• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    氧化石墨烯對水泥基復(fù)合材料微觀結(jié)構(gòu)和力學性能的影響

    2015-06-05 14:36:38呂春祥劉伯偉李崇智
    新型炭材料 2015年4期
    關(guān)鍵詞:增韌水泥石抗折

    王 琴, 王 健, 呂春祥, 劉伯偉, 張 昆, 李崇智

    氧化石墨烯對水泥基復(fù)合材料微觀結(jié)構(gòu)和力學性能的影響

    王 琴1, 王 健1, 呂春祥2, 劉伯偉1, 張 昆1, 李崇智1

    (1.北京建筑大學土木與交通工程學院工程結(jié)構(gòu)與新材料北京市高校工程研究中心綠色建筑與節(jié)能技術(shù)北京市重點實驗室,北京100044; 2.中國科學院山西煤炭化學研究所碳纖維制備技術(shù)國家工程實驗室,山西太原030001)

    研究了不同摻量下氧化石墨烯(GO)對水泥石以及膠砂微觀結(jié)構(gòu)和力學性能的影響。含16.5%水的水泥漿、0.05%GO及3倍于水泥的沙子共混物作為添加劑制備成砂漿。通過SEM、液氮吸附儀和一系列標準實驗分別對水泥石的微觀形態(tài)、孔隙結(jié)構(gòu)、抗壓抗折強度以及水泥凈漿的流動度、黏度、凝結(jié)時間進行表征;考察不同GO摻量下水泥水化放熱的變化情況。結(jié)果表明:GO對水泥漿有顯著增稠和促凝作用;GO的摻入可以有效降低水泥的水化放熱量;GO對水泥石有顯著的增強增韌效果,28天齡期時,GO質(zhì)量分數(shù)為0.05%的水泥石,3、7和28 d抗壓強度和抗折強度同比對照組分別增加52.4%、46.5%、40.4%和86.1%、68.5%、90.5%,膠砂的抗壓強度和抗折強度同比對照組分別增加43.2%、33%、24.4%和69.4%、106.4%、70.5%;GO在水泥硬化過程中對水泥石中晶體產(chǎn)物的產(chǎn)生有促進作用并能規(guī)整晶體的排布而形成針狀晶體簇,改善水泥石中的孔結(jié)構(gòu),降低水泥石中微孔的體積,增加水泥石的密實度,對水泥石有顯著地增強增韌效果。

    氧化石墨烯;水泥基復(fù)合材料;增強增韌;微觀結(jié)構(gòu);水泥水化熱

    1 Introduction

    With the development of the infrastructure,high performance concrete is urgently needed in the key projects such as high-rise buildings,cross-sea bridges,subsea tunnel and hydraulic or marine works, which are usually under the environment attacked easily by salts and alkalis[1].Compared with the conventional concrete,high performance concrete requires the concrete with considerably improved performances such as high strength,high durability,high chloride ion migration resistivity,high freeze resistance,high sulphate resistance,low shrinkage,low abrasion and low carbon footprint et al.[2,3].

    The cementcomposites have a noticeable feature of relatively high compressive strength and low tensile and flexural strength,which belong to brittle materials.New carbon materials such as carbon fibers,carbon nanotubes and carbon black were used to enhance the strength of cement composites or provide the cement composites with improved electric or thermal performance[4-8].Nevertheless,the reinforcing materials such as carbon fibers and carbon nanotubes only play a physical role in the cement composites,which does not participate in the hydration and microstructure modification of the cement,especially the pore structure and crystalline structure of cement paste. And the dispersion of carbon fibers and carbon nanotubes in the cementmatrix is also challenging because of the hydrophobic surface of these reinforcing materials[9-11].Therefore,it is urgent to find a new material which can notonly disperse uniformly in the aqueous system of hydrated cement,but also improve the toughness of hardened cement paste by microstructure modifications.Graphene oxide(GO)is an intermediate product in grapheme preparation,which has many advantages as a reinforcing material such as ambiphilicity,excellent mechanical,electrical and thermal properties[12-14].It is easy to disperse uniformly in cements,which is beneficial to the reinforcing effect. The application of GO in the cement was seldom reported in the literature,and further attention should be paid on this field.

    In this paper,the influence of GO addition on the fluidity,viscosity,setting time of cement paste, and the pore structure,surface morphology,compressive strength and flexuralstrength of hardened cement paste is investigated.And the mechanism of the reinforcing and toughening effect is discussed.

    2 Experimental

    2.1Materials and reagents

    The cement paste and mortar investigated in this study were prepared using an ordinary Portland cement type 42.5 and GO dispersion having a solid content of 4 mg/mL[15]was provided by Institute of Coal Chemistry,Chinese Academy of Sciences.The chemical and physical properties of the cement and the GO are presented in Table 1 and Table 2 and Fig.1.Polycarboxylate superplasticiser with a solid contentof 50%was used.Standard sand used in this study was produced by Xiamen.

    Table 1 Chemical components of the cement.

    Table 2 Main physical index of cement.

    2.2Preparation

    2.2.1 Preparation of the cement paste

    The mixing proportion of cement paste was designed according to GB/T8077-2000“Test methods of concrete admixtures homogeneity”.The GO dosage was varied from 0.01%to 0.05%in cement paste to investigate the influence in the fluidity,viscosity,setting time and strength.The dosage of water-reducing agent is 0.5%of cement.After testing the fluidity,viscosity and setting time of the cement paste,the cementpaste was putinto a mould(40 mm ×40 mm×160 mm)and maintained at standard conditions.The compressive strength and flexural strength were tested at different ages.The mixing proportion is shown in Table 3.

    2.2.2 Preparation of the cement mortar

    The mixing proportion of cement mortar was designed according to GB/T2419-2005“Test methods of fluidity of cement mortar”,with some parameters modified according the test.The ratio of water to cement(W/C)is 0.37,the dosage of water-reducing agent is 3.5 g,the dosage of antifoaming agentsis 2 g.After testing the fluidity of the cementmortar, the cement mortar was put into a mould(40 mm× 40 mm×160 mm)for curing under a standard condition.Detail mixing proportion is shown in Table 4.

