• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Geometric Characteristics of Tropical Cyclone Eyes before Landfall in South China Based on Ground-Based Radar Observations

    2018-03-07 06:58:24XiaotongZHUQingqingLIJinhuaYUDanWUandKaiYAO
    Advances in Atmospheric Sciences 2018年5期

    Xiaotong ZHU,Qingqing LI,Jinhua YU?,Dan WU,and Kai YAO

    1Key Laboratory of Meteorological Disaster of the Ministry of Education,Nanjing University of Information Science and Technology,Nanjing 210044,China

    2Pacific Typhoon Research Center,Key Laboratory of Meteorological Disaster of the Ministry of Education,Nanjing University of Information Science and Technology,and State Key Laboratory of Severe Weather,Nanjing 210044,China

    3Chinese Academy of Meteorological Sciences,Beijing 100081,China

    4Shanghai Typhoon Institute,Shanghai 200030,China

    5Key Laboratory for Mesoscale Severe Weather/Ministry of Education,School of Atmospheric Sciences,Nanjing University,Nanjing 210023,China

    1.Introduction

    The eye is a unique region in an intense tropical cyclone(TC),and is characterized by comparatively weak wind and scant cloud,except for low stratocumulus(i.e.,hub clouds)in some cases.A climatological study by Vigh et al.(2012)revealed that about 60%of Atlantic hurricanes during 1989–2008 formed eyes,and tended to form in environments with high SSTs and low-to-moderate vertical wind shear.Although the air aloft in the eye is clear, in the Dvorak technique(Dvorak,1975),the eye’s appearance in satellite imagery can be used for estimating the TC’s intensity effectively.

    Soundings inside TC eyes indicate that an inversion(typically 850–500 hPa)separates warm and dry air aloft from moist air below(Willoughby,1998),and the warm air within the eye thus contributes to the characteristic feature of a warm core(La Seur and Hawkins,1963;Hawkins and Rubsam,1968;Hawkins and Imbembo,1976).Durden(2013)showed by analyzing a relatively small number of dropsonde eye profiles extending above 300 hPa that the maximum temperature anomaly can be observed at varying levels,ranging from 760 to 250 hPa.Correlations exist between the maximum temperature anomaly level and TC intensity,upper-level divergence,environmental instability,and storm size.Durden(2013)also found there are multiple maxima of temperature anomalies in some cases,and these maxima are located predominantly at middle and upper levels.Stern and Zhang(2016)used highaltitude dropsondes and a high-resolution numerical simulation to investigate the warm-core structure of Hurricane Earl,also indicative of two maxima of perturbation temperature at 4–6 and 9–12 km,respectively.They further pointed out that the intensity of these two maxima is sensitive to the choice of the reference state,as mentioned in Durden(2013).Different from the findings in Durden(2013)and Gao et al.(2017),Stern and Zhang(2016)showed no systematic relationship between the warm-core level and either intensity or intensity change.

    Another significant thermodynamic structure of the eye is high equivalent potential temperature harbored in the lowest few kilometers(Hawkins and Imbembo,1976;Jorgensen,1984b;Willoughby,1998;Montgomery et al.,2006;Sitkowski and Barnes,2009;Barnes and Fuentes,2010;Dolling and Barnes,2012).Such high-entropy air has been proposed in some studies to facilitate the boost of convection in the eyewall if mixed into the eyewall region(Braun,2002;Persing and Montgomery,2003;Montgomery et al.,2006;Cram et al.,2007;Barnes and Fuentes,2010).Persing and Montgomery(2003)and Montgomery et al.(2006)argued that it is possible for a storm to achieve superintensity,a circumstance where the maximum wind speed in the eyewall surpasses the estimated maximum potential intensity(Emanuel,1986,1988;Holland,1997),under the condition that the transport of high-entropy air from the storm eye to the eyewall becomes abundant.However,Bryan and Rotunno(2009)and Barnes and Fuentes(2010)believed that the role of such entropy transport in maximum storm intensity is very limited because of the relatively small volume of eye excess energy.

    Downdrafts are a representative dynamic feature of the TC eye,which have been demonstrated to predominantly contribute to the formation of the warm core(Shapiro and Willoughby,1982;Schubert et al.,2007;Vigh and Schubert,2009;Stern and Zhang,2013a,2013b).Mean sinking motion inside the eye is generally small.The region of maximum subsidence is radially broad in the beginning of rapid intensification,and later tends to be concentrated along the eye/eyewall interface,with the mean descent increasing up to 10-20 cm s?1as the storm further intensifies(Liu et al.,1997;Stern and Zhang,2013a,2013b).Moreover,Schubert et al.(2007)argued that subsidence just inward of the eyewall tends to become stronger in a TC with a larger eye or with higher inertial stability.

