• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Vortex Rossby Waves in Asymmetric Basic Flow of Typhoons

    2018-03-07 06:58:12TianjuWANGZhongZHONGandJuWANG
    Advances in Atmospheric Sciences 2018年5期
    關(guān)鍵詞:抗折強度

    Tianju WANG,Zhong ZHONG?,2,and Ju WANG

    1College of Meteorology and Oceanography,National University of Defense Technology,Nanjing 211101,China

    2Jiangsu Collaborative Innovation Center for Climate Change,Nanjing University,Nanjing 210023,China

    1.Introduction

    Observations have shown that when a tropical cyclone reaches a certain intensity,pronounced spiral cloud bands outside the eye wall of the tropical cyclone are formed(Huang and Chao,1980).Such spiral clouds are expected to grow along the radial direction and rotate around the typhoon center at a velocity not equal to the velocity of the basic flow(Liu and Yang,1980).Distinct wave-like fluctuations can be observed in the spiral cloud bands,indicating the existence of waves and eddies in the typhoon vortex(MacDonald,1968;Yu,2002).

    Studies of wave structures in typhoons can be traced back to the 1940s,when it was found that the spiral cloud bands of typhoons exhibit many features similar to inertia-gravity waves in the shallow water model.These wave structures in typhoons could be well explained by gravity wave theory(Wexler,1947;Tepper,1958;Tatehira,1961).Huang and Chao(1980)indicated that the group velocity of inertiagravity waves in typhoons was about 90 km h?1,and Liu and Yang(1980)found that the average phase velocity of inertiagravity waves(C0)was 28 m s?1.Niu(1991)argued that inertia-gravity waves in an unstable condition is a key factor that determines the development of typhoons.Anthes(1972)and Kurihara(1976)simulated tropical cyclones and found that energy in typhoons is largely dissipated in the form of gravity waves.However,despite great progress in the study of typhoons with the theory of inertia-gravity waves,one critical weakness in the application of gravity wave theory for typhoon studies is that the theoretical propagation velocity of inertia-gravity waves is much faster than the observed moving speed of typhoon spiral cloud bands(Yu,2002).Thereby,it is necessary to seek other more reasonable explanations for the wave structures in typhoons.

    As early as in the late 1960s,MacDonald(1968)found that wave structures similar to planetary Rossby waves exist in typhoons,which are actually the vortex Rossby waves proposed later by Montgomery and Kallenbach(1997).The theory of vortex Rossby waves overcomes the weakness of classical inertia-gravity wave theory,and yields a theoretical wave propagation velocity that is the same as in observations(Yu,2002).Shen et al.(2007)investigated vortex Rossby waves in both barotropic and baroclinic fluids,and their results indicated that barotropic and baroclinic vortex Rossby waves could be triggered by second-order horizontal and vertical shears in the basic flow of a typhoon.By studying the topographic impact on planetary Rossby waves,Luo and Chen(2003)investigated the influences of topography on the propagation of vortex Rossby waves using a quasi-geostrophic,barotropic model,and proposed the concept of topographic vortex Rossby waves.Deng et al.(2004)studied the effects of the Rossby parameter β in the formation of vortex Rossby waves using scale analysis and found that vortex Rossby waves could be triggered when the Rossby parameter β is introduced into a basic flow that even has no radial shears.Qiu et al.(2010)revealed a significant contribution of vortex Rossby waves to the formation of the secondary eye wall of a typhoon.In addition,based on their study of a typhoon process,Hall et al.(2013)indicated that the vortex Rossby waves with wavenumber-2 and 3 are closely linked with deep convection that develops rapidly in typhoons.Furthermore,wave ray theory has also been applied to study the impact of vortex Rossby waves on energy propagation in typhoons(Zhong et al.,2002).

    Many previous studies have studied vortex Rossby waves from various perspectives.However,for simplicity,the basic flow of a typhoon is always assumed to be symmetrical;whereas,in reality,it is often asymmetrical.Due to the asymmetry in the basic flow of a typhoon,the vorticity gradient will change with azimuth angle,which could radically affect the nature of the vortex Rossby waves.Thereby,using an asymmetric typhoon basic flow that is more realistic will be helpful in improving vortex Rossby wave theory and obtaining more representative results.In the present study,based on wave ray theory,a model with an asymmetric typhoon basic flow is employed to discuss the group velocity of vortex Rossby waves and the nature of wave rays.

    2.Vortex Rossby waves and rays in asymmetric basic flow of typhoons

    Barotropic shallow water equations in the cylindrical coordinate system with thef-plane approximation can be written as(Liu and Liu,2011)

    whereuis the radial velocity,vis the tangential velocity,ris the radius,θ is the azimuth angle(in radians),his the height of the free surface,f0is the Coriolis parameter,gis the gravitational acceleration,andtrepresents time.

    The dimensionless variables listed below are introduced in the present study:

    whereU0(~ 101m s?1),R(~ 106m),ΔH(~ 102m)andT(~105s)are the horizontal velocity,typhoon radius,temporal variability of height on the free surface,and characteristic time,respectively.Substituting the above variables for their corresponding variables in Eqs.(1)and(2),which are then divided by,we have

    Assuming,both are constructed by basic flow and perturbation flow respectively,and substituting them foruandvin Eq.(6)yields

    Without loss of generality,here,the tangential asymmetric basic flow is constructed by superimposing the wavenumber-1 perturbation flow on the symmetric tangential basic flow(Zhong et al.,2007).The dimensionless tangential asymmetric basic flow can be expressed by

    With Eq.(8),the radial basic flowˉucan be derived from the non-divergence equation as follows:

    where μ (~ 10?1)is the parameter of asymmetry for the basic flow,aandbare parameters for the basic flow structure,and θ0is the initial azimuth of the wavenumber-1 perturbation flow.When μ is set to zero,Eqs.(8)and(9)degenerate into an expression for the symmetric basic flow, and the larger value of μ corresponds to the stronger asymmetry in the basic flow.In addition,the radius of maximum wind(RMW)can be determined by parametersaandb.From Eq.(8),one can yield a value ofb?1/2for the RMW.In the present study,we seta=20 andb=100;then,the corresponding dimensionless RMW isr=0.1,which is about 100 km.Moreover,the locations of maximum and minimum velocities in the asymmetric basic flow are determined by the initial azimuth angle