    Fig.1 AFM image of graphene oxide nanosheets.

    2.3Characterization

    2.3.1 Characterization of GO

    The size and thickness of GO was characterized by an atom force microscope(AFM)of SPI3800N/ SPA400.GO dispersion was diluted to the required concentration and then placed on a mica sheet.

    Table 3 Mixing proportions of cement paste with different dosages of GO.

    Table 4 Mixing proportions design of mortar with different dosages of GO.

    2.3.2 Composition of cement

    The oxides in the cement were characterized by a X-ray fluorescence spectrometer of supermini wavelength dispersion type.

    2.3.3 Setting time of the cement paste

    The setting time of the cement paste was tested according to GB/T1346-2001“Testmethods of water requirement of normal consistency,setting time,stability of cement paste”.

    2.3.4 Fluidity of the cement paste

    The fluidity of the cement paste was measured according to GB/T8077-2000“Test methods of concrete admixtures homogeneity”.

    2.3.5 Viscosity of the cement paste

    The viscosity of the cement paste was tested by a NDJ-5S digitalrotary viscosity meter.Due to the limit of non-Newtonian fluidity of the cement paste,the results of viscosity are used only by comparison.

    2.3.6 Fluidity of the cement mortar

    The fluidity of the cement mortar was measured according to GB/T2419-2005“Testmethods of fluidity of cement mortar”

    2.3.7 Mechanicalstrength of hardened cementpaste and mortar

    The strength of the cement paste and mortar is tested according to GB/T17617-2007“Test methods of strength of cement mortar”.

    2.3.8 Heat of hydration of the cement

    The heat of hydration of cement was characterized by a Toni CAL cement heat of hydration meter. The hydration time was chosen to be 72 h at 25℃with a cement weight of 10 g and a W/C ratio of 0.5.

    2.3.9 Surface morphology

    The morphology of the hardened cement paste was characterized by a S-4800 Scanning Electronic Microscope.

    2.3.10 Pore structure

    The pore structure of the samples was characterized by a ASAP2460 nitrogen adsorption equipment.

    3 Results and discussion

    3.1Characterization of GO

    AFM image of GO is shown in Fig.1.From Fig.1,it can be seen that the size and thickness of GO sheetis 100-1000 and 0.7 nm,respectively,indi-cating that GO is one or two atom thick layers.

    3.2Influence of GO addition on the workability of the cement paste and mortar

    The influence of GO addition on the fluidity, viscosity and setting time of the cement paste are shown in Table 5.From Table 5,with the increase of GO dosage,the fluidity of cement paste decreases, the viscosity of cement paste increases and the setting time of cement paste is shortened.Especially,when the GO addition is up to 0.03%,there is an evident change in the fluidity,viscosity and setting time.This illustrates that the GO addition may make the cement paste thicker and may accelerate the hydration of the cement.The decrease of fluidity and increase of viscosity may be attributed to the nanometer size effect and surface chemistry of GO.The super large specific area together with oxygen-containing functional groups of GO may increase its interaction with hydrated cement,leading to the aggregation of cement granular.The large number of functional groups on the surface and edges of GO may also produce chemical reaction in the alkaline environment of cement,accelerating the hydration of cement and shortening the setting time.Though the GO addition may result in the reduction of setting time,the reduction of setting time is no more than 0.5 h,which is within the range of the national standard and has no bad effect on the usage of cements.

    The influence of GO addition on the fluidity of the cement mortar is shown in Table 6.From Table 6,it can be seen that GO also reduces the fluidity of the cement mortar,which is similar to the result obtained for the cement paste.

    Table 5 Effect of GO on cement paste properties.

    Table 6 Effect of GO on mortar fluidity.

    3.3Influence of GO addition on the hydration heat of cement

    The influence of GO addition on the hydration heat of cement and rate of heat release are shown in Fig.2 and Fig.3.

    Fig.2 Effect of GO on cement hydration exothermic rate.

    From Fig.2 and Fig.3,it can be observed that the hydration heat of cement during 3 d decreases first and levels off thereafter.At a dosage of 0.02%,the rate of heat release and the total amount of heat release have a sharp decrease over 50%.Although with the increase of the,dosage of GO,the rate of heatrelease and the total amount of heat release gradually decrease and level off with the dosage of GO.

    Fig.3 Effect of GO on cement hydration heat.

    Silicon fume and fly ash is generally added to the concrete to reduce the hydration heatof cement.Their mechanism of reduction of hydration heat is considered to be a combination of replacement of cement, retarding the time of the peak of heat release and the secondary hydration reaction[16-18].From Fig.2,itis found that the heat release curves of hydration at the different GO dosages,the occurrence time and the duration time of hydration reaction at all stages and the shape of curves are all similar to each other with no other peak of heat release observed,indicating that the GO addition doses not retard the occurrence of the peak of heat evolution and,the mechanism of hydration heat reduction of cement is different from that ofsilicon fume and fly ash.This may be correlated to the physico-chemical interaction of GO with cement during the hydration.The high specific surface energy and oxygen functionalgroups of GO may promote the hydration procedure through adsorption of the ion in the hydration system and accelerate nucleation, growth and phase separation of the hydrated crystalline compounds at early hydration stages.This may result in the reduction of the total amount of heat released.The detailed mechanism of GO action during the cement hydration needs investigating further.

    3.4Influence of GO addition on the mechanical strength of the hardened cement paste and mortar

    The influence of GO addition on the compressive strength and flexural strength of the ement paste and mortar at different ages are shown in Fig.4 and Fig. 5,respectively.From Fig.4,it can be seen that with the increase of dosage of GO,the compressive and flexural strength of the hardened cement paste all increase.When the dosage of GO is 0.05%,the flexural strength increase by 86.1%,68.5%and 90.5% and the compressive strength by 52.4%,46.5%and 40.4%at 3,7 and 28 d,respectively compared with the sample with no GO.