    Apart from the dynamical and thermodynamic structures noted above,the geometric features of TC eyes have also attracted an increasing level of attention.Satellite and radar observations show that TC eyes are regularly characterized by rotating smooth shapes(e.g.,circular and elliptical shapes;Mitsuta and Yoshizumi,1973;Kuo et al.,1999;Reasor et al.,2000;Oda et al.,2005;Aberson et al.,2006;Barnes and Barnes,2014),while polygonal eyes in the shapes of hexagons,pentagons,squares,and triangles are also observed(Lewis and Hawkins,1982;Muramatsu,1986;Hendricks et al.,2012).It has been indicated that the behavior of elliptical eyes is closely associated with wavenumber-2 vortex Rossby waves(Montgomery and Kallenbach,1997)resulting from barotropic instability(Kuo et al.,1999;Kossin et al.,2000;Reasor et al.,2000;Wang,2002;Oda et al.,2005).Highwavenumber vortex Rossby waves related to barotropic instability and the breakdown of the eyewall ring of elevated vorticity constitute the most likely driving mechanism for polygonal eyes(Schubert et al.,1999;Menelaou et al.,2013).The asymmetries associated with both elliptical and polygonal eyes have been shown to have an impact on TC structure and intensity.Schubert et al.(1999)found in an unforced 2D framework that barotropic instability and the inward mixing of vorticity from the eyewall into the eye tend to decrease the maximum tangential wind.In contrast,Menelaou et al.(2013)showed that the asymmetric structures regarding the polygonal eye act to lower the wind speed at the radius of the maximum wind,while they can accelerate the flow radially inside and outside of that location.Kuo et al.(2016)examined the convective features associated with elliptical and polygonal eyes,showing that the shock-like boundary layer radial wind structure forces strong updrafts at the top of the boundary layer to produce deep convection at the edge of the major axis.In addition,eye size may give expression to some important structure and intensity change of TCs.After completing a concentric eyewall cycle,a TC often possesses larger eye size.Annular hurricanes(Knaffet al.,2003)have relatively bigger eyes(Wang,2008),and sinking motion just inward of the eyewall is stronger in a larger eye such that a moat region generally occurs therein(Schubert et al.,2007).It has also been shown that a reduction in the eye area accompanies the intensification of TCs(Barnes and Barnes,2014),and the rate of eyewall contraction is smaller in TCs with large eyes(Stern et al.,2015).

    Since the geometric traits of eyes are important elements of the inner core of TCs,as documented above,and precisely reflect some essential aspects of TC structure and intensity change,which are critical to forecasts and numerical simulations of TCs,we investigate in the current study the geometric characteristics of eyes before TC landfall in South China. The TCs making landfall in south China are nearly those progressing in the South China Sea where 3.3 TCs formed per year on average(Chen et al.,2015).TCs forming in or moving into the South China Sea may experience intensity change before making landfall in South China during a very short period,due to the small basin size,thus compounding the difficulty of TC forecasting.

    2.Data and methodology

    Several studies have employed airborne radar observations to determine eye activity(Vigh et al.,2012;Hazelton and Hart,2013;Barnes and Barnes,2014),because the detection results are more reliable as reconnaissance aircraft approach the inner core of TCs.However,there is a lack of aircraft penetration observations for TCs in the South China Sea currently.As an alternative approach,we utilize groundbased radar observations in this study.The reflectivity from three ground-based S-band radars located in Haikou(HK),Yangjiang(YJ),and Guangzhou(GZ),respectively,are used(Fig.1).A series of painstaking quality control measures are first conducted with respect to the radar data,including ground clutter removal,abnormal echo elimination and smoothing,and replenishment for missing data(Wang et al.,2014).The reflectivity data are interpolated to a mesh with 1-km grid spacing in both the horizontal and vertical direction.In this study,data from 2-to 7-km height are analyzed.Finally,133 temporal samples from seven TCs during 2009–14 are selected.The tracks of seven storms are shown in Fig.1.Note that the radar observations of Typhoon Parma(2009)are included to extend the sample size,although it did not make landfall in South China.

    Fig.1.TC tracks analyzed in this study,with different colors indicating the minimum sea level pressure.Red dots denote the locations of the ground-based radars at Yangjiang(YJ),Haikou(HK),and Guangzhou(GZ).

    Since the focus of this study is the use of radar reflectivity data to determine the geometric characteristics of TC eyes,we need to establish whether or not an eye is present.Following Weatherford and Gray(1988)and Vigh et al.(2012),the presence of an eye is only validated if a circular,precipitating,inner-cloud feature(namely,aneyewall)subtends at least half of the candidate eye region.If the eyewall completely surrounds the eye region,a closed eye is reported.If the eyewall encircles at least half the eye region without breaks,an open eye is recognized.If the eyewall does not subtend at least half the eye,no eye is present.Although as mentioned above TC eyes may possess polygonal shapes,the eyes in the current samples are dominated by quasi-elliptical shapes.To discuss the geometric features of the eyes,we first need to fit the elliptical shapes of the eyes.Since a large reflectivity gradient exists near the interface of the eye and the eyewall(Liu et al.,1997),we can separate them from each other based on reflectivity values.Note that different reflectivity thresholds have been employed to determine the boundary between the eye and the eyewall,such as 10(Jorgensen,1984a;Corbosiero et al.,2005),20(Hazelton and Hart,2013),and 25 dBZ(Barnes and Barnes,2014).In this study,20 dBZis used as the outer edge of the eyes.A least-squares method is used to fit the elliptical shape of the eyes based on 20-dBZreflectivity contours.This fitting can not only illustrate the shape of a closed eye,but also facilitate the approximation of the shape of an open eye.Figure 2 shows examples of the fitted eye shapes of Typhoons Chanthu(2010)and Rammasun(2014).At 0230 UTC 22 July 2010,Chanthu had an oval eye atz=5 km,with its maximum diameter oriented northwest–southeast(Fig.2a).At 0500 UTC 18 July 2014,Rammasun also showed an elliptical eye atz=4 km,but with the maximum diameter oriented northeast–southwest(Fig.2b).Among the 133 samples,no TCs were undergoing concentric eyewall replacement.The geometric features of eyes including size,the maximum and minimum diameter,and roundness,are examined in this study.The eye roundness can be measured by the eye roundness value(ERV;Barnes and Barnes,2014),which is calculated as

    whereaandbare the semimajor and semiminor axes of the fitted ellipse,respectively.Lower ERVs correspond to more circular eyes.As shown in Figs.2a and b,the ERVs of Typhoons Chanthu(2010)and Rammasun(2014)are 0.74 and 0.53,respectively,suggesting the eye of Rammasun(2014)is more circular than that of Chanthu(2010).

