk often needs to remove the surface crusts in the last stage of infiltration.Unfortunately,this is very inefficient and even futile.In this work,a new carrier,CO2,was proposed because it can obviously reduce the surface deposition and do not obviously inhibit the in-pore infiltration,and the effect of the type of carrier gas(H2and CO2)on the densification rate,bulk density and microstructure of the carbon disks fabricated by isothermal CVI was investigated.

    2 Experimental

    2.1Preparation of C/C composites

    In the present work,a quasi three dimensional needled carbon fiber preform was used as a substrate for CVI.The density of the preform was about 0.55 g/cm3.The size of preforms isΦ450-Φ230× 20 mm.Carbon fiber preforms were firstly heat-treated at 2 300℃for 2 h,and infiltrated by isothermal CVI at 1 080-1 130℃with a total pressure of 1-3 kPa.Methane(CH4)was used as the precursor. H2and CO2were used as carrier gases.The ratio of precursor to carrier gas was about 7∶1.All the infiltration experiments were performed stepwise.The density of preforms was tested after each infiltration run of 50 h.The preforms were machined with 300# corundum abrasive papers after an initial infiltration for 50 h in order to measure the bulk volume.The preforms were notmachined to remove the crustin the rest infiltration time in order to obtain the real surface topography and density gradient.Finally,the carbon disks were graphitized at2 300℃for 2 h.

    2.2Characterization of C/C composites

    Specimens of 20×10×6 mm3were sliced from each sample at different positions along the radialand thickness directions as shown in Fig.1,to evaluate the homogeneity of density.The surface topography of the composites was characterized by scanning electron microscopy(SEM,S-4800).The microstructure of the composites perpendicular to needle punched surface was observed under a polarized light microscope(PLM,Neophot21).Then,the polished surfaces of C/C composites were analyzed by Raman spectroscopyu(LabRAM,HR800),with two laser excitation wavelengths of 514.5 nm and 325 nm. Meanwhile,the powder samples were examined by X-ray diffraction(XRD,D/M-2200)between 15° and 80°(2θ)with monochromatic(40 kV,40 mA) Cu Kαradiation to determined d002-spacing and crystallite size(Lc).Powdered samples of the composites were characterized by transmission electron microscopy(TEM,JEOL2100).

    Fig.1 Configuration of specimens sliced from the carbon disk for density measurements.

    3 Results and discussion

    3.1Effect of carrier gases on densification rate and bulk density

    The effect of carrier gases on the densification rate of the carbon disks is shown in Fig.2.In the initial 50 h,the densification rate obtained from CH4-H2is obviously higher than that from CH4-CO2,while the densification rate from CH4-H2is lower than that from CH4-CO2in the rest of infiltration time,especially in the last 200 h.The average bulk density of the carbon disk obtained from CH4-H2(1.626 g/cm3)is obviously lower than that obtained from CH4-CO2(1.723 g/cm3).In comparison to H2, CO2acting as an oxidizing carrier gas,plays a quitedifferent role in CVI.H2can inhibitboth the homogeneous pyrolysis reactions and the heterogeneous deposition reactions.For the gas-solid heterogeneous reaction,on the one hand,CO2favors the CO2+C(PyC) =2CO reaction leading to a reduction of the carbon deposition rate effectively.For the homogeneous pyrolysis reactions,on the other hand,CO2plays an active role in the methane pyrolysis[12].Only a small fraction of reactive species formed by pyrolysis of CH4in the gas phase can be chemisorbed on out surface of the preform under a low ratio of the surface area to the deposition volume([A/V]).A large fraction of the reactive species is removed by the flowing gases.Because of a much high ratio of [A/V]inside the preform,the reaction species formed should immediately be chemisorbed and pyrolyzed into PyC by several complex gas-solid heterogeneous reactions inside pores.Therefore,the gas-gas homogeneous reaction only plays a minor role,and the adsorption and gas-solid surface reactions play a critical role in CVI.

    Fig.2 Average bulk densities of the carbon disks obtained from CH4-H2and CH4-CO2as a function of infiltration time.

    In the initial stage,the low densification rate from CH4-CO2may resultfrom the oxidizing effect of CO2because the CVI are controlled by chemical reaction.With an increase of the degree of pore filling, diffusion gradually becomes dominant,and the diffusion rate of the reaction species largely determines the densification rate.The diffusion rate of H2is so much high that the inhibition effectof H2willnotobviously decrease.While the oxidizing effect of CO2gradually reduces with increasing depth of pores or decreasing diameter of pores due to the low diffusion rate of CO2and the volume expansion feature of CH4pyrolysis. Thus,the in-pore deposition rate of CH4-CO2will be obviously higher than that of CH4-H2.Moreover,the small amount of CO2even promote pyrolysis of CH4in the pore because of the special pyrolysis feature of CH4,in which the first step is a“third-body enhanced”reaction:CH4+M=CH3+H+M[13].Thus, the high densification rate is obtained from CH4-CO2in the restof infiltration time.