    Fig.4 The flexural and compressive strength of hardened cement pastes with different dosages of GO.

    From Fig.5,it can be seen that with the increase of dosage of GO,the compressive and flexural strength of the hardened cement mortar all increase. When the dosage of GO is 0.05%,the flexural strength increase by 69.4%,106.4%and 70.5% and the compressive strength by 43.2%,33%and 24.4%at 3,7 and 28 d,respectively,compared with the control groups.GO has a more obvious effect on flexural strength than compressive strength for both the cement paste and mortar.

    3.5Surface morphology and texture structure of the hardened cement paste

    Fig.6 shows the SEM graph of the hardened cement paste with different GO contents at28 d.Fig.6 (a)shows the morphology of the hardened cement paste with no GO.Inter-growing ettringite crystals and a large amount of pores can be observed. Fig.6(b)-6(f)showed the morphology of hardened cement paste with the GO content from 0.01%to 0.05%,respectively.Flower-like crystals can be observed in Fig.6(c)-(e).With the increase of GO content,the amount of flower-like crystals increase, the numbers of harmful pores decrease,and the texture structure become more compact.This phenomenon illustrates that GO can accelerate the hydration of cement and produce more regular crystal which may improve the crystalline defect and contribute to the increase of flexural strength and compressive strength.

    Fig.5 The flexural and compressive strength of mortar with different dosages of GO.

    It is worth noting that,in comparison with Fig. 6(d)and(e),although more amount of flower-like crystals were observed in Fig.6(f),more crystal imperfection and disorderly arrangement were also observed.This phenomenon may help to explain the aforementioned results that the flexural strength of cement paste and mortar at 0.05%has no noticeable increase as compared with 0.04%.

    3.6Influence of GO addition on the pore structure of the hardened cement paste

    The hardened cement paste is comprised by the solid state of hydrated cement and pores.These pores may be formed by the excess water and air in the cement paste during the hardening process,which have a noticeable effect on their strength,durability and shrinkage.In this paper,nitrogen adsorption was used to investigate the pore sizes and their distribution.

    According to the pore size,the pores in the hardened cement paste are divided into four types:large pores(>1 000 nm),capillary pores(100-1 000 nm),transitional pores(10-100 nm)and gel pores(<10 nm).On the basis of this theory,the pores in sample are mainly transitional pores and gel pores.Moreover,the pores lager than 50 nm is regar-ded as macroscopic pores,which contribute to the strength and permeability,and the pores smaller than 50 nm is viewed as microscopic pores,which may have an important influence on the dry shrinkage and creep[19-21].

    Fig.6 Effect of GO dosage on SEM images of the hardened cement paste at28 d.

    The influence of GO addition on the cumulative pore volume distribution of the hardened cementpaste at 3,7 and 28 d are illustrated in Fig.7,Fig.8 and Fig.9,respectively.From Fig.7-9,it can be seen thatwith the increase of the age,the cumulative pore volume decrease.With the GO addition,there is an evident change of pore volume of the hardened cement paste,that is the cumulative pore volume (<100 nm)decrease with the increase of GO dosage. In addition,with the increase of hardening time,GO play a more important role.

    Fig.7 Effect of GO dosage on the cumulative pore volume distribution of the hardened cement paste at3 d.

    From Fig.7,the cumulative pore volume curves with different contents of GO have no evident changes,except for the pores of around 3 nm,which is considered to be the pores between the calcium silicate hydrate gel(C-S-H)layers[22].This results indicate thatin the initial stage of hardening,GO has an important effect on the gel pores and the total pore volume of gel pores decrease straightly with the increase of GO dosage.From Fig.8 and Fig.9,the pore volume curves with different contents of GO have more evident changes,indicating that the addition of GO not only influence the pore volume with small pore size,but also influence the pore volume with large pore size with increasing age.

    Fig.8 Effect of GO dosage on the cumulative pore volume distribution of the hardened cement paste at7 d.

    The above-mentioned results show that the GO addition can effectively modify the pore structure,reduce the pore volume,and make the hardened cement paste compacted,which is in accordance with the results obtained from SEM.The GO addition into thecement paste accelerates the crystalline hydrated products and make the crystal aligned regularly,which modifies pore structure and improves tightness of hardened cement paste.And this may elaborate the mechanism of reinforcing and toughening action of GO.In addition,due to the fact that the micro-pores is correlated to the performance of freezing resistance, permeability resistance and dry shrinkage of the hardened cement paste,the GO addition may improve the durability and anti-shrinkage performance of concretes.This will be further investigated in the subsequent work.

    Fig.9 Effect of GO dosage on the cumulative pore volume distribution of the hardened cement paste at28 d.

    4 Conclusions

    The influence of GO dosage on the fluidity,viscosity and setting time of fresh cement paste and on the morphology,pore structure and mechanical strength of hardened cement paste and mortar were investigated in this paper.The main results are as follows.

    The GO addition can increase the viscosity and shorten the setting time of the cement paste.When the dosage of GO is 0.05%,the viscosity increases sharply and the setting time is reduced by 30 min. The fluidity of the cement mortar has the same tendency with the cement paste.The GO addition can reduce of hydration heat of cement,which may be ascribed to the heat absorption in oxidation-reduction reaction between GO and cement.When the dosage of GO is 0.05%,the hydration heat of cement can be reduced by 54%.GO have a reinforcing and toughening effect on the cement-based composites.The GO addition can remarkably increase the compressive and flexural strength of the hardened cement paste and mortar,especially strength in the early stage.When the dosage of GO is 0.05%,the flexural strength of hardened cement paste increase by 86.1%,68.5% and 90.5%and the compressive strength by 52.4%, 46.5%and 40.4%at 3,7 and 28 d,respectively. The flexural strength of hardened cement mortar increase by 69.4%,106.4%and 70.5%and the compressive strength by 43.2%,33%and 24.4%at3,7 and 28 d,respectively.The GO may take part in the hydration reaction of cement,accelerate the nucleation,growth and phase separation of hydrated products,promote the hydration procedure,make the crystal aligned regularly,which result in modification of pore structure and improvement of tightness of the hardened cementpaste.