    Using the dimensional format of Eqs.(8)and(9)(Huang and Chao,1980)(i.e.,multiplied by the characteristic speedU0=50 m s?1)and specifying the initial azimuth angle θ0=0 and asymmetry intensity parameter μ =0.2,the distributions of the tangential symmetric basic flow,the tangential wavenumber-1 perturbation flow,the tangential asymmetric basic flow,and the radial basic flow,are shown in Figure 1.It is clear that the tangential asymmetric basic flow speed(Figure 1c)is no longer distributed as concentric circles symmetrical about the typhoon center due to the consideration of the tangential wavenumber-1 perturbation flow(Figure 1b).Instead,large values occur to the north of the typhoon center and the tangential basic flow speed is obviously not symmetric about the typhoon center.When μ=0.2,the maximum flow speeds in the tangential symmetric basic flow,the tangential wavenumber-1 perturbation flow and the tangential asymmetric basic flow are 50 m s?1,10 m s?1and 60 m s?1,respectively.Figure 2 shows the distributions ofandin Eq.(7),from which it can be seen thatis very small whenris relatively small,but it will increase quickly withr.So,in this study,we assumeˉu(?ˉζ/?r)+(ˉv/r)(?ˉζ/?θ)≈0 inr~[0,0.35],as it is much smaller than the other items in this range.Moreover,the average tangential and radial speed within the ranges ofr~ [0,0.35]and θ~ [0,2π]in the asymmetric basic flow is 37.5 m s?1and ?6.8 m s?1.

    Based on the definition of the stream function(ψ),v=?ψ/?r,u=?(1/r)(?ψ/?θ),and the vorticity equation,Eq.(7),can be written in linear form inr~[0,0.35]:

    The solution to Eq.(10)can be obtained using the Wentzel-Kremers-Brillouin-Jeffreys(WKBJ)method.Suppose the solution to the slowly evolving wave packet(Zhong et al.,2002;Tao et al.,2012)is

    where(R,T,Θ)= ε(r,t,θ)and ε is a parameter smaller than 1,we have

    Fig.1.Distributions of the speed of tangential and radial basic flow(units:m s?1):(a)tangential symmetric basic flow;(b)tangential wavenumber-1 perturbation flow;(c)tangential asymmetric basic flow;(d)radial basic flow(the abscissa and ordinate indicate dimensionless distances from the typhoon center).

    Fig.2.Distributions of(a)andon the θ–r plane.

    wherekandlare radial and tangential wavenumbers,respectively.Substituting Eq.(12)into Eq.(10)and omitting the small term that includes ε,we obtain the frequency equation for vortex Rossby waves:

    which yields

    where ω is the frequency.

    The radial and tangential group velocities,Cg,randCg,θLiu and Yang(1980),can be expressed as

    Substituting Eq.(15)into Eq.(16),we can obtain Eq.(17)shown below:

    wheredr/(rdθ)is the slope of the wave ray.

    Integration of Eq.(17)can yield the rays of vortex Rossby waves in asymmetric basic flow.

    3.Numerical solution of the wave ray equation

    Since it is hard to obtain the analytical solution of the wave ray,Eq.(17),here,we seek its solution by numerical integration.The scheme for numerical integration is written as

    wherenis the number of integration steps,Δθ is the integration step,andf(r,θ)is the term on the right-hand side of Eq.(17).The initial value θ(0)is set to zero;the integration range ofris set to[0,0.35];the integration step Δθ=0.01;and wavenumberk=l=1.Figure 3 presents the wave rays obtained by numerical integration under the above conditions when μ is set to 0,0.2 and 0.3,respectively.

    Fig.3.Wave rays corresponding to various values of μ(the abscissa and the ordinate indicate dimensionless distances from the typhoon center).

    Figure 3 shows that the vortex Rossby wave rays propagate outward in a spiral pattern.The distances from the typhoon center of the wave rays increase with the azimuth angle and,apparently,the differences between the rays increase with the intensity of asymmetry(μ).The larger the value of μ,the greater the increase in the distance of the wave ray,and that makes a wave ray with larger μ farther away from the typhoon center.Although the difference between the asymmetric wave ray and the symmetric one is still large,the difference between wave rays for μ =0.2 and μ =0.3 becomes smaller with the increasing ofr.This suggests that the impact of the basic flow asymmetry on wave rays will generally decrease and ultimately be constrained within a certain radius.

    4.Group velocity

    Based on Eq.(17)for wave rays,the radial and tangential group velocities(Cg,randCg,θ)are two important factors affecting wave rays.In the following,we take μ =0.2 and θ0=0 as an example to explore the impacts of asymmetric basic flow on the vortex Rossby wave rays via analyzing characteristics of the radial and tangential group velocities.

    Figure 4 displays the distributions of dimensionless radial group velocityCg,ron the θ–rplane in both symmetric and asymmetric basic flows.In the symmetric basic flow(Fig.4a),Cg,ris always irrelevant to azimuth angle θ and only changes with radiusr.The large value ofCg,rappears atr=0.1(where the maximum tangential wind speed appears).In the asymmetric basic flow(Fig.4b),Cg,rchanges with bothrand θ and the largest value also appears at aroundr=0.1.The average dimensionless value ofCg,ris about 0.50 and the largest is 1.21 within the ranges ofr~[0,0.35]and θ~[0,2π],corresponding to an average and maximum radial group velocity of 25 m s?1and 60.5 m s?1.With Eq.(8),it can be found that when μ=0.2 the dimensionless maximum radial basic flow velocityˉuis?0.16,corresponding to?8.0 m s?1,which is much slower than the maximumCg,r.The average dimensionless radial basic flow speed is?0.14,corresponding to the average value of?6.8 m s?1,which is also much slower than the averageCg,r.When compared withˉv,although the averageCg,ris smaller,the maximum value ofCg,ris almost the same asˉv.This indicates that the characteristic ofCg,ris identical to that ofˉv,and the wave energy could propagate outward rapidly.