    It should be pointed out that the bulk density difference of the carbon disks is mainly resulted from the unfilled pores,not from the intrinsic density of PyC.Moreover,the CVI parameters are optimized for the desired RL PyC in this work.Therefore,it is reliable to conclude that the different densification levels are caused by different carrier gases.The higher average bulk density of the carbon disks from CH4-CO2than that from CH4-H2may result from the higher ratio of the in-pore to the surface deposition rate and the architecture of the preforms.Obviously,the surface deposition rate from CH4-H2should be higher than that from CH4-CO2because the oxidizing effect of CO2is stronger than the inhibition effect of H2. Moreover,the in-pore deposition rate from CH4-CO2is higher than that from CH4-H2,which is mentioned above.Thus,the homogeneous infiltration from outside to inside is obtained easier from CH4-CO2than from CH4-H2.In this work,the needled carbon fiber felts were used as preforms,which is a typical architecture that the macro-pores in the non-woven long carbon fiber cloth and the micro-pores in the short-cut fiber web are alternately superposed in the thickness direction.The diffusion in the thickness directions mainly depends on the macro-pores formed by the needle punching.The blocking of these macro-pore entrances often means the end of the pore infiltration.

    The surface topography in the center of carbon disks after 250 h infiltration is given in Fig.3.The crusts obtained from CH4-H2have been formed(Fig. 3(a))and the macro-pores are almost sealed off (Fig.3(b)).However,a large proportion of the surfaces obtained from CH4-CO2are not covered by crusts(Fig.3(c)).Moreover,the macro-pores can maintain permeability,and the inside-out infiltration is observed in the macro-pores(Fig.3(d)).These results further indicate that a high bulk density of the carbon disks is expected from CH4-CO2.The crusts both from CH4-H2and CH4-CO2are formed because the precursor concentration on the surface is apparently higher than that in pores in CVI,and the concentration gradient between surface and pores increases gradually with a reduction of pore diameter.Therefore the blocking ofsmallpore entrances is inevitable.

    3.2Effect of carrier gases on bulk density distribution

    Fig.4 presents the density distribution of the carbon disks obtained from CH4-H2and CH4-CO2.For the density distribution obtained from CH4-H2(Fig.4(a)),the average bulk density of the carbon disk is 1.626 g/cm3,and the radial density gradient of the bottom,middle and top regions are 0.067, 0.074 and 0.068 g/cm3,respectively.

    Fig.3 Surface topography images of the center of carbon discs after 250 h infiltration,(a)and(b)CH4-H2,(c)and(d)CH4-CO2.

    Fig.4 Bulk density distributions of(a)CH4-H2and(b)CH4-CO2.

    The thickness direction density gradientof specimens 1#,3#and 5#are 0.002,0.005 and 0.002 g/cm3,respectively.In the radial direction, the small-region density exhibits a minimum with increasing the distance from 120 to 220 mm(from the inner to middle,then to exterior).In the thickness direction,the small-region density exhibits a maximum from the bottom to the top atthe inner and exterior direction of the disk,while the small-region density exhibits a minimum from the bottom to the top near the middle direction of disk.

    When CO2is used as a carrier gas,the average bulk density of the carbon disk is 1.723 g/cm3, which is obvious higher than that obtained from CH4-H2.The maximum radial density gradient found at the bottom area is 0.056 g/cm3,which is improved as compared with H2.But the maximum thickness direction density gradient in the inner areas is 0.010 g/cm3,which is higher than that obtained from CH4-H2.The most important of all is that the highest small-region density is always at the middle for both the radialand thickness direction(Fig.4(b)).

    In order to better understand the density distribution,the preforms can be approximately divided into 9 zones as shown in Fig.5,in the radial and thickness directions.For infiltration from CH4-H2,2Mregion is the most difficult deposition zone because of the strongly diffusion limited process.The carbon deposition rates of1T,1B,3Tand 3Bzones are expected to be higher than thatof1M,3M,2Tand 2Bdue to the higher concentration gradient of the reaction species and the more surface porosity.Taking the temperature gradientarising from the gas flow during CVI into account,the deposition rate of 3Tand 3Bshould be higher than that of 1Tand 1B.Thus,the density distribution of the carbon disk has the following characteristics:

    Fig.5 Schematic illustration of(a)regional division and (b)gas flow direction in the free fluid domain during CVI (arrows stand for gas flow direction).

    ρ3T≈ρ3B>ρ1T≈ρ1B>ρ3M≈ρ1M>ρ2B>ρ2M(ρrepresents the bulk density of the small-region).When CO2is used as carrier gas,the deposition rate of the PyC on the surface(1B,1M,1T,2T,3T,2B,3B,3Mand 3Tregions)is reduced effectively due to theoxidizing effectof CO2,especially in the 1T,1B,3Tand 3Bzones.This means that the blocking of the surface pores is delayed.As a result,2Mregion is most adequately deposited in a sharp contrastwith CH4-H2, where 2Mis the lowest density zone.Correspondingly,the density of the rest regions is increased due to the higher ratio of the in-pore deposition rate than the surface deposition rate.However,the thickness direction density gradient(1 and 3 zones)is also increased because the most serious oxidation is found in the 1T, 1B,3Tand 3Bzones.

    3.3Effect of carrier gases on the microstructureThe radial optical microstructure of the specimens obtained from CH4-H2and CH4-CO2are shown in Fig.6 and 7,respectively.In the case of H2,a pure single RL PyC is observed both in specimen 1# (Fig.6(a))and 3#(Fig.6(b)).When CO2is used as a carrier gas,a complex hybrid RL PyC with overgrowth cones can be observed in the specimens (Fig.7).

    Fig.6 Radial distribution of the PyC microstructure obtained from CH4-H2,(a)specimen 1#and(b)specimen 3#.

    Fig.7 Radial distribution of the PyC microstructure obtained from CH4-CO2,(a)specimen 1#and(b)specimen 3#.