    The intensity and locations of tropical cyclones at 0000,0600,1200 and 1800 UTC are derived from the China Meteorological Administration best-track dataset(Ying et al.,2014).If the radar detection is not at these standard synoptic times,a linear interpolation of best-track intensity is used to estimate the corresponding TC intensity.To represent the environments associated with the TCs,the Remote Sensing Systems optimally interpolated SST data are employed to describe the SST averaged inside the 200-km radius from the storm center;and the NCEP final reanalysis is used to calculate the 200–850-hPa vertical wind shear(VWS),which is averaged over the area between 200 and 800 km from the TC center,and to compute the mid-tropospheric relative humidity averaged between 700 and 500 hPa for an annulus similar to that used for VWS.

    Fig.2.Radar reflectivity(dBZ)of(a)Typhoon Chanthu(2010)at z=5 km at 1830 UTC 21 July 2010 and(b)Typhoon Rammasun(2014)at z=4 km at 2100 UTC 17 July 2014.The right-hand panels show blow-ups of the eye region reflectivity of the two TCs,with a red ellipse indicating the fitted eye.Lines a and b represent the semimajor and semiminor axes,respectively.See text for details.

    3.Results

    3.1.TC intensity,intensity change,translation,and environments

    Figure 3 depicts the characteristics of intensity,intensity change,and movement of the 133 samples.The intensity of the majority of the samples ranges from 950 to 990 hPa(Fig.3a),consistent with the finding in Vigh et al.(2012),which shows that most Atlantic TC eyes form at minimum central pressure between 997 and 987 hPa.Nearly half of the samples show little intensity change(Fig.3b),and 16 and 22 samples are undergoing rapid intensification(6-h pressure tendency11 hPa),respectively.More than 60 samples move at a translation speed of 4–6 m s?1,and more than 30 samples have relatively slower translation speeds of smaller than 2 m s?1(Fig.3c).This is also accordant with the result in Vigh et al.(2012),suggesting that eyes form over a wide band of TC movement speeds with a typical range of 2.5–5.8 m s?1.The selected TCs are generally steered by the easterly flow of the subtropical high(not shown),thereby progressing northwestward(Fig.3d).

    Most of the SSTs in the vicinity of the storm’s circulation exceed 29°C,with a mean value of 29.6°C(Fig.4a),agreeing with the mean SST for eye formation indicated in Vigh et al.(2012).Because of moist flow with respect to the South China Sea monsoon in summer,the highest frequency of TCs

    occurs in an environment with a 700–500-hPa relative humidity between 75%and 85%,with a mean value of 78%(Fig.4b).The magnitude of 850–200-hPa VWS associated with the TCs is concentrated between 4 and 12 m s?1,with a mean value of 7.9 m s?1(Fig.4c),indicative of moderate-to-strong VWS.Figure 4d further shows the nature of a typical VWS in the South China Sea during summer—that is,northeasterly shear prevailing due to the southwesterly monsoon flow in lower layers.

    Fig.3.Frequency distributions of(a)minimum surface level pressure(units:hPa),(b)6-h pressure tendency(units:hPa),(c)translational speed(units:m s?1),and(d)direction of the TCs.

    Fig.4.Frequency distributions of(a)SST(units:°C),(b)700–500-hPa relative humidity(units:%),(c)850–200-hPa vertical wind shear magnitude(units:m s?1)and(d)direction.

    3.2.Geometric characteristics of TC eyes

    Fig.5.Boxplots of the eye area at z=2,4,and 6 km,categorized according to the framework of the China Meteorological Administration.The mean and median are given by the dot and the horizontal line within the box,respectively,and the top and bottom edges of the box indicate the 25th and 75th percentiles,respectively.STS,TY,STY,and Super TY indicate severe tropical storm,typhoon,severe typhoon,and super typhoon,respectively.See text for further details of the TC categories.

    As noted in prior studies,eye size and its change are important structural features of TCs,and are therefore discussed here first.As a TC intensi fies,enhanced eyewall convection drives compensating downdrafts and hence increase the warming in the eye(Zhang et al.,2002;Stern and Zhang,2013a,2013b),which in turn leads to the central pressure dropping(Willoughby,1998).As a result,tightening of the pressure gradient across the wind maximum makes the wind increase at,and inward from,the radius of maximum wind,such that the eyewall and eye contract(Willoughby,1998).Figure 5 shows boxplots of eye areas atz=2,4 and 6 km,categorized according to the TC framework set out by the China Meteorological Administration TC categoryaThe China Meteorological Administration classifies TCs over the western North Pacific and the South China Sea as:the tropical depression(TD)category,with two-minminimum mean maximum sustained wind(MSW)between of 10.8–17.1 m s?1;,the tropical storm(TS)category,with MSW between of 17.2–24.4 m s?1;,the severe tropical storm(STS)category,with MSW between of 24.5–32.6 m s?1;,the typhoon(TY)category,with MSW between of 32.7–41.4 m s?1;,the severe typhoon(STY)category,with MSW between of 41.5–50.9 m s?1,and the super typhoon(Super TY)category,with MSW greater than>51.0 m s?1..The median and mean eye area reduce with TC intensity,except for STY storms.This seems to agree with conventional wisdom that eyewalls generally shrink during intensi fication.However,the median and mean eye size increase form TY to STY storms.Similar eye size distributions also appear in Kimball and Mulekar(2004),who showed that the eye radius median of category-2 hurricanes was much larger than that of category-5 hurricanes,while the median increased from category 3 to category 4.In fact,as pointed out in Stern and Nolan(2009),a relationship between eye size and TC intensity would only be expected for a given TC.A study of diverse TC samples by Hazelton and Hart(2013)hence suggests almost no relationship between the eye size and the storm intensity.