    (2)當AFA 1和AFA 2的摻量分別為2.5‰和3.0‰時,UHPC的28 d抗壓強度分別提高28.5%和21.5%;當AFA 1和AFA 2的摻量分別為3.5‰和3.0‰時,UHPC的28 d抗折強度分別提高了30.2%和28.8%。

    The difference between radial group velocities in symmetric and asymmetric basic flows can be written as

    whereandare radial group velocities in symmetric and asymmetric conditions,respectively.

    The distribution of ΔCg,ron the θ–rplane is displayed in Fig.5,which shows that ΔCg,ralso reaches its maximum at aroundr=0.1.

    It is worth noting that the distributions ofCg,rand ΔCg,rshown in Fig.4 and Fig.5 are obtained under the condition of an initial azimuth angle θ0=0 in the tangential wavenumber-1 perturbation flow and the radial basic flow.Compared with Fig.1,it is easy to identify that ΔCg,ris affected by both the features of asymmetry in the tangential and radial basic flows.For example,the maximum and minimum values of the wavenumber-1 perturbation flow are located at azimuth angles of θ=0.5π and 1.5π,and the locations of maximum and minimum values of the radial basic flow are at a θ= π and 0.Whenris small,the maximum and minimum values of ΔCg,rappear at θ≈ π and 2π,which is close to the location of the maximum and minimum values ofˉu.Whereas,for the largerr,the location of the maximum and minimum values of ΔCg,rwill rotate clockwise and approach those ofˉv,as shown in Fig.5.This suggests that both the tangential asymmetric wavenumber-1 flow and the radial basic flow can affect the distribution of radial group velocityCg,r;however,the tangential and radial basic flow shows different importance for differentr.Generally,the locations of the maximum and minimum value of ΔCg,rare closely linked with the azimuth angles of the asymmetry.Therefore,if the asymmetries of the basic flows intensify at specific azimuth angles,thenCg,rwill increase around these angles,and the wave energy will propagate outward more rapidly there.Similarly,when the asymmetry decreases at specific azimuth angles,the wave energy will propagate outward more slowly along these directions.

    Fig.4.Distributions of dimensionless radial group velocity Cg,ron the θ–r plane in(a)symmetric basic flow and(b)asymmetric basic flow.

    Fig.5.Distribution of ΔCgron the θ–r plane.

    The distribution of tangential group velocityCg,θon the θ–rplane is presented in Fig.6,which shows that the distribution ofCg,θ(Fig.6a)in the symmetric basic flow is similar to that ofCg,r(Figure 4a),and both change only with radius and reach their maximum values atr=0.1.In the asymmetric basic flow,however,although the maximum values ofCg,randCg,θboth appear at aroundr=0.1(Fig.6b and Fig.4b),with little difference in values,Cg,θis much larger thanCg,rat a certain radius(e.g.,atr=0.3,Cg,r≈ 0.2,Cg,θ≈ 0.6),indicating thatCg,randCg,θare different from each other.Cg,rdecreases more rapidly along the radial direction,and thereby the speed of wave energy propagation along the radial direction will become slow beyond a certain radius.In contrast,the radial gradient ofCg,θis relatively small,so the tangential propagation of wave energy can still maintain in regions far away from the typhoon center.It can be estimated that the average value of dimensionlessCg,θin the region shown in Fig.6(r~ [0,0.35],θ~ [0,2π])is 0.75,which corresponds to 37.5 m s?1,and is just the same as the average value ofˉv.Whereas,the maximum value of dimensionlessCg,θis 1.20,corresponding to 60.0 m s?1,which is also the same as the maximum value ofˉv.This suggests that wave energy can propagate along the tangential direction at the average speed of the tangential basic flow.In short,the wave energy propagation along the tangential direction is much faster than that in the radial direction.

    The difference between tangential group velocities in symmetric and asymmetric basic flows(ΔCg,θ)can be expressed as

    whereandare the tangential group velocities in symmetric and asymmetric basic flows,respectively.

    Figure 7 shows the distribution of ΔCg,θon the θ–rplane.ΔCg,θchanges with both azimuth angle θ and radiusr.The change in ΔCg,θwith θ demonstrates the asymmetric feature of tangential wavenumber-1 flow and the radial basic flow,and the azimuth angles corresponding to the locations of asymmetric maximum and minimum values also change withr.

    Fig.6.Distribution of dimensionless tangential group velocityCg,θon the θ–r plane in(aθ)symmetric basic flow and(b)asymmetric basic flow.

    Fig.7.Distribution of ΔCg,θon the θ–r plane.

    Compared with Fig.1,it is clear that whenris relatively small,the large and small values of ΔCg,θare located just between the locations of the maximum and minimum value ofˉvandˉu(e.g.,whenr~[0.01,0.05],the maximum and minimum values of ΔCg,θare located at about 0.3π and 1.3π),which means that the basic flowˉvandˉuare both important at this radial scope.However,whenrbecomes larger,areas of large and small values of ΔCg,θturn anticlockwise and basically overlap areas of large and small values of wavenumber-1 perturbation flow(e.g.,whenr≈0.1,the large and small ΔCg,θare located at about 0.5π and 1.5π),which suggests that the tangential wavenumber-1 perturbation plays a more important role for such conditions.Moreover,the locations of large and small ΔCg,θturn anticlockwise with a continuous increase ofr,indicating that the influence of radial flow decreases rapidly with increasingr.As a result,both the tangential wavenumber-1 perturbation flow and the radial basic flow both can increase(decrease)the value of ΔCg,θ,but the importance of the radial basic flow is only concentrated in areas for smallerr,and ΔCg,θis dominated by the tangential wavenumber-1 perturbation whenrbecomes larger.