    These indicate that no matter which of these two carrier gases used,the texture distribution of PyC is uniform,but the anisotropy of PyC is apparently different.This can be further confirmed by the results of Raman spectra in Fig.8 and 9.

    Fig.8 Raman spectra of the PyC obtained from CH4-H2,(a)specimen 1#and(b)specimen 3#.

    Allthe firstorder Raman spectra were fitted with Lorentzian functions for the D and G peaks.It can be observed that the intensity ratios(R=ID/IG)of specimens from CH4-H2is obviously lower that of specimens from CH4-CO2,which suggests that the defects density in the graphene of specimens from CH4-H2is lower than that of specimens from CH4-CO2.

    Fig.9 Raman spectra of the PyC obtained from CH4-CO2,(a)specimen 1#and(b)specimen 3#.

    As for the specimens from CH4-CO2,two new peaks at 1 140 and 1 450 cm-1are observed,which are either taken as a simple criterion for a nanocrystalline diamond phase in deposited diamond films[14],or considered as the modes originating from trans-polyacetylene in the diamond films[15].To further investigate the state of these two peaks,the UV Raman spectra were used to characterize the hybrid matrix,as shown in Fig.10.

    Fig.10 UV Raman spectra of the PyC obtained from CH4-CO2,(a)specimen 1#and(b)specimen 3#.

    The UV Raman spectra only show the two features,at approximately 1 395 and 1 580 cm-1,which are labeled as the D and G peaks,respectively.The T peaks at 1 060 cm-1that is due to C—C sp3vibrations does not appear,which further confirms that the distinct Raman peak around 1 140 and 1 450 cm-1is not resulted from a nanocrystalline diamond phase,and indirectly supports the view of the modes originating from trans-polyacetylene.But it is very unthinkable for the existence of trans-polyacetylene in the PyC matrix after the high temperature treatment.Altogether,these two peaks are not clearly known,and they can be attributed to some faulty structures that deteriorate the integrity of the graphitic stacking and enhance the defect density in the graphene layers.These can be further confirmed by the results of the TEM images of the different matrices,as shown in Fig.11.

    For the H2-prepared composites,the straight graphene stripes are observed(Fig.11(a)),on the other hand,some ring-like graphene stripes are formed for the CO2-prepared composites(Fig.11(b)),and the nuclei responsible for the formation of the overgrowth cones is observed.Those results indicate that the texture of Pyc is deteriorated by the introduction of CO2in gas phase.This view can be also confirmed by the results of XRD given in Table 1.The d002-spacing is higher and Lcis lower for the specimens obtained from CH4-CO2than those from CH4-H2.

    It has been generally recognized that the microstructure of PyC is determined by the composition of the gas phase within the porous preforms.RL PyC arises from a gas with an optimum ratio of small light hydrocarbon(especially acetylene C2)to the aromatic hydrocarbons(especially benzene C6).It has beenreported that H2,as a reaction product,has a direct influence on the reaction kinetics,especially on the formation of benzene from acetylene[9].Thus,a pure single RL PyC is obtained when H2is used as a carrier gas.While CO2,as an oxidizing gas,has a significant effect on the PyC deposition,but a limited effect on the composition of the gas phase within the porous preforms due to the low diffusion rate of CO2.Therefore,the RL PyC is also produced,but defects are formed in the laminar deposit in presence of CO2, starting from nodules around which overgrowth cones are formed according to the model of Coffin[16], where defects are amplified layer after layer with progress of deposition.

    Fig.11 TEM images of the specimens,(a)from CH4-H2and(b)from CH4-CO2.

    Table 1 Microcrystalline parameters of the specimens sliced from the sample disks from CH4-H2and CH4-CO2.

    4 Conclusions

    The effects of the type of carrier gases on the densification rate,bulk density and microstructure of C/C composites fabricated by isothermal CVI,have been comprehensively evaluated,and the following conclusions are drawn from the present work:

    In the initial 50 h,the densification rate obtained from CH4-H2is obviously higher than that from CH4-CO2,while the densification rate from CH4-H2is lower than that from CH4-CO2with a further increase of infiltration time.The average bulk density of the disk from CH4-CO2(1.723 g/cm3)is higher than that (1.626 g/cm3)from CH4-H2and the maximum radial density gradient is lower for the former (0.056 g/cm3)than that for the latter (0.074 g/cm3).However,the maximum thickness direction density gradient is higher(0.010 g/cm3) for the former than the latter(0.005 g/cm3).These significant changes are caused by the fact that CO2can effectively reduce the surface deposition rate due to the oxidizing effect,but does not inhibit the in-pore infiltration due to its lowe diffusion rate.When the carrier gas is switched from H2to CO2,the matrix is changed from the pure RL to hybrid RL PyC with overgrowth cones,and the average degree of graphitization reduces from 62.7%to 50.8%.These are resulted from the fact that defects are formed in the deposits by introducing CO2in the gas phase and the overgrowth cones deteriorate the texture degree of Pyc.

    [1] Delhaes P.Chemical vapor deposition and infiltration processes of carbon materials[J].Carbon,2002,40(5):641-657.

    [2] Luo R Y,Liu T,Li J S,et al.Thermophysical properties of carbon/carbon composites and physical mechanism of thermal expansion and thermal conductivity[J].Carbon,2004,42 (14):2887-2895.

    [3] SUN Chao,ZHANG Bo,YANG Xiao-guang,et al.Effect of cycle time of in-situ polymerization of naphthalene on the densification and performance of C/C composites[J].New Carbon Materials,2012,27(1):49-54.