    Figures 6a and b depict the vertical distributions of eye areas and the major axis normalized by corresponding values atz=2 km,respectively,mostly indicative of the vertical change in eye size.The most visible characteristic seen in Fig.6 is the eye size increasing with height.For example,the mean eye area increases from 2116 km2atz=2 km to 2652 km2atz=7 km,and the maximum eye area increases from 4485 km2atz=2 km to 6487 km2atz=7 km(not shown).This relationship of eye size at an upper level being larger than at a lower level is significant at the 95%confidence interval,except for the two levels at 4 and 5 km(not shown).Figure 6 also shows that the increasing rate of the mean eye area and major axis is relatively greater in upper layers(e.g.,from 5 to 7 km).This vertical change in eye size qualitatively agrees with the outward slope of the eyewall,which has been long realized in many studies(Malkus,1958;Shea and Gray,1973;Stern and Nolan,2009,2011;Rogers et al.,2012;Hazelton and Hart,2013;Stern et al.,2014;Hazelton et al.,2015).Stern and Nolan(2009)argued that the radius of maximum winds should be approximately an absolute angular momentumMsurface,and the eyewall slope will increase with radius if such a slope is measured by the radius of maximum winds.The slope varies along any givenMsurface.As we move upward along anMsurface,we are also moving outward(namely,the radius of maximum winds is increasing)due to theMsurface flaring outward,and the eyewall slope will thus be increasing.As a result,the increasing slope of the eyewall in upper layers leads to a more significant increasing rate of eye size therein,as indicated in Fig.6.In contrast,verticalMadvection is mainly offset by the radial advection ofMin the mid-tropospheric eyewall(Li et al.,2014,2015),such thatMdoes not change much and theMsurface tends to be upright.Therefore,the eyewall slope and the eye size increase with height in the mid-troposphere is not significant,as noted above.

    Fig.6.Boxplots of(a)the eye area and(b)the major axis normalized by the value at z=2 km.The mean is given by the horizontal line within the box,and the top and bottom edges of the box indicate the 25th and 75th percentiles,respectively.

    Emanuel(1986)and Stern and Nolan(2009)theorized that there is no relationship between eyewall slope and TC intensity,which was observationally evidenced in Stern and Nolan(2009)and Stern et al.(2014).In contrast,observations in Hazelton and Hart(2013)showed a statistically significant relationship between the eyewall slope measured by the 20-dBZ contour and TC intensity,suggesting that the eyewall was more upright as the storm was more intense.Given that the vertical change in eye size is a qualitative indication of eyewall slope,the relationship between that vertical change and TC intensity is shown in Fig.7.Figure 7a portrays the ratio of the eye area atz=7 km to that atz=2 km,which is indicative of the eye size change in the vertical direction.It is shown that the ratio does not correlate with TC intensity,which agrees with the findings in Stern and Nolan(2009)and Stern et al.(2014).However,it is surprising that there is a weak relationship(correlation coefficientr=?0.25;p<0.05)between the ratio and vertical wind shear associated with the TCs(Fig.7a).On closer inspection,that weak correlation appears to result from the notable outliers in particular combinations of small shear and large ratios.As indicated in Fig.4c,the vertical shear of most of the TC samples is greater than 4 m s?1,demonstrating the typical environment of monsoon flow.If those outliers with shear less than 4 m s?1are removed,no relationship between the vertical change in eye size and vertical wind shear is observed in typical monsoon environments(Fig.7b).

    Fig.7.(a)Ratio of eye area at z=7 km to that at z=2 km versus the environmental vertical wind shear.(b)As in(a)except for samples with vertical wind shear less than 4 m s?1excluded.The black solid lines show the best fit to the data,and colors indicate minimum sea level pressure ranges.

    Fig.8.Ratio of the eye area at z=7 km to that at z=2 km versus(a)the eye area at z=2 km,and(b)TC intensity change.The black lines indicate the best fit to the data.

    Stern and Nolan(2009)also pointed out that there should exist a linear dependence of eyewall slope on the radius.It is thus supposed that the increasing ratio of eye size in the vertical direction will linearly increase with radius.However,Fig.8a shows no relationship between the vertical change in eye size and the eye size atz=2 km.This likely implies that the vertical change in eye size may be fundamentally different in some ways from other measurements of eyewall slope,such as the slope of the radius of maximum wind(Stern and Nolan,2009;Stern et al.,2014).Figure 8b shows scatterplots of the vertical change in eye size versus the 6-h change in minimum central pressure.Clearly,there is no relationship between the vertical change in eye size and the intensity tendency.Nevertheless,the vertical change in eye size for those rapidly intensifying samples is on average smaller than those for rapidly weakening samples(Fig.8b),which appears to provide support to the idea that convection in regions of increased inertial stability is favorable to the intensification of TCs(Hack and Schubert,1986;Rogers et al.,2013,2015;Hendricks et al.,2014).

    Figure 9 depicts the frequency distribution of the ERV.The ERV is characterized by a quasi-Gaussian distribution,except atz=2 km,with values of 0.5–0.7 dominating.The mean ERVs for 2–7-km layers are 0.56,0.55,0.55,0.55,0.56 and 0.54,respectively.Furthermore,a weak but still identifiable relationship between the ERV and the minimum sea level pressure is found(Fig.10a),showing that more intense storms tend to be provided with rounder eyes.Such a relationship appears from lower to upper levels.As mentioned in previous literature,the appearance of an elliptical eyewall is hypothesized to be in association with unstable vortex Rossby waves within the eyewall(Kuo et al.,1999;Kossin et al.,2000;Reasor et al.,2000;Kossin and Schubert,2001;Wang,2002;Oda et al.,2005).The relationship between the eye circularity and the storm intensity discussed here seems to indicate that the magnitude of wavenumber-2 vortex Rossby waves in the eyewall region decreases with TC intensity,which is worth investigating in depth using other observations and numerical simulations.A weak and positive relationship between the circularity and the maximum eye diameter is also seen.Figure 10b shows that the ERV tends to increase with the maximum eye diameter(namely,the major axis of the fitted elliptical eye),indicating that the smaller the maximum eye diameter,the rounder the eye.However,no relationship exists between the ERV and the eye size(not shown).