    Based on the wave ray equation,Eq.(17),the ratio ofCg,rtoCg,θdetermines the ray slope of vortex Rossby waves.Distributions of ray slopes in symmetric and asymmetric basic flows are shown in Fig.8,which indicates that in the symmetric basic flow(Fig.8a)the ray slope is only associated with the radius,and its distribution is similar to that of the group velocity,with the maximum value occurring atr=0.1.In the asymmetric basic flow(Fig.8b),the distribution of the ray slope is completely different to that of the group velocity,although the large ray slope still occurs at aroundr=0.1.Impacts of asymmetry in the basic flow on the wave ray slope are mainly concentrated near the RMW,and the azimuth angle corresponding to the maximum wave ray slope is at around θ=1.13π.Differences between the ray slopes in symmetric and asymmetric basic flows(Fig.9)indicate that large differences also occur around the RMW, whereas the azimuth angle corresponding to the largest difference varies with the maximum speed of tangential wavenumber-1 perturbation flow and the radial basic flow.It is worth noting that the influence of asymmetry is still important for largerr,and this can explain the reason why the difference between wave rays of asymmetric flow and symmetric flow is great in Fig.3.

    5.Conclusions

    In the present study,wave ray theory is applied to investigate the impact of asymmetry in basic flow of typhoons on vortex Rossby waves,including the wave ray path,the group velocity,and the wave ray slope.The major conclusions are as follows:

    Fig.8.Distribution of the wave ray slope on the θ–r plane in(a)symmetric and(b)asymmetric basic flow.

    Fig.9.Differences between wave ray slopes in asymmetric and symmetric basic flows on the θ–r plane.

    (1)Compared to symmetric basic flow,the asymmetry in the basic flow will change the ray paths of vortex Rossby waves in typhoons.The wave rays of the asymmetric basic flow are always located outside that of the symmetric basic flow.Stronger asymmetry in the basic flow corresponds to a larger difference between the wave rays in symmetric and asymmetric basic flows.The impacts of the asymmetry in the basic flow on the wave ray path are mainly concentrated in areas for smallerr,and it will diminish generally with increasingrbeyond a certain radius.

    (2)The asymmetry in the basic flow has substantial impacts on radial and tangential group velocities of vortex Rossby waves.In the asymmetric basic flow,the radial and tangential group velocities change not only with the radius,but also the azimuth angle.The impact of asymmetry in the basic flow on group velocity is mainly concentrated near the RMW.Maximum wave energy propagation speeds along the radial and tangential directions near the RMW are almost equivalent to the maximum speed of tangential basic flow.Both the tangential basic flow and the radial basic flow can affect the group velocities,but the influence of radial basic flow only appears for smallerr,whereas the influence of tangential basic flow can maintain in the whole area we studied.

    (3)The asymmetry in the basic flow can change the wave ray slope by affecting the radial and tangential group velocities of vortex Rossby waves,and eventually influence the wave ray path.However,the impact of asymmetry in the basic flow on the wave ray slope is mainly concentrated near the RMW.

    Note that the above results are based on vortex Rossby waves on thef-plane;the β-plane and the three-dimensional structure of vortex Rossby waves in asymmetric conditions should be considered in the future.

    Acknowledgements.This work was sponsored by the National Natural Science Foundation of China(Grant No.41430426).

    Anthes,R.A.,1972:Development of asymmetries in a three dimensional numerical model of the tropical cyclone.Mon.Wea.Rev.,100,461–476,https://doi.org/10.1175/1520-0493(1972)100<0461:DOAIAT>2.3.CO;2.

    Deng,L.T.,S.K.Liu,X.D.Xu,and Z.T.Fu,2004:The effect of Rossby parameter in vortex Rossby wave.Journal of Tropical Meteorology,20(5),483–492,https://doi.org/10.3969/j.issn.1004-4965.2004.05.004.(in Chinese with English abstract)

    Hall,J.D.,M.Xue,L.K.Ran,and L.M.Leslie,2013:High-resolution modeling of typhoon Morakot(2009):vortex Rossby waves and their role in extreme precipitation over Taiwan.J.Atmos.Sci.,70(1),163–186,https://doi.org/10.1175/JAS-D-11-0338.1.

    Huang,R.X.,and J.P.Chao,1980:The linear theory of spiral cloud bands of typhoon.Scientia Atmospherica Sinica,4(2),148–158,https://doi.org/10.3878/j.issn.1006-9895.1980.02.06.(in Chinese with English abstract)

    Kurihara,Y.,1976:On the development of spiral bands in a tropical cyclone.J.Atmos.Sci.,33,940–958,https://doi.org/10.1175/1520-0469(1976)033<0940:OTDOSB>2.0.CO;2.

    Liu,S.K.,and D.S.Yang,1980:The spiral structure of the tropical cyclone.Acta Meteorologica Sinica,38(3),193–204,https://doi.org/10.11676/qxxb1980.024.(in Chinese with English abstract)

    Liu,S.K.,and S.D.Liu,2011:Basic equations of atmospheric motions.Atmospheric Dynamics,2nd ed.,S.K.Liu and S.D.Liu,Eds.,Peking University Press,Beijing,39–40.(in Chinese)

    Luo,Z.X.,and L.S.Chen,2003:The influence of topography on vortex Rossby waves.Progress in Natural Science,13(4),372–377,https://doi.org/10.3321/j.issn:1002-008X.2003.04.007.(in Chinese)

    MacDonald,N.J.,1968:The evidence for the existence of Rossbylike waves in the hurricane vortex.Tellus,20,138–150,https://doi.org/10.1111/j.2153-3490.1968.tb00358.x.

    Montgomery,M.T.,and R.J.Kallenbach,1997:A theory for vortex Rossby-waves and its application to spiral bands and intensity changes in hurricanes.J.Roy.Meteor.Soc.,123,435–465,https://doi.org/10.1002/qj.49712353810.