    (孫 超,張 博,楊曉光,等.原位聚合增密次數(shù)對(duì)C/C復(fù)合材料性能的影響[J].新型炭材料,2012,27(1):49-54.)

    [4] Reuge N,Vignoles G L.Modeling of isobaric-isothermalchemical vapor infiltration:effects of reactor control parameters on a densification[J].Journal of Materials Processing Technology, 2005,166(1):15-29.

    [5] Ozcan S D,Tezcan J,Filip P.Microstructure and elastic properties of individual components of C/C composites[J].Carbon, 2009,47(15):3403-3414.

    [6] Zhang W G,Hüttinger K J.Simulation studies on chemical va-por infiltration of carbon[J].Composites Science and Technology,2002,62(15):1947-1955.

    [7] Rovillain D,Trinquecoste M,Bruneton E,et al.Film boiling chemical vapor infiltration:An experimental study on carbon/ carbon composite materials[J].Carbon,2001,39(9):1355-1365.

    [8] Dupel P,Bourrat X,Pailler R.Structure of pyrocarbon infiltraed by pulse-CVI[J].Carbon,1995,33(9):1193-1204.

    [9] Becker A,Hu Z,Hüttinger K J.A hydrogen inhibition modelof carbon deposition from light hydrocarbons[J].Fuel,2000,79 (13):1573-1580.

    [10] Zhang WG,Hu Z J,Hüttinger K J.Chemical vapor infiltration of carbon fiber felt:optimization of densification and carbon microstructure[J].Carbon,2002,40(14):2529-2545.

    [11] Tang Z H,Xiong X,Zhang H B.Effect of carrier gas on bulk densiy and microstructure distribution of carbon/carbon composties fabricated by thermal gradient chemical vapor infiltration [J].Carbon,2012,50(3):1243-1252.

    [12] Kermiotis Ch,Vourliotakis G,Skevis G,et al.Experimental and computationalstudy of methane mixtures pyrolysis in a flow reactor under atmospheric pressure[J].Energy,2002,43(1): 103-110.

    [13] Vignoles G L,Langlais F,Descamps C,et al.CVD and CVI of pyrocarbon from various precursors[J].Surface and Coatings Technology,2004,188-189:241-249.

    [14] Ferrari A C.Determination of bonding in diamond-like carbon by Raman spectroscopy[J].Diamond and Related Materials, 2002,11(3-6):1053-1061.

    [15] Kuzmany H,Pfeiffer R,Salk N,et al.The mystery of the 1 140 cm-1Raman line in nanocrystalline diamond films[J]. Carbon,2004,42(5-6):911-917.

    [16] Coffin L F.Structure-property relations for pyrolytic graphite [J].Journal of the American Ceramic Society,1964,47 (10):473-478.

    Effect of carrier gases on densification rate,bulk density and microstructure of carbon/carbon composites

    HOU Zhen-hua, HAO Ming-yang, LUO Rui-ying, XIANG Qiao, YANG Wei, SHANG Hai-dong, XU Huai-zhe
    (SchoolofPhysicsandNuclearEnergyEngineering,BeijingUniversityofAeronauticsandAstronautics,Beijing100191,China)

    Effect of carrier gases(H2and CO2)on the densification rate,bulk density and microstructure of carbon/carbon composites fabricated by isothermalchemical vapor infiltration from methane(CH4)was investigated.In the initial 50 h,the densification rate obtained from CH4-H2is obviously higher than that from CH4-CO2,while the densification rate from CH4-H2is lower than that from CH4-CO2with a further increase of infiltration time.When the carrier gas is switched from H2to CO2,the average bulk density of the compositeincreases from 1.626 to 1.723 g/cm3,the maximum radial density gradient decreases from 0.074 to 0.056 g/cm3,the matrix changes from the pure rough laminar to hybrid rough laminar pyrocarbon with overgrowth cones,and the average degree of graphitization reduces from 62.7%to 50.8%.These significant changes are caused by the fact that CO2can effectively reduce the surface deposition rate but does not inhibit the in-pore infiltration,and thatdefects are formed in the deposits by a CO2introduction in gas phase and the resulting overgrowth cones deteriorate the texture degree of pyrocarbon.

    Carbon/carbon composites;Microstructure;Chemical vapor deposition;Carrier gas

    LUO Rui-ying,Professor.E-mail:ryluo@buaa.edu.cn

    TQ342+.76

    A

    1007-8827(2015)04-0364-08

    國家自然科學(xué)基金(21071011).

    羅瑞盈,教授.E-mail:ryluo@buaa.edu.cn

    侯振華,博士研究生.E-mail:houzhenhualove@126.com

    Received date:2015-02-25;Revised date:2015-07-20

    Foundation item:National Natural Science Foundation of China(21071011).

    Author introduction:HOU Zhen-hua,Ph.D.E-mail:houzhenhualove@126.com

    English edition available online ScienceDirect(http://www.sciencedirect.com/science/journal/18725805).