    Many previous studies have pointed out that the behavior of elliptical eyes is governed by wavenumber-2 vortex Rossby waves in the eyewall(Kuo et al.,1999;Kossin et al.,2000;Reasor et al.,2000;Wang,2002;Oda et al.,2005).This is indirectly corroborated by the rotational distribution of the major axis of the fitted elliptical eye,as shown in Fig.11.The almost even occurrence of the major axis orientation in the azimuth reflects the eye rotation associated with the azimuthal propagation of wavenumber-2 vortex Rossby waves in the eyewall.

    Fig.9.Frequency distributions for eye circularity in six layers.

    Fig.10.Circularity versus the(a)minimum sea level pressure and(b)major axis length of the fitted eye at z=2,4,and 6 km.The solid lines indicate the best fit to the data.

    4.Summary

    In the summer typhoon season,monsoon flow prevails over the South China Sea,regularly resulting in moderate northeasterly vertical wind shear.Most TCs traveling in that region tend to make landfall in South China,and they may experience rapid intensity change before making landfall.Although the eye in a TC only occupies a relatively small area,its behavior has been long recognized to be closely related to non-negligible changes in TC structure and intensity.This study investigates the geometric characteristics of eyes before TC landfall in South China,based on ground-based radar reflectivity.On the one hand,we attempt to reveal the relationship between the geometric characteristics and TC structure and intensity change before South China landfall.On the other hand,the documented geometric features of the eyes are expected to provide hints for improvement in landfalling TC forecasts,such as information that can be used in data assimilation.

    Fig.11.Frequency distributions for the eye major axis orientation.

    It is found that the median and mean eye area decrease with TC intensity,except for STY storms.This result resembles the eye size distributions found in Kimball and Mulekar(2004),which showed that the eye radius median of category-2 hurricanes was much larger than that of category-5 hurricanes,while the median increased from category 3 to category 4.As also noted in prior studies,the eye size increases with height.The increasing rate of eye size is relatively greater in upper layers,qualitatively agreeing with the increasing slope of the eyewall in the upper troposphere.The ratio of eye size change in the vertical direction is shown to not correlate with TC intensity,somehow evidencing no relationship between eyewall slope and storm intensity.Correspondingly,no relationship is seen between the ratio of eye size change in the vertical direction and the vertical wind shear,as the outliers of very small shear are excluded.Unlike results in previous studies,there is no relationship between the vertical change in eye size and the eye size.This likely signifies that the vertical change in eye size may be fundamentally different in some ways from other measurements of eyewall slope,such as the slope of the radius of maximum wind.There also exists no relationship between the vertical change in eye size and the intensity tendency.In addition,ERVs of 0.5–0.7 are most frequently observed.More intense TCs generally have more circular eyes.

    There are some caveats to this study that are important to note.Radar calibration errors will influence the determination of eye area and roundness.The offset in time between the radar observations and the analysis variables from the best-track data or the NCEP final reanalysis could introduce errors.Although the eye geometric characteristics of TCs embedded in monsoon-associated vertical shear are preliminarily discussed in the current study,how the change in vertical wind shear impacts upon eye geometry needs further investigation.In the future,we intend to study the eye geometric features associated with vertical wind shear with different pro files using high-resolution numerical simulations.

    Acknowledgements.This work was jointly supported by the National(Key)Basic Research and Development(973)Program of China(Grant No.2015CB452803),the National Key Research and Development Program of China(Grant No.2017YFC1501601),the National Natural Science Foundation of China(Grant Nos.41475058,41730961 and 41575083),the Basic Research Fund of CAMS(Grant No.2016Z003),and the Top-notch Academic Programs Project of Jiangsu Higher Education Institutions(TAPP).

    Aberson,S.D.,J.P.Dunion,and F.D.Marks Jr.,2006:A Photograph of a Wavenumber-2 Asymmetry in the Eye of Hurricane Erin.J.Atmos.Sci.,63,387–391,https://doi.org/10.1175/JAS3593.1.

    Barnes,C.E.,and G.M.Barnes.,2014:Eye and eyewall traits as determined with the NOAA wp-3d lower-fuselage radar.Mon.Wea.Rev.,142,3393–3417,https://doi.org/10.1175/MWRD-13-00375.1.

    Barnes,G.M.,and P.Fuentes,2010:Eye excess energy and the rapid intensification of Hurricane Lili(2002).Mon.Wea.Rev.,138,1446–1458,https://doi.org/10.1175/2009MWR3145.1.

    Braun,S.A.,2002:A cloud-resolving simulation of Hurricane Bob(1991):Storm structure and eyewall buoyancy.Mon.Wea.Rev.,130,1573–1592,https://doi.org/10.1175/1520-0493(2002)130<1573:ACRSOH>2.0.CO;2.

    Bryan,G.H.,and R.Rotunno,2009:The maximum intensity of tropical cyclones in axisymmetric numerical model simulations.Mon.Wea.Rev.,137,1770–1789,https://doi.org/10.1175/2008MWR2709.1.