    Niu,X.X.,1991:The effect of inertial gravity waves on the occurrence,development and movement of typhoon in unsteady state.Acta Oceanologica Sinica,13(3),325–332.(in Chinese)

    Qiu,X.,Z.-M.Tan,and Q.N.Xiao,2010:The roles of vortex Rossby waves in hurricane secondary eyewall formation.Mon.Wea.Rev.,138,2092–2109,https://doi.org/10.1175/2010MWR3161.1.

    Shen,X.Y.,J.Ming,and K.Fang,2007:The properties of wave in typhoon and its numerical simulation.Scientia Meteorologica Sinica,27(2),176–186,https://doi.org/10.3969/j.issn.1009-0827.2007.02.009.(in Chinese with English abstract)

    Tao,J.J.,X.H.Hu,and C.K.Li,2012:The formation mechanism and change characteristics of the wavenumer-1 vortex Rossby wave in the typhoon.Acta Meteorological Sinica,70(6),1200–1206,https://doi.org/10.11676/qxxb2012.101.(in Chinese with English abstract)

    Tatehira,R.,1961:Analysis of small precipitation areas and bands,case study of typhoon “Hellen”.Second Technology Conference of Hurricanes,Miami,FL,American Meteorology Society,115–126.

    Tepper,M.A.,1958:A theoretical model for hurricane radar bands.Preprints of 7th Weather Radar Conference,Miami,FL,American Meteorology Society,56–65.

    Wexler,H.,1947:Structure of hurricanes as determined by radar.Annals of the New York Academy of Sciences,48(8),821–845,https://doi.org/10.1111/j.1749-6632.1947.tb38495.x.

    Yu,Z.H.,2002:The spiral rain bands of tropical cyclone and vortex Rossby waves.Acta Meteorologica Sinica,60(4),502–507, https://doi.org/10.3321/j.issn:0577-6619.2002.04.014.(in Chinese with English abstract)

    Zhong,K.,J.W.Kang,and Q.P.Yu,2002:Vortex Rossby waves in hurricane.Acta Meteorologica Sinica,60(4),436–441, https://doi.org/10.3321/j.issn:0577-6619.2002.04.006.(in Chinese with English abstract)

    Zhong,Z,X.-T.Wang,and J.-S.Zhang,2007:The possible mechanism on the formation and intensification of the maximum wind core in tropical cyclone.Asia-Pacific Journal of Atmospheric Sciences,43,101–110.