    10.1016/S1872-5805(15)60196-2

    猜你喜歡
    載氣振華微觀
    不同載氣對(duì)GaN薄膜外延生長影響的研究進(jìn)展
    家住西安
    聚丙烯裝置載氣壓縮機(jī)安裝質(zhì)量控制
    甘肅科技(2020年21期)2020-04-13 00:33:32
    氣相色譜儀的故障問題分析及解決辦法
    Cole-Hopf Transformation Based Lattice Boltzmann Model for One-dimensional Burgers’Equation?
    一種新的結(jié)合面微觀接觸模型
    高壓下不同載氣多原料超濃相氣力輸送機(jī)理及流動(dòng)特性研究
    科技資訊(2016年4期)2016-06-11 06:26:56
    微觀的山水
    詩選刊(2015年6期)2015-10-26 09:47:10
    “杯”慘
    微觀中國
    浙江人大(2014年8期)2014-03-20 16:21:15
    精品第一国产精品| 老熟妇乱子伦视频在线观看| 国产男靠女视频免费网站| 深夜精品福利| 午夜福利视频1000在线观看 | 欧美精品亚洲一区二区| 精品久久久久久,| 91成年电影在线观看| 后天国语完整版免费观看| 自拍欧美九色日韩亚洲蝌蚪91| 国内精品久久久久精免费| 午夜福利影视在线免费观看| 波多野结衣av一区二区av| 成人亚洲精品一区在线观看| 黄色片一级片一级黄色片| 久久人人爽av亚洲精品天堂| 色婷婷久久久亚洲欧美| 无遮挡黄片免费观看| 成人亚洲精品一区在线观看| 亚洲欧美激情综合另类| 91九色精品人成在线观看| 99久久久亚洲精品蜜臀av| 国产精品免费一区二区三区在线| 亚洲人成电影观看| 国产精品久久电影中文字幕| 97人妻天天添夜夜摸| 无遮挡黄片免费观看| 亚洲狠狠婷婷综合久久图片| 夜夜夜夜夜久久久久| 亚洲情色 制服丝袜| 国语自产精品视频在线第100页| 国产男靠女视频免费网站| 亚洲无线在线观看| 女性被躁到高潮视频| 97碰自拍视频| 88av欧美| 国产成人精品无人区| 狂野欧美激情性xxxx| 欧美日本视频| 成人三级黄色视频| 欧美在线一区亚洲| 黄色丝袜av网址大全| 欧美日韩精品网址| 他把我摸到了高潮在线观看| 禁无遮挡网站| 脱女人内裤的视频| 老熟妇仑乱视频hdxx| 免费高清视频大片| 午夜老司机福利片| 一本大道久久a久久精品| 亚洲少妇的诱惑av| 狠狠狠狠99中文字幕| 美女 人体艺术 gogo| 国产激情欧美一区二区| 精品人妻1区二区| 国产精品自产拍在线观看55亚洲| 欧美中文日本在线观看视频| 老熟妇乱子伦视频在线观看| 久久中文看片网| 欧美成人一区二区免费高清观看 | 国产精品免费一区二区三区在线| 国产熟女午夜一区二区三区| 精品高清国产在线一区| 国产精品影院久久| 国产高清有码在线观看视频 | 嫩草影院精品99| bbb黄色大片| 国产1区2区3区精品| 女人被躁到高潮嗷嗷叫费观| 免费看美女性在线毛片视频| 欧美黄色淫秽网站| 免费无遮挡裸体视频| 国产真人三级小视频在线观看| 少妇裸体淫交视频免费看高清 | 久久人妻福利社区极品人妻图片| 午夜福利成人在线免费观看| 夜夜看夜夜爽夜夜摸| 午夜免费观看网址| 久久香蕉激情| 精品久久久精品久久久| 国产主播在线观看一区二区| 久久午夜亚洲精品久久| 国产亚洲精品综合一区在线观看 | 精品国产亚洲在线| av有码第一页| 欧美丝袜亚洲另类 | 国产精品久久电影中文字幕| 国产视频一区二区在线看| 午夜免费观看网址| 人人妻人人澡人人看| √禁漫天堂资源中文www| 亚洲av五月六月丁香网| 美女高潮喷水抽搐中文字幕| 国产成人一区二区三区免费视频网站| 国产精品乱码一区二三区的特点 | 黄片播放在线免费| 欧美+亚洲+日韩+国产| 色综合站精品国产| 97超级碰碰碰精品色视频在线观看| 欧美日本视频| 国产主播在线观看一区二区| 成人手机av| 人人澡人人妻人| 妹子高潮喷水视频| 久久久国产精品麻豆| 免费不卡黄色视频| 老熟妇乱子伦视频在线观看| 88av欧美| 夜夜夜夜夜久久久久| 天天一区二区日本电影三级 | 精品国产乱子伦一区二区三区| 久久久久久人人人人人| 香蕉丝袜av| 老司机午夜福利在线观看视频| 欧美激情久久久久久爽电影 | 脱女人内裤的视频| 欧美av亚洲av综合av国产av| 中亚洲国语对白在线视频| 天堂影院成人在线观看| 午夜精品国产一区二区电影| 香蕉丝袜av| 亚洲男人的天堂狠狠| 国产精品免费视频内射| 国产三级黄色录像| 女人精品久久久久毛片| 