    Chen,X.M.,Y.Q.Wang,and K.Zhao,2015:Synoptic flow patterns and large-scale characteristics associated with rapidly intensifying tropical cyclones in the South China Sea.Mon.Wea.Rev.,143,64–87,https://doi.org/10.1175/MWR-D-13-00338.1.

    Corbosiero,K.L.,J.Molinari,and M.L.Black,2005:The structure and evolution of Hurricane Elena(1985).Part I:Symmetric intensification.Mon.Wea.Rev.,133,2905–2921,https://doi.org/10.1175/MWR3010.1.

    Cram,T.A.,J.Persing,M.T.Montgomery,and S.A.Braun,2007:A Lagrangian trajectory view on transport and mixing processes between the eye,eyewall,and environment using a high-resolution simulation of Hurricane Bonnie(1998).J.Atmos.Sci.,64,1835–1856,https://doi.org/10.1175/JAS3921.1.

    Dolling,K.P.,and G.M.Barnes,2012:The creation of a high equivalent potential temperature reservoir in Tropical Storm Humberto(2001)and its possible role in storm deepening.Mon.Wea.Rev.,140,492–505,https://doi.org/10.1175/MWR-D-11-00068.1.

    Durden,S.L.,2013:Observed tropical cyclone eye thermal anomaly pro files extending above 300 hPa.Mon.Wea.Rev.,141,4256–4268,https://doi.org/10.1175/MWR-D-13-00021.1.

    Dvorak,V.F.,1975:Tropicalcyclone intensity analysis and forecasting from satellite imagery.Mon.Wea.Rev.,103,420–430,https://doi.org/10.1175/1520-0493(1975)103<0420:TCIAAF>2.0.CO;2.

    Emanuel,K.A.,1986:An air-sea interaction theory for tropical cyclones.Part I:Steady-state maintenance.J.Atmos.Sci.,43,585–604,https://doi.org/10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2.

    Emanuel,K.A.,1988:The maximum intensity of hurricanes.J.Atmos.Sci.,45,1143–1155,https://doi.org/10.1175/1520-0469(1988)045<1143:TMIOH>2.0.CO;2.

    Gao,S.,B.Q.Chen,T.Li,N.G.Wu,and W.J.Deng,2017:AIRS-observed warm core structures of tropical cyclones over the western North Pacific.Dyn.Atmos.Oceans,77,100–106,https://doi.org/10.1016/j.dynatmoce.2016.12.001.

    Hack,J.J.,and W.H.Schubert,1986:Nonlinear response of atmospheric vortices to heating by organized cumulus convection.J.Atmos.Sci.,43,1559–1573,https://doi.org/10.1175/1520-0469(1986)043<1559:NROAVT>2.0.CO;2.

    Hawkins,H.F.,and D.T.Rubsam,1968:Hurricane Hilda,1964:II.Structure and budgets of the hurricane on October 1,1964.Mon.Wea.Rev.,96,617–636,https://doi.org/10.1175/1520-0493(1968)096<0617:HH>2.0.CO;2.

    Hawkins,H.F.,and S.M.Imbembo,1976:The structure of a small,intense Hurricane-Inez 1966.Mon.Wea.Rev.,104,418–442,https://doi.org/10.1175/1520-0493(1976)104<0418:TSOASI>2.0.CO;2.

    Hazelton,A.T.,and R.E.Hart,2013:Hurricane eyewall slope as determined from airborne radar reflectivity data:Composites and case studies.Wea.Forecasting,28,368–386,https://doi.org/10.1175/WAF-D-12-00037.1.

    Hazelton,A.T.,R.Rogers,and R.E.Hart,2015:Shearrelative asymmetries in tropical cyclone eyewall slope.Mon.Wea.Rev.,143,883–903,https://doi.org/10.1175/MWR-D-14-00122.1.

    Hendricks,E.A.,B.D.McNoldy,and W.H.Schubert,2012:Observed inner-core structural variability in Hurricane Dolly(2008).Mon.Wea.Rev.,140,4066–4077,https://doi.org/10.1175/MWR-D-12-00018.1.

    Hendricks,E.A.,W.H.Schubert,Y.-H.Chen,H.-C.Kuo,and M.S.Peng,2014:Hurricane eyewall evolution in a forced shallow-water model.J.Atmos.Sci.,71,1623–1643,https://doi.org/10.1175/JAS-D-13-0303.1.

    Holland,G.J.,1997:The maximum potential intensity of tropical cyclones.J.Atmos.Sci.,54,2519–2541,https://doi.org/10.1175/1520-0469(1997)054<2519:TMPIOT>2.0.CO;2.

    Jorgensen,D.P.,1984a:Mesoscale and convective-scale characteristics of mature hurricanes.Part I:General observations by research aircraft.J.Atmos.Sci.,41,1268–1285,https://doi.org/10.1175/1520-0469(1984)041<1268:MACSCO>2.0.CO;2.

    Jorgensen,D.P.,1984b:Mesoscale and convective-scale characteristics of mature hurricanes.Part II.Inner core structure of Hurricane Allen (1980).J.Atmos.Sci.,41,1287–1311,https://doi.org/10.1175/1520-0469(1984)041<1287:MACSCO>2.0.CO;2.

    Kimball,S.K.,and M.S.Mulekar,2004:A 15-year climatology of North Atlantic tropical cyclones.Part I:Size parameters.J.Climate,17,3555–3575,https://doi.org/10.1175/1520-0442(2004)017<3555:AYCONA>2.0.CO;2.

    Knaff,J.,J.P.Kossin,and M.DeMaria,2003:Annular hurricanes.Wea.Forecasting,18,204–223,https://doi.org/10.1175/1520-0434(2003)018<0204:AH>2.0.CO;2.