    猜你喜歡
    抗折強度
    《強度與環(huán)境》征稿簡則
    低強度自密實混凝土在房建中的應(yīng)用
    聚合物水泥砂漿高溫后力學(xué)性能研究
    廣東建材(2021年3期)2021-04-24 11:06:46
    高性能道路混凝土抗折性能研究
    苛性堿對堿礦渣水泥砂漿抗壓強度和抗折強度的影響
    熟料中礦物含量與抗折強度相關(guān)性分析
    江西建材(2018年2期)2018-04-14 08:00:08
    基于土體吸應(yīng)力的強度折減法
    濕強度與產(chǎn)品的可沖散性
    生活用紙(2016年5期)2017-01-19 07:36:12
    地埋管絕熱措施下的換熱強度
    根管治療術(shù)后不同修復(fù)方式對牙根抗折性能的影響
    欧美97在线视频| 五月开心婷婷网| 亚洲欧美一区二区三区黑人 | 亚洲国产精品999| 天天操日日干夜夜撸| 又大又黄又爽视频免费| 精品少妇久久久久久888优播| 韩国av在线不卡| 久久久久久久亚洲中文字幕| 国产精品一区二区在线观看99| 国产黄色免费在线视频| 亚洲欧洲精品一区二区精品久久久 | 国产成人a∨麻豆精品| 51国产日韩欧美| 特大巨黑吊av在线直播| 国产成人精品福利久久| 国产黄色免费在线视频| 在线观看三级黄色| 一级a做视频免费观看| 亚洲婷婷狠狠爱综合网| 婷婷色综合www| 特大巨黑吊av在线直播| 欧美+日韩+精品| 这个男人来自地球电影免费观看 | 在线播放无遮挡| 精品熟女少妇av免费看| 国产欧美另类精品又又久久亚洲欧美| av不卡在线播放| 国产乱人偷精品视频| 女性生殖器流出的白浆| 精品一区二区免费观看| 91久久精品国产一区二区成人| 下体分泌物呈黄色| 精品视频人人做人人爽| 日韩av不卡免费在线播放| 大码成人一级视频| 99久国产av精品国产电影| 国产在线一区二区三区精| 九草在线视频观看| 国产一区二区在线观看av| 国精品久久久久久国模美| 国产无遮挡羞羞视频在线观看| 精品人妻在线不人妻| 人成视频在线观看免费观看| 成人漫画全彩无遮挡| 精品人妻熟女av久视频| av视频免费观看在线观看| 国产女主播在线喷水免费视频网站| 一本—道久久a久久精品蜜桃钙片| 91在线精品国自产拍蜜月| 亚洲成人一二三区av| 久热这里只有精品99| 永久免费av网站大全| 五月玫瑰六月丁香| 九色亚洲精品在线播放| 午夜视频国产福利| 国产成人精品无人区| 国产男人的电影天堂91| 狂野欧美激情性bbbbbb| 国产成人午夜福利电影在线观看| 一区二区三区精品91| 国产高清国产精品国产三级| 久热久热在线精品观看| 成年人免费黄色播放视频| 中文欧美无线码| 美女xxoo啪啪120秒动态图| 亚洲精品成人av观看孕妇| 亚洲三级黄色毛片| 伦精品一区二区三区| 精品少妇黑人巨大在线播放| 国产成人精品福利久久| 人体艺术视频欧美日本| 只有这里有精品99| 国产成人精品婷婷| 久久久精品94久久精品| 久久影院123| 亚洲精品色激情综合| 99久久中文字幕三级久久日本| 国产男人的电影天堂91| 丰满乱子伦码专区| 免费大片18禁| 美女福利国产在线| av在线播放精品| 一级毛片我不卡| 人妻制服诱惑在线中文字幕| 免费av不卡在线播放| 国产免费一级a男人的天堂| 亚洲综合色惰| 十分钟在线观看高清视频www| 搡女人真爽免费视频火全软件| 高清不卡的av网站| 国产一级毛片在线| 五月开心婷婷网| 成人国产麻豆网| 丰满少妇做爰视频| 国产淫语在线视频| 亚洲av国产av综合av卡| 亚洲,一卡二卡三卡| 久久久久久久国产电影| 波野结衣二区三区在线| 欧美精品国产亚洲| 亚洲欧美一区二区三区国产| av有码第一页| 亚洲精品色激情综合| a 毛片基地| 赤兔流量卡办理| 日本与韩国留学比较| 青青草视频在线视频观看| 国产精品久久久久久精品古装| 精品一品国产午夜福利视频| 日韩av在线免费看完整版不卡| 狂野欧美激情性xxxx在线观看| 久久精品久久久久久久性| 人妻制服诱惑在线中文字幕| 精品午夜福利在线看| 亚洲欧美中文字幕日韩二区| 亚洲,欧美,日韩| 国产熟女午夜一区二区三区 | 亚洲成人av在线免费| 大码成人一级视频| 精品人妻熟女av久视频| 久久久久国产网址| 亚洲精品色激情综合| 人妻少妇偷人精品九色| 午夜视频国产福利| 99热国产这里只有精品6| 18禁在线无遮挡免费观看视频| 精品亚洲乱码少妇综合久久| 久久久久久久久久久久大奶| 精品少妇久久久久久888优播| 久久精品国产亚洲av天美| 人体艺术视频欧美日本| 中国国产av一级| 亚洲精品中文字幕在线视频| 久久久久久久久久久免费av| 多毛熟女@视频| 99热这里只有是精品在线观看| 99re6热这里在线精品视频| 草草在线视频免费看| 成人无遮挡网站| 久久国产精品男人的天堂亚洲 | 2018国产大陆天天弄谢| 欧美亚洲日本最大视频资源| 精品国产一区二区三区久久久樱花| 日韩中文字幕视频在线看片| 国产精品久久久久成人av| h视频一区二区三区| 国产午夜精品久久久久久一区二区三区| 色视频在线一区二区三区| 国产无遮挡羞羞视频在线观看| 国产免费现黄频在线看| 亚洲精品色激情综合| 午夜激情福利司机影院| 人妻制服诱惑在线中文字幕| 日韩三级伦理在线观看| 亚洲人与动物交配视频| 久久国产精品大桥未久av| 免费不卡的大黄色大毛片视频在线观看| 精品人妻熟女av久视频| 波野结衣二区三区在线| 99九九线精品视频在线观看视频| 乱码一卡2卡4卡精品| 边亲边吃奶的免费视频| 亚洲欧美日韩卡通动漫| 大又大粗又爽又黄少妇毛片口| 欧美精品一区二区大全| 久久 成人 亚洲| 国产一区有黄有色的免费视频| 男女啪啪激烈高潮av片| 美女内射精品一级片tv| 18+在线观看网站| 最黄视频免费看| 午夜福利影视在线免费观看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 91精品一卡2卡3卡4卡| 日韩精品有码人妻一区| 狂野欧美白嫩少妇大欣赏| 国产在线视频一区二区| 日韩av免费高清视频| 国产69精品久久久久777片| 