    [1] Tang J H,Cai J W,Zhou M K.The status of researching and developing in high performance concrete[J].Science and Technology of Overseas Building Materials,2006,27(3):11-15.

    [2] Boulekbache B,Hamrat M,Chemrouk M,et al.Influence of yield stress and compressive strength on direct shear behaviour of steel fibre-reinforced concrete[J].Construction and Building Materials,2012,27(1):6-14.

    [3] Sun M,Liu Q,Li Z,etal.A study of piezoelectric properties of carbon fiber reinforced concrete and plain cement paste during dynamic loading[J].Cement and Concrete Research,2000,30 (10):1593-1595.

    [4] Chung D D L.Carbon materials for structural self-sensing,electromagnetic shielding and thermal interfacing[J].Carbon, 2012,50(9):3342-3353.

    [5] Luo J L,Duan Z D,Zhao T J,etal.Hybrid effect of carbon fiber on piezoresistivity of carbon nanotube cementbased composite [J].Advanced Mater Res,2011,143-144(1):639-643.

    [6] Bahar D,Salih Y.Thermoelectric behavior of carbon fiber reinforced light weight concrete with mineral admixtures[J].New Carbon Materials,2008,23(1):21-24. (Bahar D,Salih Y.炭纖維增強輕質(zhì)礦粉泥混土的熱電行為[J].新型炭材料,2008,23(1):21-24)

    [7] Li H,Xiao H G,Ou J P.Effect of compressive strain on electrical resistivityof carbon black-filled cement-based composites[J]. Cement and Concrete Composites,2006,28(9):824-828.

    [8] Chung D D L.Electrically conductive cement-based materials [J].Advances in Cement Research,2004,16(4):167-176.

    [9] Li K Z,Wang C,Li H J,et al.Development and study of carbon fiber reinforced cement composites[J].Materials Review, 2006,20(5):85-88.

    [10] Li G Y,Wang P M.Microstructure and mechanical properties of carbon nanotubes cement matrix composites[J].Journal of The Chinese Ceramic Society,2005,33(1):105-108.

    [11] Lao Y S,Zhang L,Wang X P,et al Research progress in effect of nanoparticles on the performance of cement-based materials[J].Materials Review,2014,28(3):93-96.

    [12] YANG Quan-hong.Dreams may come:from fullerene,carbon nanotube to graphene[J].New Carbon Material,2011,26 (1):1-4.

    (楊全紅."夢想照進現(xiàn)實"——從富勒烯、碳納米管到石墨烯[J].新型炭材料,2011,26(1):1-4.)

    [13] Du H J,Pang S D.Transport of water and chloride ion in cement composites modified with graphene nanoplatelet[J].Key Engineering Materials,2015,629-630(1):162-167.

    [14] Yang Y G,Chen Ch M,Wen Y F,et al.Oxidized graphene and graphene based polymer composites[J].New Carbon Materials,2008,23(3):193-200.

    (楊永崗,陳成猛,溫月芳,等.氧化石墨烯及其與聚合物的復(fù)合[J].新型炭材料,2008,23(3):193-200.)

    [15] Chen C M,Yang Q H,Yang Y G,et al.Self-assembled freestanding graphite oxide membrane[J].Adv Mater,2009,21 (29):3007-3011.

    [16] Nawa M N A T.Effectof fly ash on the kinetics of portland cement hydration atdifferentcuring temperatures[J].Cementand Concrete Research,2011,41(6):579-589.

    [17] Snelson D G,Wild S,O'Farrell M.Heat of hydration of Portland Cement-Metakaolin-Fly ash(PC-MK-PFA)blends[J]. Cement and Concrete Research,2008,38(6):832-840.

    [18] Langan B W,Weng K,Ward M A.Effect of silica fume and fly ash on heat of hydration of Portland cement[J].Cementand Concrete Research,2002,32(7):1045-1051.

    [19] ZENG Q,LI K,FEN-chong T,et al.Pore structure characterization of cement pastes blended with high-volume fly-ash[J]. Cement and Concrete Research,2012,42(1):194-204.

    [20] Provis J L,Myers R J,White C E,et al.X-ray microtomography shows pore structure and tortuosity in alkali-activated binders[J].Cement and Concrete Research,2012,42(6):855-864.

    [21] Neithalath N,Sumanasooriya M S,Deo O.Characterizing pore volume,sizes,and connectivity in pervious concretes for permeability prediction[J].Materials Characterization,2010,61 (8):802-813.

    [22] Constantinides G,Ulm F.The effect of two types of C-S-H on the elasticity of cement-based materials:Results from nanoindentation and micromechanicalmodeling[J].Cementand Concrete Research,2004,34(1):67-80 .

    Influence of graphene oxide additions on the microstructure and mechanical strength of cement

    WANG Qin1, WANG Jian1, LU Chun-xiang2, LIU Bo-wei1, ZHANG Kun1, LI Chong-zhi1
    (1.BeijingKeyLaboratoryofGreenBuildingandEnergyEfficiencyTechnology,BeijingCollegeEngineeringResearchCentreofEngineeringStructure andNewMaterial,BeijingUniversityofCivilEngineeringandArchitecture,Beijing100044,China;2.NationalEngineeringLaboratoryofPreparationTechnologyofCarbonFiber,InstituteofCoalChemistry, ChineseAcademyofSciences,Taiyuan030001,China)

    The effect of adding graphene oxide(GO)to cement on its microstructure and mechanicalstrength was investigated.A paste of cement(16.5%of water)and GO(0.05%)was prepared together with an identical mixture to which sand(3x the weight of the cement)had been added to form a mortar.The fluidity,viscosity and setting time of the mortar and the morphology,pore structure and compressive and flexural strengths of both the hardened cement paste and mortar,were investigated using SEM,nitrogen adsorption,and fluidity,viscosity,mechanical and hydration tests.The influence of the GO addition on the hydration heat of the cement was also tested.Results show that the addition of GO increases the viscosity,decreases the fluidity and shortens the setting time of the mortar.It also reduces the heat of hydration of the cement.The compressive and flexural strengths of the hardened cement paste at different times are increased by the addition of GO.The flexural strength was greater by 86.1%,68.5%and 90.5%after 3,7 and 28 days,respectively,and the corresponding compressive strength increases were 52.4%,46.5%and 40.4%For the hardened mortar,the corresponding increases are 69.4%,106.4%and 70.5%for flexural strength and 43.2%, 33%and 24.4%for compressive strength.The addition of GO promotes hydration,decreases pore volume,accelerates crystallite formation and causes the crystallites to align,which increases the tightness of both the hardened cement paste and mortar.