    Kossin,J.P.,and W.H.Schubert,2001:Mesovortices,polygonal flow patterns,and rapid pressure falls in hurricane-like vortices.J.Atmos.Sci.,58,2196–2209,https://doi.org/10.1175/1520-0469(2001)058<2196:MPFPAR>2.0.CO;2.

    Kossin,J.P.,W.H.Schubert,and M.T.Montgomery,2000:Unstable interactions between a hurricane’s primary eyewall and a secondary ring of enhanced vorticity.J.Atmos.Sci.,57,3893–3917,https://doi.org/10.1175/1520-0469(2001)058<3893:UIBAHS>2.0.CO;2.

    Kuo,H.-C.,R.T.Williams,and J.-H.Chen,1999:A possible mechanism for the eye rotation of Typhoon Herb.J.Atmos.Sci.,56,1659–1673,https://doi.org/10.1175/1520-0469(1999)056<1659:APMFTE>2.0.CO;2.

    Kuo,H.-C.,W.-Y.Cheng,Y.-T.Yang,E.A.Hendricks,and M.S.Peng,2016:Deep convection in elliptical and polygonal eyewalls of tropical cyclones.J.Geophys.Res.,121,14 456–14 468,https://doi.org/10.1002/2016JD025317.

    La Seur,N.E.,and H.F.Hawkins,1963:An analysis of Hurricane Cleo(1958)based on data from research reconnaissance aircraft.Mon.Wea.Rev.,91,694–709,https://doi.org/10.1175/1520-0493(1963)091<0694:AAOHCB>2.3.CO;2.

    Lewis,B.M.,and H.F.Hawkins,1982:Polygonal eye walls and rainbands in hurricanes.Bull.Amer.Meteor.Soc.,63,1294–1300,https://doi.org/10.1175/1520-0477(1982)063<1294:PEWARI>2.0.CO;2.

    Li,Q.Q.,Y.Q.Wang,and Y.H.Duan,2014:Effects of diabatic heating and cooling in the rapid Filamentation zone on structure and intensity of a simulated tropical cyclone.J.Atmos.Sci.,71,3144–3163,https://doi.org/10.1175/JAS-D-13-0312.1.

    Li,Q.Q.,Y.Q.Wang,and Y.H.Duan,2015:Impacts of evaporation of rainwater on tropical cyclone structure and intensity-A revisit.J.Atmos.Sci.,72,1323–1345,https://doi.org/10.1175/JAS-D-14-0224.1.

    Liu,Y.B.,D.-L.Zhang,and M.K.Yau,1997:A multiscale numerical study of Hurricane Andrew(1992).Part I:Explicit simulation and verification.Mon.Wea.Rev.,125,3073–3093,https://doi.org/10.1175/1520-0493(1997)125<3073:AMNSOH>2.0.CO;2.

    Malkus,J.S.,1958:On the structure and maintenance of the mature hurricane eye.J.Meteor.,15,337–349,https://doi.org/10.1175/1520-0469(1958)015<0337:OTSAMO>2.0.CO;2.

    Menelaou,K.,M.K.Yau,and Y.Martinez,2013:On the origin and impact of a polygonal eyewall in the rapid intensification of Hurricane Wilma(2005).J.Atmos.Sci.,70,3839–3858,https://doi.org/10.1175/JAS-D-13-091.1.

    Mitsuta,Y.,and S.Yoshizumi,1973:Periodic variations of pressure,wind and rainfall observed at Miyakojima during the second Miyakojima Typhoon.J.Meteor.Soc.Japan,51,475–485,https://doi.org/10.2151/jmsj1965.51.6475.

    Montgomery,M.T.,and R.J.Kallenbach,1997:A theory for vortex Rossby-waves and its application to spiral bands and intensity changes in hurricanes.Quart.J.Roy.Meteor.Soc.,123,435–465,https://doi.org/10.1002/qj.49712353810.

    Montgomery,M.T.,M.M.Bell,S.D.Aberson,and M.L.Black,2006:Hurricane Isabel(2003):New insights into the physics of intense storms.Part I:Mean vortex structure and maximum intensity estimates.Bull.Amer.Meteor.Soc.,87,1335–1347,https://doi.org/10.1175/BAMS-87-10-1335.

    Muramatsu,T.,1986:The structure of polygonal eye of a typhoon.J.Meteor.Soc.Japan,64,913–921,https://doi.org/10.2151/jmsj1965.64.6913.

    Oda,M.,T.Itano,G.Naito,M.Nakanishi,and K.Tomine,2005:Destabilization of the symmetric vortex and formation of the elliptical eye of Typhoon Herb.J.Atmos.Sci.,62,2965–2976,https://doi.org/10.1175/JAS3521.1.

    Persing,J.,and M.T.Montgomery,2003:Hurricane superintensity.J.Atmos.Sci.,60,2349–2371,https://doi.org/10.1175/1520-0469(2003)060<2349:HS>2.0.CO;2.

    Reasor,P.D.,M.T.Montgomery,F.D.Marks Jr.,and J.F.Gamache,2000:Low-wavenumber structure and evolution of the hurricane inner core observed by airborne dual-Doppler radar.Mon.Wea.Rev.,128,1653–1680,https://doi.org/10.1175/1520-0493(2000)128<1653:LWSAEO>2.0.CO;2.

    Rogers,R.,S.Lorsolo,P.Reasor,J.Gamache,and F.Marks,2012:Multiscale analysis of tropical cyclone kinematic structure from airborne Doppler radar composites.Mon.Wea.Rev.,140,77–99,https://doi.org/10.1175/MWR-D-10-05075.1.