国产免费现黄频在线看| 男女国产视频网站| 国产色爽女视频免费观看| 久久久亚洲精品成人影院| 美女xxoo啪啪120秒动态图| 十八禁高潮呻吟视频| 日韩av在线免费看完整版不卡| 一二三四中文在线观看免费高清| 两个人免费观看高清视频| 亚洲精品日韩av片在线观看| 成年人午夜在线观看视频| 亚洲在久久综合| 亚洲一级一片aⅴ在线观看| 久久久久国产精品人妻一区二区| 久久久国产精品麻豆| 久久久国产一区二区| 婷婷色av中文字幕| 精品国产一区二区三区久久久樱花| 一级毛片电影观看| 晚上一个人看的免费电影| 国产av码专区亚洲av| 日韩av免费高清视频| 国产精品蜜桃在线观看| freevideosex欧美| 2021少妇久久久久久久久久久| av专区在线播放| 最新中文字幕久久久久| 99热6这里只有精品| 看十八女毛片水多多多| 男女国产视频网站| 成人综合一区亚洲| av免费观看日本| 免费观看的影片在线观看| 久久久欧美国产精品| 国产精品成人在线| 亚洲国产最新在线播放| 国产精品不卡视频一区二区| 久久久久视频综合| 狂野欧美激情性bbbbbb| 亚洲久久久国产精品| 国产欧美日韩综合在线一区二区| 制服诱惑二区| 少妇被粗大猛烈的视频| av卡一久久| 亚洲欧美清纯卡通| 亚洲精品第二区| 黄色配什么色好看| 中国美白少妇内射xxxbb| 91久久精品电影网| 99热国产这里只有精品6| 男女边吃奶边做爰视频| 免费观看的影片在线观看| 在线亚洲精品国产二区图片欧美 | 亚洲av福利一区| 18禁在线无遮挡免费观看视频| 午夜精品国产一区二区电影| 岛国毛片在线播放| 亚洲伊人久久精品综合| 国产高清有码在线观看视频| av女优亚洲男人天堂| 久久久久国产网址| 欧美性感艳星| 男人添女人高潮全过程视频| 国产伦精品一区二区三区视频9| 九色亚洲精品在线播放| 满18在线观看网站| 亚洲国产最新在线播放| 女性生殖器流出的白浆| 最近中文字幕高清免费大全6| 国产一区有黄有色的免费视频| 五月伊人婷婷丁香| 日本黄色片子视频| 精品人妻偷拍中文字幕| 精品少妇内射三级| 国产在线视频一区二区| 久久综合国产亚洲精品| 午夜视频国产福利| 亚洲内射少妇av| 国产乱人偷精品视频| 国产午夜精品久久久久久一区二区三区| 五月天丁香电影| 国产精品一区二区在线观看99| 制服人妻中文乱码| av专区在线播放| 亚洲av男天堂| 美女视频免费永久观看网站| 国产精品成人在线| 日韩一区二区三区影片| 永久网站在线| 九色成人免费人妻av| 美女主播在线视频| 国产精品99久久久久久久久| 一级毛片黄色毛片免费观看视频| 69精品国产乱码久久久| 校园人妻丝袜中文字幕| 亚洲五月色婷婷综合| 考比视频在线观看| 22中文网久久字幕| 各种免费的搞黄视频| 国语对白做爰xxxⅹ性视频网站| 18禁动态无遮挡网站| 伊人久久精品亚洲午夜| 26uuu在线亚洲综合色| 少妇猛男粗大的猛烈进出视频| 中文字幕亚洲精品专区| 国产高清不卡午夜福利| 桃花免费在线播放| 成人无遮挡网站| av黄色大香蕉| 大香蕉久久网| 欧美另类一区| 一个人免费看片子| 色婷婷av一区二区三区视频| 亚洲精品国产av蜜桃| 国产女主播在线喷水免费视频网站| av国产久精品久网站免费入址| 久久亚洲国产成人精品v| 最近最新中文字幕免费大全7| 特大巨黑吊av在线直播| 五月伊人婷婷丁香| 国产精品久久久久久久久免| 亚洲熟女精品中文字幕| 久久久精品区二区三区| 国产黄色免费在线视频| 秋霞在线观看毛片| 日产精品乱码卡一卡2卡三| 在线 av 中文字幕| 人妻夜夜爽99麻豆av| 国产免费一区二区三区四区乱码| 亚洲人成77777在线视频| 最近中文字幕高清免费大全6| 在线播放无遮挡| 免费av中文字幕在线| 又黄又爽又刺激的免费视频.| 国产欧美日韩综合在线一区二区| 妹子高潮喷水视频| 亚洲精品,欧美精品| 曰老女人黄片| 久久99一区二区三区| 嫩草影院入口| 国产免费现黄频在线看| 黑人欧美特级aaaaaa片| 黑人巨大精品欧美一区二区蜜桃 | 国产精品人妻久久久影院| 天堂8中文在线网| 中文字幕人妻熟人妻熟丝袜美| 亚洲国产精品国产精品| 国产精品熟女久久久久浪| 秋霞伦理黄片| 亚洲精品日韩av片在线观看| 色视频在线一区二区三区| 热re99久久精品国产66热6| 久久毛片免费看一区二区三区| 22中文网久久字幕| 中文字幕av电影在线播放| 中文字幕久久专区| 蜜臀久久99精品久久宅男| 美女cb高潮喷水在线观看| 黄色配什么色好看| 国产精品免费大片| 成年av动漫网址| 国产白丝娇喘喷水9色精品| 久久精品久久久久久噜噜老黄| 午夜91福利影院| 国产一区有黄有色的免费视频| 18在线观看网站| 久久午夜福利片| av黄色大香蕉| 最近中文字幕2019免费版| 97在线视频观看| 亚洲精品国产av蜜桃| 亚洲精品乱码久久久久久按摩| 国产高清国产精品国产三级| 乱人伦中国视频| 男的添女的下面高潮视频| 免费观看无遮挡的男女| 老女人水多毛片| 一区二区三区精品91| 99久久综合免费| 国产成人精品一,二区| 日韩av不卡免费在线播放| 高清不卡的av网站| 秋霞伦理黄片| 女人精品久久久久毛片| 国产精品蜜桃在线观看| 亚洲av国产av综合av卡| 2021少妇久久久久久久久久久| 久久久国产精品麻豆| 青春草亚洲视频在线观看| 亚洲国产毛片av蜜桃av| 日本午夜av视频| 丝袜脚勾引网站| 人人妻人人爽人人添夜夜欢视频| 女人精品久久久久毛片| 中文字幕亚洲精品专区| 国产精品蜜桃在线观看| 美女大奶头黄色视频| 国产成人a∨麻豆精品| 国产不卡av网站在线观看| 亚洲伊人久久精品综合| 国产欧美日韩一区二区三区在线 | 午夜免费鲁丝| 精品一品国产午夜福利视频| 亚洲欧美成人综合另类久久久| 国产日韩欧美视频二区| 我的老师免费观看完整版| 男男h啪啪无遮挡| 国产色婷婷99| 美女主播在线视频| 麻豆精品久久久久久蜜桃| 你懂的网址亚洲精品在线观看| 男女国产视频网站| 亚洲图色成人| 国产黄色免费在线视频| 大香蕉97超碰在线| 日韩,欧美,国产一区二区三区| 日韩av免费高清视频| 精品亚洲乱码少妇综合久久| 久久久亚洲精品成人影院| 