    Graphene oxide;Cement composites;Reinforcing and toughening;Microstructure;Hydration heatEnglish edition available online ScienceDirect(http://www.sciencedirect.com/science/journal/18725805).

    :WANG Qin,Lecturer.E-mail:wangqin@bucea.edu.cn

    10.1016/S1872-5805(15)60194-9

    TB332

    A

    2015-04-20;

    :2015-08-01

    北京市教委基金(KM201510016003);北京高校創(chuàng)新團隊建設(shè)與教師職業(yè)發(fā)展計劃項目(IDHT2013);國家自然科學基金(51408622);北京市自然科學基金(8144043).

    王 琴,講師.E-mail:wangqin@bucea.edu.cn

    1007-8827(2015)04-0349-08

    Foundation item:Beijing Municipal Commission of Education(KM201510016003);Beijing College Innovation Team-building and Teacher Career Development Project(IDHT2013);State Natural Sciences Foundation(51408622);Beijing Natural Sciences Foundation(8144043).

    猜你喜歡
    增韌水泥石抗折
    無固化劑水性樹脂提高固井水泥石抗腐蝕性能*
    油田化學(2022年4期)2023-01-10 07:54:14
    提高超低密度水泥石抗壓強度的方法
    化工管理(2022年14期)2022-12-02 11:47:00
    共混改性型PLA透明增韌的研究進展
    熟料中礦物含量與抗折強度相關(guān)性分析
    江西建材(2018年2期)2018-04-14 08:00:08
    Vortex Rossby Waves in Asymmetric Basic Flow of Typhoons
    拉伸形變作用下PLA/PBS增韌共混物力學性能研究
    中國塑料(2016年1期)2016-05-17 06:13:02
    根管治療術(shù)后不同修復(fù)方式對牙根抗折性能的影響
    共聚聚甲醛的增韌研究
    中國塑料(2015年2期)2015-10-14 05:34:18
    碳化對水泥石中硫元素分布的影響
    聚氯乙烯的共混增韌改性研究進展
    中國塑料(2014年12期)2014-10-17 02:49:36
    熟女人妻精品中文字幕| 国产精品女同一区二区软件| 天堂中文最新版在线下载 | 亚洲国产精品国产精品| 九九爱精品视频在线观看| 精品人妻熟女av久视频| 婷婷色综合www| 亚洲国产精品专区欧美| 免费看a级黄色片| 精品国产一区二区三区久久久樱花 | 人人妻人人爽人人添夜夜欢视频 | 伦理电影大哥的女人| 联通29元200g的流量卡| 大又大粗又爽又黄少妇毛片口| 国产综合懂色| 一级黄片播放器| 在线免费观看不下载黄p国产| 亚洲精品第二区| 一本一本综合久久| 日韩欧美精品免费久久| 青青草视频在线视频观看| 国产精品av视频在线免费观看| 亚洲成人精品中文字幕电影| 亚洲精品乱码久久久久久按摩| 欧美三级亚洲精品| 国产有黄有色有爽视频| 日韩,欧美,国产一区二区三区| 午夜精品一区二区三区免费看| 国产综合懂色| 老女人水多毛片| 涩涩av久久男人的天堂| 麻豆精品久久久久久蜜桃| 韩国高清视频一区二区三区| 好男人在线观看高清免费视频| 99久久精品国产国产毛片| 一区二区三区免费毛片| 91精品伊人久久大香线蕉| av在线播放精品| 最近中文字幕高清免费大全6| 午夜亚洲福利在线播放| 卡戴珊不雅视频在线播放| 男男h啪啪无遮挡| 亚洲av电影在线观看一区二区三区 | 国产在视频线精品| 亚洲欧美日韩卡通动漫| 日本爱情动作片www.在线观看| 国内少妇人妻偷人精品xxx网站| 亚洲色图av天堂| 99re6热这里在线精品视频| 免费av观看视频| 欧美激情国产日韩精品一区| 大香蕉久久网| 色网站视频免费| 九九在线视频观看精品| 亚洲av日韩在线播放| 日韩人妻高清精品专区| 国产永久视频网站| 国产极品天堂在线| 啦啦啦在线观看免费高清www| 久久久久久久久大av| av免费在线看不卡| 国产成年人精品一区二区| 最近最新中文字幕免费大全7| 91久久精品电影网| 亚洲精品自拍成人| 亚洲精品久久久久久婷婷小说| 我的老师免费观看完整版| 日日啪夜夜撸| 日本wwww免费看| 亚洲美女视频黄频| 大码成人一级视频| 欧美精品国产亚洲| a级毛片免费高清观看在线播放| 嫩草影院精品99| 