欧美不卡视频在线免费观看 | 亚洲少妇的诱惑av| 1024视频免费在线观看| 免费观看精品视频网站| 亚洲欧美日韩无卡精品| 这个男人来自地球电影免费观看| 看黄色毛片网站| 村上凉子中文字幕在线| 中亚洲国语对白在线视频| 久久久久久久久免费视频了| 国产男靠女视频免费网站| 51午夜福利影视在线观看| 国产激情久久老熟女| 又紧又爽又黄一区二区| 国产亚洲欧美在线一区二区| 色综合欧美亚洲国产小说| 国语自产精品视频在线第100页| 欧美激情 高清一区二区三区| 国产欧美日韩一区二区精品| 欧美绝顶高潮抽搐喷水| 黄片小视频在线播放| 欧美人与性动交α欧美精品济南到| 99国产精品99久久久久| 日韩欧美一区视频在线观看| 国产成人av教育| 欧美 亚洲 国产 日韩一| 日本 av在线| 成人手机av| 丝袜美足系列| 黄色女人牲交| 精品无人区乱码1区二区| 老司机深夜福利视频在线观看| 久久狼人影院| 在线观看免费午夜福利视频| 麻豆av在线久日| 国产精品一区二区免费欧美| 午夜影院日韩av| 亚洲黑人精品在线| 欧美久久黑人一区二区| 好男人电影高清在线观看| 国内毛片毛片毛片毛片毛片| 国产人伦9x9x在线观看| 男女午夜视频在线观看| 中亚洲国语对白在线视频| 精品国内亚洲2022精品成人| 亚洲国产精品999在线| 最近最新免费中文字幕在线| 一级毛片高清免费大全| 免费av毛片视频| 国产欧美日韩一区二区精品| 国产精品乱码一区二三区的特点 | 丝袜美足系列| 国产精品,欧美在线| 99香蕉大伊视频| 搡老熟女国产l中国老女人| av欧美777| 波多野结衣一区麻豆| 欧美日本视频| 黄片小视频在线播放| x7x7x7水蜜桃| 一区二区三区激情视频| 黄频高清免费视频| 高潮久久久久久久久久久不卡| 99国产极品粉嫩在线观看| 母亲3免费完整高清在线观看| 怎么达到女性高潮| 久久狼人影院| 极品人妻少妇av视频| 一边摸一边抽搐一进一出视频| 十八禁网站免费在线| 夜夜夜夜夜久久久久| 精品不卡国产一区二区三区| 香蕉丝袜av| 制服人妻中文乱码| 在线视频色国产色| 嫁个100分男人电影在线观看| 看黄色毛片网站| 久久精品aⅴ一区二区三区四区| av福利片在线| 一级黄色大片毛片| 日本a在线网址| 精品久久久久久久久久免费视频| 亚洲自拍偷在线| 十八禁人妻一区二区| 色播在线永久视频| 久久天堂一区二区三区四区| 在线av久久热| 99久久久亚洲精品蜜臀av| 两个人视频免费观看高清| 亚洲欧美日韩高清在线视频| av视频免费观看在线观看| 国产精品美女特级片免费视频播放器 | 欧美不卡视频在线免费观看 | 黄色女人牲交| 国产成人欧美在线观看| 999精品在线视频| 亚洲精品中文字幕一二三四区| 精品久久久久久久久久免费视频| 丁香欧美五月| 可以在线观看的亚洲视频| 亚洲一区中文字幕在线| 精品久久久久久久毛片微露脸| 亚洲第一电影网av| 成人三级黄色视频| 亚洲人成伊人成综合网2020| 在线观看www视频免费| 亚洲九九香蕉| 91精品国产国语对白视频| 午夜a级毛片| 国产精品美女特级片免费视频播放器 | 亚洲视频免费观看视频| 精品午夜福利视频在线观看一区| 在线观看www视频免费| 一夜夜www| 50天的宝宝边吃奶边哭怎么回事| 国产主播在线观看一区二区| 精品无人区乱码1区二区| 国产精品亚洲一级av第二区| 国产高清有码在线观看视频 | 一级作爱视频免费观看| 又紧又爽又黄一区二区| 久久久久久久精品吃奶| 美国免费a级毛片| 人人妻人人爽人人添夜夜欢视频| 久久精品国产99精品国产亚洲性色 | 日韩 欧美 亚洲 中文字幕| 男人操女人黄网站| 久热爱精品视频在线9| 免费高清在线观看日韩| 欧美一级a爱片免费观看看 | 亚洲国产欧美日韩在线播放| 丝袜人妻中文字幕| 亚洲专区字幕在线| 久久精品国产亚洲av香蕉五月| 如日韩欧美国产精品一区二区三区| 搞女人的毛片| 大陆偷拍与自拍| 久久人人爽av亚洲精品天堂| 午夜免费观看网址| 午夜成年电影在线免费观看| 中文字幕人成人乱码亚洲影| 国产亚洲欧美98| 欧美日韩黄片免| 欧美成人性av电影在线观看| 好看av亚洲va欧美ⅴa在| 日本精品一区二区三区蜜桃| 级片在线观看| 国产高清激情床上av| 久久久精品国产亚洲av高清涩受| 老熟妇仑乱视频hdxx| 在线观看午夜福利视频| 亚洲午夜精品一区,二区,三区| 久久精品人人爽人人爽视色| 日日摸夜夜添夜夜添小说| 日韩欧美一区二区三区在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 日韩欧美国产一区二区入口| 99香蕉大伊视频| 国产精品亚洲一级av第二区| 