国产免费一区二区三区四区乱码| 午夜福利,免费看| 久久久久久伊人网av| 久久精品夜色国产| 99国产精品免费福利视频| 精品一区二区免费观看| 韩国av在线不卡| 国产成人精品久久久久久| 91在线精品国自产拍蜜月| av视频免费观看在线观看| 女人精品久久久久毛片| 飞空精品影院首页| 日韩av不卡免费在线播放| 99久国产av精品国产电影| 女性生殖器流出的白浆| 国产日韩一区二区三区精品不卡 | 国产av码专区亚洲av| 国精品久久久久久国模美| 国产精品人妻久久久久久| 国产成人精品婷婷| 精品亚洲成a人片在线观看| 五月伊人婷婷丁香| 国产亚洲一区二区精品| 日本黄大片高清| videossex国产| 精品人妻熟女毛片av久久网站| 亚州av有码| 久久久久久人妻| av在线观看视频网站免费| 热re99久久国产66热| 日韩电影二区| 欧美另类一区| 亚洲国产日韩一区二区| 99九九在线精品视频| 日本免费在线观看一区| 丝袜脚勾引网站| 免费人妻精品一区二区三区视频| 久久久久久久国产电影| 久久久久视频综合| 免费看不卡的av| 国产黄片视频在线免费观看| 国产精品一区二区在线观看99| 我要看黄色一级片免费的| 精品人妻偷拍中文字幕| 嘟嘟电影网在线观看| 成人国产麻豆网| 又黄又爽又刺激的免费视频.| 日本猛色少妇xxxxx猛交久久| 熟女av电影| 高清不卡的av网站| 日本-黄色视频高清免费观看| 精品一区二区三区视频在线| 黄片无遮挡物在线观看| 最近最新中文字幕免费大全7| 午夜影院在线不卡| av天堂久久9| 不卡视频在线观看欧美| 欧美日韩国产mv在线观看视频| 久久99一区二区三区| 韩国av在线不卡| 精品国产乱码久久久久久小说| 久久精品国产鲁丝片午夜精品| 各种免费的搞黄视频| 男人添女人高潮全过程视频| 人人澡人人妻人| .国产精品久久| 男人爽女人下面视频在线观看| 大香蕉久久成人网| 久久久久久人妻| 色吧在线观看| 久久久精品免费免费高清| 天美传媒精品一区二区| 日本免费在线观看一区| 国产精品国产三级国产专区5o| 美女主播在线视频| 久久久国产欧美日韩av| 久久ye,这里只有精品| 黄色一级大片看看| 一本大道久久a久久精品| 久久热精品热| 日本黄色片子视频| 桃花免费在线播放| 国产不卡av网站在线观看| 啦啦啦视频在线资源免费观看| 国产av精品麻豆| 国产黄色视频一区二区在线观看| 欧美日韩视频精品一区| 免费黄网站久久成人精品| 日韩大片免费观看网站| 久久毛片免费看一区二区三区| 日本爱情动作片www.在线观看| 插逼视频在线观看| 麻豆乱淫一区二区| 亚洲国产精品专区欧美| 99久久精品一区二区三区| 国产成人av激情在线播放 | 青春草亚洲视频在线观看| 久久久久久久久久久免费av| 免费日韩欧美在线观看| 欧美日韩视频精品一区| 欧美精品高潮呻吟av久久| 精品一区在线观看国产| 人人妻人人澡人人爽人人夜夜| 一本一本综合久久| 18在线观看网站| 亚洲图色成人| 国产亚洲午夜精品一区二区久久| 国产探花极品一区二区| 国产在视频线精品| 91国产中文字幕| av在线app专区| 国产亚洲最大av| 九草在线视频观看| av女优亚洲男人天堂| 日本色播在线视频| 一级爰片在线观看| 校园人妻丝袜中文字幕| 日本黄大片高清| 欧美丝袜亚洲另类| 各种免费的搞黄视频| 亚洲无线观看免费| 精品卡一卡二卡四卡免费| 交换朋友夫妻互换小说| 亚洲av不卡在线观看| 国产精品国产三级国产av玫瑰| 免费看不卡的av| 久久午夜福利片| 天天躁夜夜躁狠狠久久av| 特大巨黑吊av在线直播| 大片电影免费在线观看免费| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产成人精品久久久久久| 精品一区二区三区视频在线| 久久99一区二区三区| 国产黄色视频一区二区在线观看| 欧美亚洲 丝袜 人妻 在线| 婷婷色av中文字幕| 69精品国产乱码久久久| 久热久热在线精品观看| 亚洲在久久综合| 亚洲成人av在线免费| 丝袜美足系列| 中文字幕人妻丝袜制服| 亚洲国产最新在线播放| 亚洲人成77777在线视频| 午夜老司机福利剧场| 三级国产精品欧美在线观看| 午夜激情av网站| 亚洲熟女精品中文字幕| 日日啪夜夜爽| 一本色道久久久久久精品综合| 80岁老熟妇乱子伦牲交| 久久人人爽av亚洲精品天堂| 国产精品99久久久久久久久| 久久韩国三级中文字幕| 亚洲人成77777在线视频| 性色avwww在线观看| 精品熟女少妇av免费看| 色婷婷久久久亚洲欧美| 91久久精品电影网| 人妻系列 视频| 亚洲精品日韩av片在线观看| 亚洲精品一区蜜桃| 一本色道久久久久久精品综合| 男女免费视频国产| 在线免费观看不下载黄p国产| 国产一区二区三区av在线| 黑人巨大精品欧美一区二区蜜桃 | 亚洲av成人精品一二三区| 亚洲人与动物交配视频| 日本色播在线视频| 亚洲精品乱码久久久v下载方式| 18禁裸乳无遮挡动漫免费视频| 免费少妇av软件| 精品一区在线观看国产| 80岁老熟妇乱子伦牲交| 天堂8中文在线网| 亚洲在久久综合| 精品国产国语对白av| 成年美女黄网站色视频大全免费 | 免费观看在线日韩| 精品久久久精品久久久| 寂寞人妻少妇视频99o| 我要看黄色一级片免费的| 国产成人精品无人区| 亚洲欧美中文字幕日韩二区| 男的添女的下面高潮视频| 亚洲人与动物交配视频| 如日韩欧美国产精品一区二区三区 | 亚洲av综合色区一区| 看非洲黑人一级黄片| 极品少妇高潮喷水抽搐| 九色成人免费人妻av| 午夜福利,免费看| 日日爽夜夜爽网站| 欧美日韩一区二区视频在线观看视频在线| 国产精品嫩草影院av在线观看| 蜜臀久久99精品久久宅男| 女的被弄到高潮叫床怎么办| 日韩大片免费观看网站| 午夜免费观看性视频| 亚洲精品久久午夜乱码| 国产高清不卡午夜福利| 国产老妇伦熟女老妇高清| 免费人妻精品一区二区三区视频| 国产一级毛片在线| 七月丁香在线播放| 秋霞伦理黄片| 91在线精品国自产拍蜜月| 在线天堂最新版资源| 水蜜桃什么品种好| 亚洲色图 男人天堂 中文字幕 | 日韩,欧美,国产一区二区三区| 水蜜桃什么品种好| 一本色道久久久久久精品综合| 国产精品.久久久|