欧美性感艳星| 青青草视频在线视频观看| 亚洲av电影在线观看一区二区三区 | 欧美xxxx性猛交bbbb| 亚洲美女搞黄在线观看| 又爽又黄无遮挡网站| tube8黄色片| 新久久久久国产一级毛片| 韩国av在线不卡| 中文字幕亚洲精品专区| 大香蕉97超碰在线| 丝袜脚勾引网站| 午夜爱爱视频在线播放| 国产人妻一区二区三区在| 国产乱来视频区| 亚洲精品第二区| 国产亚洲一区二区精品| 亚洲成人久久爱视频| 国产亚洲一区二区精品| 国产视频内射| 如何舔出高潮| 欧美 日韩 精品 国产| 秋霞在线观看毛片| 国产精品一区www在线观看| 国产淫片久久久久久久久| 亚洲成人一二三区av| 色视频www国产| 久久精品国产a三级三级三级| 国产成人a区在线观看| 亚洲综合精品二区| 高清日韩中文字幕在线| 国产亚洲午夜精品一区二区久久 | 日本一本二区三区精品| 国产色爽女视频免费观看| 精品视频人人做人人爽| 国产成人精品一,二区| 国产乱人偷精品视频| 黄色欧美视频在线观看| 午夜免费观看性视频| 精品一区二区三卡| 国产伦精品一区二区三区四那| 国产伦在线观看视频一区| 日韩,欧美,国产一区二区三区| 三级男女做爰猛烈吃奶摸视频| 人妻夜夜爽99麻豆av| 亚洲成人精品中文字幕电影| 国产精品秋霞免费鲁丝片| 少妇的逼好多水| 午夜免费鲁丝| 久久精品久久精品一区二区三区| 最后的刺客免费高清国语| 久久久色成人| 99热这里只有是精品在线观看| 久久精品国产a三级三级三级| 99热这里只有是精品50| 99re6热这里在线精品视频| 精品国产露脸久久av麻豆| 男女边摸边吃奶| 黄片无遮挡物在线观看| 亚洲伊人久久精品综合| 大码成人一级视频| 亚洲精品国产成人久久av| 91在线精品国自产拍蜜月| 国产精品一区www在线观看| 久久久久久久久久久丰满| 欧美变态另类bdsm刘玥| 中文字幕久久专区| 黄色配什么色好看| 欧美精品人与动牲交sv欧美| 国产爱豆传媒在线观看| 国产午夜精品久久久久久一区二区三区| av播播在线观看一区| 人妻夜夜爽99麻豆av| 不卡视频在线观看欧美| 成年女人看的毛片在线观看| 国产真实伦视频高清在线观看| 美女主播在线视频| 亚洲精品成人久久久久久| 一级毛片 在线播放| 91久久精品国产一区二区三区| 国产成人a∨麻豆精品| 国产欧美日韩一区二区三区在线 | 大陆偷拍与自拍| 又粗又硬又长又爽又黄的视频| 有码 亚洲区| 少妇猛男粗大的猛烈进出视频 | 免费观看av网站的网址| 男人舔奶头视频| 少妇人妻久久综合中文| 国产精品三级大全| 国产成人a∨麻豆精品| 少妇 在线观看| 亚洲图色成人| av在线亚洲专区| 日本免费在线观看一区| 在线观看av片永久免费下载| 亚洲av成人精品一二三区| 啦啦啦在线观看免费高清www| av国产精品久久久久影院| 久久国内精品自在自线图片| 美女视频免费永久观看网站| 日韩电影二区| 看免费成人av毛片| 全区人妻精品视频| 国产黄频视频在线观看| 国产成人91sexporn| 久久影院123| 97热精品久久久久久| 青春草国产在线视频| 久久久久久久久久久丰满| 久久久久久久久久成人| 欧美xxⅹ黑人| 哪个播放器可以免费观看大片| 99久久中文字幕三级久久日本| 一级二级三级毛片免费看| 一个人观看的视频www高清免费观看| 中文乱码字字幕精品一区二区三区| 成人二区视频| 91精品一卡2卡3卡4卡| 肉色欧美久久久久久久蜜桃 | 成年免费大片在线观看| 精品久久久噜噜| 成人高潮视频无遮挡免费网站| 天天躁夜夜躁狠狠久久av| 国产成人免费观看mmmm| 激情 狠狠 欧美| 高清欧美精品videossex| 建设人人有责人人尽责人人享有的 | 精品国产乱码久久久久久小说| 免费av毛片视频| 18禁在线播放成人免费| 国产淫片久久久久久久久| 久久久久久久久久久丰满| 久久鲁丝午夜福利片| 蜜臀久久99精品久久宅男| 午夜激情久久久久久久| 丝袜美腿在线中文| 建设人人有责人人尽责人人享有的 | 久久久成人免费电影| 69人妻影院| 国产精品99久久99久久久不卡 | 校园人妻丝袜中文字幕| 精品久久久精品久久久| 麻豆乱淫一区二区| 黄色欧美视频在线观看| 欧美区成人在线视频| 在线观看一区二区三区| 在线观看美女被高潮喷水网站| 51国产日韩欧美| 免费人成在线观看视频色| 你懂的网址亚洲精品在线观看| 免费高清在线观看视频在线观看| 九九久久精品国产亚洲av麻豆| 美女xxoo啪啪120秒动态图| 2021少妇久久久久久久久久久| 亚洲人成网站在线播| 国产成人freesex在线| 成人毛片a级毛片在线播放| 我的女老师完整版在线观看| 久久99热这里只频精品6学生| 五月天丁香电影| 国产v大片淫在线免费观看| 搞女人的毛片| 国产黄频视频在线观看| 少妇的逼好多水| 丝袜脚勾引网站| 最近最新中文字幕大全电影3| 网址你懂的国产日韩在线| 深夜a级毛片| 国产精品精品国产色婷婷| 99热这里只有是精品在线观看| 日韩电影二区| 亚洲无线观看免费| 一区二区三区精品91| 高清日韩中文字幕在线| 王馨瑶露胸无遮挡在线观看| 香蕉精品网在线| 精品久久久噜噜| 日韩国内少妇激情av| 