国产精品久久视频播放| 欧美日韩精品网址| 欧美在线一区亚洲| 又黄又爽又免费观看的视频| 制服丝袜大香蕉在线| 窝窝影院91人妻| 久久天堂一区二区三区四区| 多毛熟女@视频| 久久人人精品亚洲av| 久久久国产成人免费| 黄色成人免费大全| 啪啪无遮挡十八禁网站| 亚洲午夜精品一区,二区,三区| 俄罗斯特黄特色一大片| 91在线观看av| 日韩视频一区二区在线观看| 久久久久久久久中文| 午夜福利,免费看| 亚洲avbb在线观看| 啦啦啦免费观看视频1| 日本撒尿小便嘘嘘汇集6| 欧美一区二区精品小视频在线| www.www免费av| 亚洲色图av天堂| 亚洲九九香蕉| 国产成+人综合+亚洲专区| 久久久久久国产a免费观看| 人人澡人人妻人| 精品国产美女av久久久久小说| 精品日产1卡2卡| 日本五十路高清| 性少妇av在线| 韩国精品一区二区三区| 日本一区二区免费在线视频| 午夜福利高清视频| 99精品久久久久人妻精品| 精品国产亚洲在线| 香蕉国产在线看| 亚洲欧美日韩另类电影网站| 中亚洲国语对白在线视频| 少妇熟女aⅴ在线视频| 久久久精品欧美日韩精品| 亚洲精品av麻豆狂野| 日本精品一区二区三区蜜桃| 国产成人av激情在线播放| 亚洲成人国产一区在线观看| 两个人看的免费小视频| 精品乱码久久久久久99久播| 国产av一区在线观看免费| 精品一品国产午夜福利视频| 免费久久久久久久精品成人欧美视频| 亚洲第一av免费看| 成人三级做爰电影| 在线观看免费视频网站a站| 精品欧美一区二区三区在线| 国产又爽黄色视频| 老司机午夜福利在线观看视频| 涩涩av久久男人的天堂| 日本vs欧美在线观看视频| 亚洲精品国产区一区二| 好男人在线观看高清免费视频 | 日韩中文字幕欧美一区二区| 日韩大码丰满熟妇| 午夜两性在线视频| 又大又爽又粗| 午夜两性在线视频| 男女之事视频高清在线观看| 国产成人av激情在线播放| 18禁国产床啪视频网站| 色综合欧美亚洲国产小说| 亚洲一区二区三区色噜噜| 亚洲五月天丁香| 亚洲av五月六月丁香网| 人成视频在线观看免费观看| 欧美激情久久久久久爽电影 | 国产成+人综合+亚洲专区| 人人妻人人爽人人添夜夜欢视频| 手机成人av网站| 国产精品,欧美在线| 香蕉国产在线看| 麻豆一二三区av精品| 日本 av在线| 久99久视频精品免费| 色老头精品视频在线观看| 午夜免费观看网址| 午夜老司机福利片| 美女国产高潮福利片在线看| 88av欧美| 精品久久蜜臀av无| 悠悠久久av| 日本 欧美在线| 国产1区2区3区精品| 久久精品aⅴ一区二区三区四区| 99久久国产精品久久久| 一二三四在线观看免费中文在| 亚洲无线在线观看| 久久伊人香网站| 午夜免费成人在线视频| 亚洲五月婷婷丁香| 久久精品亚洲精品国产色婷小说| 亚洲av美国av| 精品日产1卡2卡| 18禁观看日本| 日韩大码丰满熟妇| 一本综合久久免费| 久久久水蜜桃国产精品网| 亚洲av电影不卡..在线观看| 欧美黑人精品巨大| 午夜久久久久精精品| 黄片小视频在线播放| 黑人欧美特级aaaaaa片| 长腿黑丝高跟| 久久久久久久久中文| 黑丝袜美女国产一区| 国产亚洲精品av在线| 黄色视频,在线免费观看| 99久久99久久久精品蜜桃| 国产一区二区三区在线臀色熟女| 欧美 亚洲 国产 日韩一| 狠狠狠狠99中文字幕| 亚洲av五月六月丁香网| 久久久久九九精品影院| 亚洲一区二区三区色噜噜| 久久久国产成人免费| 亚洲全国av大片| 午夜老司机福利片| 亚洲国产精品sss在线观看| 欧美一级毛片孕妇| 黄色女人牲交| 黄色a级毛片大全视频| 亚洲精品粉嫩美女一区| 精品卡一卡二卡四卡免费| 黑丝袜美女国产一区| 欧美绝顶高潮抽搐喷水| 色精品久久人妻99蜜桃| 999精品在线视频| 国产极品粉嫩免费观看在线| 亚洲美女黄片视频| 亚洲精品国产一区二区精华液| 久久亚洲精品不卡| 最近最新中文字幕大全电影3 | 国产三级在线视频| 成人亚洲精品av一区二区| 国产主播在线观看一区二区| 久久久久久久久免费视频了| 欧美日韩中文字幕国产精品一区二区三区 | 欧美日韩瑟瑟在线播放| 电影成人av| 精品少妇一区二区三区视频日本电影| 亚洲成av人片免费观看| 好男人电影高清在线观看| 亚洲成a人片在线一区二区| 一级a爱片免费观看的视频| 校园春色视频在线观看| 免费av毛片视频| 午夜免费鲁丝| 亚洲av电影在线进入| 搞女人的毛片| 又大又爽又粗| 亚洲专区中文字幕在线| 老司机午夜福利在线观看视频| 久久精品aⅴ一区二区三区四区| 最近最新中文字幕大全电影3 | 搡老妇女老女人老熟妇| 国产乱人伦免费视频| 亚洲五月婷婷丁香| 日韩精品青青久久久久久| 少妇的丰满在线观看| 