自拍偷自拍亚洲精品老妇| av又黄又爽大尺度在线免费看| 综合色丁香网| 久久精品国产亚洲网站| 亚洲三级黄色毛片| 你懂的网址亚洲精品在线观看| 看非洲黑人一级黄片| 中国国产av一级| 亚洲人与动物交配视频| 男人添女人高潮全过程视频| 国产有黄有色有爽视频| 久久精品国产自在天天线| 一级二级三级毛片免费看| 如何舔出高潮| 99re6热这里在线精品视频| 国产女主播在线喷水免费视频网站| 一区二区av电影网| 久久影院123| 亚洲人与动物交配视频| 成年女人在线观看亚洲视频 | 日韩成人av中文字幕在线观看| 2021少妇久久久久久久久久久| 极品少妇高潮喷水抽搐| 亚洲性久久影院| 亚洲成人中文字幕在线播放| 校园人妻丝袜中文字幕| 国产精品伦人一区二区| 亚洲,欧美,日韩| 亚洲天堂av无毛| 舔av片在线| 建设人人有责人人尽责人人享有的 | 亚洲欧洲日产国产| 亚洲婷婷狠狠爱综合网| 精品人妻一区二区三区麻豆| 女人久久www免费人成看片| 国产精品无大码| 亚洲aⅴ乱码一区二区在线播放| 亚洲不卡免费看| 在线a可以看的网站| 色吧在线观看| 国产在视频线精品| 特大巨黑吊av在线直播| 99久久九九国产精品国产免费| 国产成人91sexporn| 在现免费观看毛片| av专区在线播放| 亚洲av国产av综合av卡| 色吧在线观看| 在现免费观看毛片| 成人欧美大片| 日日啪夜夜撸| 综合色av麻豆| 熟女人妻精品中文字幕| 国产精品不卡视频一区二区| 亚洲欧美日韩无卡精品| 国产精品女同一区二区软件| 美女高潮的动态| 五月开心婷婷网| 街头女战士在线观看网站| 欧美性猛交╳xxx乱大交人| 韩国高清视频一区二区三区| 人人妻人人看人人澡| 日韩欧美精品v在线| 男男h啪啪无遮挡| 久久精品久久久久久久性| 一个人看视频在线观看www免费| 日韩中字成人| 能在线免费看毛片的网站| 亚洲图色成人| 在线天堂最新版资源| 黑人高潮一二区| 99久久精品国产国产毛片| 成人午夜精彩视频在线观看| av网站免费在线观看视频| 2018国产大陆天天弄谢| 在现免费观看毛片| 精品视频人人做人人爽| 边亲边吃奶的免费视频| 在线观看三级黄色| 熟女人妻精品中文字幕| 日韩成人伦理影院| 黄片wwwwww| 一级毛片我不卡| 日韩视频在线欧美| 1000部很黄的大片| 成人特级av手机在线观看| 天堂俺去俺来也www色官网| 免费av观看视频| 26uuu在线亚洲综合色| 嫩草影院新地址| 国产综合懂色| 成人毛片60女人毛片免费| 国产亚洲91精品色在线| 建设人人有责人人尽责人人享有的 | 青青草视频在线视频观看| 中文字幕制服av| 大陆偷拍与自拍| 大片电影免费在线观看免费| 久久久久精品性色| 男人添女人高潮全过程视频| 1000部很黄的大片| 久久久精品94久久精品| 国产精品久久久久久精品古装| 少妇高潮的动态图| 欧美日韩视频精品一区| 亚洲,一卡二卡三卡| 亚洲精品一区蜜桃| 制服丝袜香蕉在线| 成人特级av手机在线观看| 亚洲精品456在线播放app| 大陆偷拍与自拍| 丰满人妻一区二区三区视频av| 下体分泌物呈黄色| 91精品一卡2卡3卡4卡| 精品人妻视频免费看| 美女内射精品一级片tv| 成人综合一区亚洲| 亚洲欧美精品专区久久| 色视频在线一区二区三区| av黄色大香蕉| 永久免费av网站大全| 亚洲精品国产色婷婷电影| 欧美 日韩 精品 国产| 亚洲欧美一区二区三区黑人 | av在线播放精品| 国产 一区 欧美 日韩| 自拍偷自拍亚洲精品老妇| 丰满少妇做爰视频| 男女无遮挡免费网站观看| 国产精品国产三级专区第一集| 69人妻影院| 欧美潮喷喷水| 亚洲欧美日韩无卡精品| 春色校园在线视频观看| 人人妻人人爽人人添夜夜欢视频 | 大片免费播放器 马上看| 欧美一级a爱片免费观看看| av免费观看日本| 国模一区二区三区四区视频| 最近2019中文字幕mv第一页| av在线亚洲专区| 中国三级夫妇交换| 日本欧美国产在线视频| 国产探花极品一区二区| 色吧在线观看| 美女视频免费永久观看网站| 欧美最新免费一区二区三区| 国产一区二区亚洲精品在线观看| 伊人久久国产一区二区| 天天躁夜夜躁狠狠久久av| 精品少妇久久久久久888优播| 丝袜喷水一区| 亚洲欧美精品专区久久| 色播亚洲综合网| 欧美变态另类bdsm刘玥| av国产免费在线观看| 国产亚洲精品久久久com| 亚洲国产精品999| 亚洲欧美成人综合另类久久久| 大香蕉97超碰在线| 熟女av电影| 日韩大片免费观看网站| 久久人人爽人人片av| 久久久久国产网址| 九色成人免费人妻av| 亚洲精品456在线播放app| 欧美精品一区二区大全| 在线观看美女被高潮喷水网站| 中文在线观看免费www的网站| 身体一侧抽搐| 久久97久久精品| 国产日韩欧美在线精品| 国产极品天堂在线| 国产高清有码在线观看视频| 少妇的逼水好多| 久久久久久伊人网av| 熟女人妻精品中文字幕| 国产白丝娇喘喷水9色精品| 青春草亚洲视频在线观看| 免费看av在线观看网站| 午夜福利在线观看免费完整高清在| 亚洲最大成人av| 国产综合懂色| 久久精品国产自在天天线| 国产成人aa在线观看| 九九在线视频观看精品| 