欧美黑人精品巨大| 啦啦啦观看免费观看视频高清 | 国产乱人伦免费视频| 大香蕉久久成人网| 波多野结衣高清无吗| 首页视频小说图片口味搜索| 少妇被粗大的猛进出69影院| 国产高清视频在线播放一区| 国产国语露脸激情在线看| 免费看a级黄色片| 国产亚洲欧美精品永久| 欧美黑人欧美精品刺激| 精品国产国语对白av| 国产高清有码在线观看视频 | 国产精品日韩av在线免费观看 | 在线视频色国产色| 在线观看日韩欧美| 变态另类成人亚洲欧美熟女 | 亚洲熟女毛片儿| 18美女黄网站色大片免费观看| 亚洲专区字幕在线| 国产三级黄色录像| 国内精品久久久久精免费| 久久天堂一区二区三区四区| 亚洲国产中文字幕在线视频| 日韩成人在线观看一区二区三区| 久久这里只有精品19| 亚洲精品中文字幕在线视频| 桃红色精品国产亚洲av| 少妇 在线观看| 亚洲黑人精品在线| 在线十欧美十亚洲十日本专区| 91字幕亚洲| 精品欧美国产一区二区三| 亚洲中文字幕日韩| 色播亚洲综合网| 亚洲av五月六月丁香网| 香蕉丝袜av| 午夜久久久久精精品| 亚洲国产毛片av蜜桃av| 九色国产91popny在线| 视频区欧美日本亚洲| 欧美日韩瑟瑟在线播放| 久久午夜亚洲精品久久| 天天躁狠狠躁夜夜躁狠狠躁| 午夜久久久久精精品| 视频区欧美日本亚洲| www日本在线高清视频| 成年人黄色毛片网站| 欧美日本亚洲视频在线播放| 国产av一区在线观看免费| 国产精品日韩av在线免费观看 | 91国产中文字幕| 99国产极品粉嫩在线观看| 久久伊人香网站| 国产三级黄色录像| 成年版毛片免费区| 国产熟女午夜一区二区三区| 久久国产精品男人的天堂亚洲| 亚洲情色 制服丝袜| 99国产综合亚洲精品| 一级黄色大片毛片| 很黄的视频免费| 午夜福利一区二区在线看| 黄色毛片三级朝国网站| 色播亚洲综合网| 久久久久久人人人人人| 一卡2卡三卡四卡精品乱码亚洲| 午夜免费观看网址| 咕卡用的链子| 亚洲精品久久国产高清桃花| 欧美+亚洲+日韩+国产| 法律面前人人平等表现在哪些方面| 一二三四社区在线视频社区8| 美国免费a级毛片| 18禁裸乳无遮挡免费网站照片 | av欧美777| 一级毛片精品| 国产精品久久久久久人妻精品电影| 每晚都被弄得嗷嗷叫到高潮| 亚洲欧美精品综合久久99| 亚洲熟妇中文字幕五十中出| 757午夜福利合集在线观看| 波多野结衣一区麻豆| 国产又爽黄色视频| 99精品在免费线老司机午夜| cao死你这个sao货| 999久久久国产精品视频| 自拍欧美九色日韩亚洲蝌蚪91| 老汉色av国产亚洲站长工具| 757午夜福利合集在线观看| 久9热在线精品视频| 成人三级黄色视频| 免费观看精品视频网站| 欧美在线一区亚洲| 好男人电影高清在线观看| 色尼玛亚洲综合影院| 成人免费观看视频高清| 变态另类成人亚洲欧美熟女 | 男女做爰动态图高潮gif福利片 | 亚洲精品美女久久久久99蜜臀| 不卡av一区二区三区| 真人一进一出gif抽搐免费| 免费少妇av软件| 人妻丰满熟妇av一区二区三区| 久久人妻熟女aⅴ| 亚洲国产欧美日韩在线播放| 欧美日韩亚洲国产一区二区在线观看| 国产一区二区激情短视频| 曰老女人黄片| 日本一区二区免费在线视频| 丰满的人妻完整版| 香蕉久久夜色| 波多野结衣一区麻豆| 在线观看一区二区三区| 真人做人爱边吃奶动态| 久久精品成人免费网站| 色在线成人网| 我的亚洲天堂| 亚洲一码二码三码区别大吗| 精品电影一区二区在线| 日本三级黄在线观看| 91成年电影在线观看| 亚洲三区欧美一区| 精品欧美一区二区三区在线| 国产一区二区在线av高清观看| 9热在线视频观看99| 18禁黄网站禁片午夜丰满| 久久天堂一区二区三区四区| 欧美乱色亚洲激情| 国产熟女午夜一区二区三区| 两个人免费观看高清视频| 欧美乱码精品一区二区三区| 午夜精品在线福利| 在线观看免费视频网站a站| 亚洲av成人一区二区三| 高清毛片免费观看视频网站| 一级a爱片免费观看的视频| 久久 成人 亚洲| 久久精品成人免费网站| 在线视频色国产色| 中文字幕av电影在线播放| 在线观看午夜福利视频| 欧美av亚洲av综合av国产av| 亚洲精品av麻豆狂野| 亚洲精品久久国产高清桃花| 成人三级黄色视频| 看片在线看免费视频| 视频在线观看一区二区三区| 亚洲国产毛片av蜜桃av| 久久 成人 亚洲| 高清毛片免费观看视频网站| 欧美在线黄色| 看片在线看免费视频| 黄片大片在线免费观看| 久久国产精品男人的天堂亚洲| 看黄色毛片网站| 欧美乱妇无乱码| 午夜a级毛片| 亚洲一区二区三区不卡视频| 欧美人与性动交α欧美精品济南到| 国产精品久久久人人做人人爽| 免费在线观看视频国产中文字幕亚洲|