91在线精品国自产拍蜜月| 亚洲av中文字字幕乱码综合| 国产成人免费观看mmmm| 久久精品国产亚洲网站| 身体一侧抽搐| 91精品伊人久久大香线蕉| 成人综合一区亚洲| 菩萨蛮人人尽说江南好唐韦庄| 国产人妻一区二区三区在| 大香蕉久久网| 欧美一区二区亚洲| 欧美一级a爱片免费观看看| 美女主播在线视频| 乱系列少妇在线播放| 美女脱内裤让男人舔精品视频| 丰满乱子伦码专区| 久久精品国产鲁丝片午夜精品| 欧美亚洲 丝袜 人妻 在线| 嫩草影院入口| 高清视频免费观看一区二区| 国产精品国产三级国产av玫瑰| 亚洲成人一二三区av| 欧美精品人与动牲交sv欧美| 91久久精品国产一区二区成人| 免费看不卡的av| 日韩制服骚丝袜av| 天堂俺去俺来也www色官网| 欧美区成人在线视频| 午夜亚洲福利在线播放| 亚洲人成网站在线观看播放| 国产亚洲最大av| 日韩制服骚丝袜av| 97精品久久久久久久久久精品| 人妻制服诱惑在线中文字幕| 亚洲欧洲日产国产| 中文字幕人妻熟人妻熟丝袜美| eeuss影院久久| 久久精品久久久久久久性| 精品熟女少妇av免费看| av国产精品久久久久影院| a级一级毛片免费在线观看| 免费不卡的大黄色大毛片视频在线观看| 成人鲁丝片一二三区免费| 中文字幕av成人在线电影| 亚洲av免费高清在线观看| 伊人久久精品亚洲午夜| 亚洲精品国产色婷婷电影| 久久久a久久爽久久v久久| 久久99热这里只有精品18| 美女视频免费永久观看网站| 在线看a的网站| 欧美日韩国产mv在线观看视频 | 欧美变态另类bdsm刘玥| 精品国产三级普通话版| 久久久久久久大尺度免费视频| 身体一侧抽搐| 免费观看的影片在线观看| 国产有黄有色有爽视频| av一本久久久久| 日本一本二区三区精品| 亚洲av男天堂| 三级国产精品片| 亚洲精品aⅴ在线观看| 欧美zozozo另类| 国产精品人妻久久久久久| 国国产精品蜜臀av免费| 干丝袜人妻中文字幕| 午夜福利网站1000一区二区三区| 久久97久久精品| 另类亚洲欧美激情| 九九久久精品国产亚洲av麻豆| 性色av一级| 在线a可以看的网站| 18禁在线无遮挡免费观看视频| 中国美白少妇内射xxxbb| 国产黄a三级三级三级人| 晚上一个人看的免费电影| 男女边摸边吃奶| 午夜福利视频精品| 亚洲人成网站在线观看播放| 亚洲精品色激情综合| 精品99又大又爽又粗少妇毛片| 亚洲av中文av极速乱| 日本一二三区视频观看| 国产熟女欧美一区二区| 成人无遮挡网站| 日本熟妇午夜| 亚洲av电影在线观看一区二区三区 | 99久久人妻综合| 男女啪啪激烈高潮av片| 亚洲成人久久爱视频| 日韩av在线免费看完整版不卡| 热99国产精品久久久久久7| 亚洲国产精品999| 国产成人福利小说| 久久精品国产亚洲av天美| 欧美日韩在线观看h| 特大巨黑吊av在线直播| 精华霜和精华液先用哪个| 人妻系列 视频| 人人妻人人爽人人添夜夜欢视频 | 国产v大片淫在线免费观看| 自拍偷自拍亚洲精品老妇| 人妻系列 视频| 国内精品美女久久久久久| videossex国产| 网址你懂的国产日韩在线| 18禁在线无遮挡免费观看视频| 国产探花极品一区二区| a级毛片免费高清观看在线播放| 秋霞伦理黄片| 99久久中文字幕三级久久日本| 亚洲精品乱码久久久v下载方式| 久久久久精品久久久久真实原创| 欧美 日韩 精品 国产| 2022亚洲国产成人精品| 国产片特级美女逼逼视频| 1000部很黄的大片| 国内精品宾馆在线| 精品人妻偷拍中文字幕| av女优亚洲男人天堂| 国产免费一级a男人的天堂| 禁无遮挡网站| 国产免费福利视频在线观看| 欧美xxxx黑人xx丫x性爽| 久久女婷五月综合色啪小说 | 久热久热在线精品观看| 免费看a级黄色片| 超碰97精品在线观看| 2021天堂中文幕一二区在线观| 麻豆精品久久久久久蜜桃| 亚洲精品视频女| 少妇人妻精品综合一区二区| 国内少妇人妻偷人精品xxx网站| 亚洲av免费高清在线观看| av网站免费在线观看视频| 中文乱码字字幕精品一区二区三区| 久久久久国产网址| 精品久久久久久久末码| 久久久久久久久久久免费av| 国产精品久久久久久av不卡| 欧美最新免费一区二区三区| 丰满少妇做爰视频| 成人免费观看视频高清| 天美传媒精品一区二区| 看十八女毛片水多多多| 色播亚洲综合网| 你懂的网址亚洲精品在线观看| 卡戴珊不雅视频在线播放| 精品国产一区二区三区久久久樱花 | h日本视频在线播放| 嫩草影院入口| 国产午夜福利久久久久久| 午夜爱爱视频在线播放| 欧美精品一区二区大全| 国产精品久久久久久精品电影小说 | 亚洲欧美成人精品一区二区| 久久影院123| 日韩成人伦理影院| 久久6这里有精品| 精品国产一区二区三区久久久樱花 | 亚洲av日韩在线播放| 亚洲最大成人手机在线| 日韩av在线免费看完整版不卡| 久久久久性生活片| 国产亚洲5aaaaa淫片| 国产精品伦人一区二区| 视频区图区小说| 直男gayav资源| 日韩三级伦理在线观看| 80岁老熟妇乱子伦牲交| 亚洲精品乱久久久久久| 极品少妇高潮喷水抽搐| 亚洲国产精品专区欧美| 乱码一卡2卡4卡精品| 丰满人妻一区二区三区视频av|