    Rogers,R.,P.Reasor,and S.Lorsolo,2013:Airborne Doppler observations of the inner-core structural differences between intensifying and steady-state tropical cyclones.Mon.Wea.Rev.,141,2970–2991,https://doi.org/10.1175/MWR-D-12-00357.1.

    Rogers,R.F.,P.D.Reasor,and J.A.Zhang,2015:Multiscale structure and evolution of Hurricane Earl(2010)during rapid intensification.Mon.Wea.Rev.,143,536–562,https://doi.org/10.1175/MWR-D-14-00175.1.

    Schubert,W.H.,C.M.Rozoff,J.L.Vigh,B.D.McNoldy,and J.P.Kossin,2007:On the distribution of subsidence in the hurricane eye.Quart.J.Roy.Meteor.Soc.,133,595–605,https://doi.org/10.1002/qj.49.

    Schubert,W.H.,M.T.Montgomery,R.K.Taft,T.A.Guinn,S.R.Fulton,J.P.Kossin,and J.P.Edwards,1999:Polygonal eyewalls,asymmetric eye contraction,and potential vorticity mixing in hurricanes.J.Atmos.Sci.,56,1197–1223,https://doi.org/10.1175/1520-0469(1999)056<1197:PEAECA>2.0.CO;2.

    Shapiro,L.J.,and H.E.Willoughby,1982:The response of balanced hurricanes to local sources of heat and momentum.J.Atmos.Sci.,39,378–394,https://doi.org/10.1175/1520-0469(1982)039<0378:TROBHT>2.0.CO;2.

    Shea,D.J.,and W.M.Gray,1973:The hurricane’s inner core region.I.Symmetric and asymmetric structure.J.Atmos.Sci.,30,1544–1564,https://doi.org/10.1175/1520-0469(1973)030<1544:THICRI>2.0.CO;2.

    Sitkowski,M.,and G.M.Barnes,2009:Low-level thermodynamic,kinematic,and reflectivity fields of Hurricane Guillermo(1997)during rapid intensification.Mon.Wea.Rev.,137,645–663,https://doi.org/10.1175/2008MWR2531.1.

    Stern,D.P.,and D.S.Nolan,2009:Reexamining the vertical structure of tangential winds in tropical cyclones:Observations and theory.J.Atmos.Sci.,66,3579–3600,https://doi.org/10.1175/2009JAS2916.1.

    Stern,D.P.,and D.S.Nolan,2011:On the vertical decay rate of the maximum tangential winds in tropical cyclones.J.Atmos.Sci.,68,2073–2094,https://doi.org/10.1175/2011JAS3682.1.

    Stern,D.P.,and F.Q.Zhang,2013a:How does the eye warm?Part I:A potential temperature budget analysis of an idealized tropical cyclone.J.Atmos.Sci.,70,73–90,https://doi.org/10.1175/JAS-D-11-0329.1.

    Stern,D.P.,and F.Q.Zhang,2013b:How does the eyewarm?Part II:Sensitivity to vertical wind shear and a trajectory analysis.J.Atmos.Sci.,70,1849–1873,https://doi.org/10.1175/JASD-12-0258.1.

    Stern,D.P.,and F.Q.,Zhang,2016:The warm-core structure of Hurricane Earl(2010).J.Atmos.Sci.,73,3305–3328,https://doi.org/10.1175/JAS-D-15-0328.1.

    Stern,D.P.,J.R.Brisbois,and D.S.Nolan,2014:An expanded dataset of hurricane eyewall sizes and slopes.J.Atmos.Sci.,71,2747–2762,https://doi.org/10.1175/JAS-D-13-0302.1.

    Stern,D.P.,J.L.Vigh,D.S.Nolan,and F.Q.Zhang,2015:Revisiting the relationship between eyewall contraction and intensification.J.Atmos.Sci.,72,1283–1306,https://doi.org/10.1175/JAS-D-14-0261.1.

    Vigh,J.L.,and W.H.Schubert,2009:Rapid development of the tropical cyclone warm core.J.Atmos.Sci.,66,3335–3350,https://doi.org/10.1175/2009JAS3092.1.

    Vigh,J.L.,J.A.Knaff,and W.H.Schubert,2012:A climatology of hurricane eye formation.Mon.Wea.Rev.,140,1405–1426,https://doi.org/10.1175/MWR-D-11-00108.1.

    Wang,M.J.,M.Xue,K.Zhao,and J.L.Dong,2014:Assimilation of T-TREC-retrieved winds from single-Doppler radar with an ensemble kalman filter for the forecast of Typhoon Jangmi(2008).Mon.Wea.Rev.,142,1892–1907,https://doi.org/10.1175/MWR-D-13-00387.1.

    Wang,Y.Q.,2002:Vortex Rossby waves in a numerically simulated tropical cyclone.Part II:The role in tropical cyclone structure and intensity changes.J.Atmos.Sci.,59,1239–1262,https://doi.org/10.1175/1520-0469(2002)059<1239:VRWIAN>2.0.CO;2.

    Wang,Y.Q.,2008:Structure and formation of an annular hurricane simulated in a fully compressible,nonhydrostatic model-TCM4.J.Atmos.Sci.,65,1505–1527,https://doi.org/10.1175/2007JAS2528.1.

    Weatherford,C.L.,and W.M.Gray,1988:Typhoon structure as revealed by aircraft reconnaissance.Part II:Structural variability.Mon.Wea.Rev.,116,1044–1056,https://doi.org/10.1175/1520-0493(1988)116<1044:TSARBA>2.0.CO;2.

    Willoughby,H.E.,1998:Tropical cyclone eye thermodynamics.Mon.Wea.Rev.,126,3053–3067,https://doi.org/10.1175/1520-0493(1998)126<3053:TCET>2.0.CO;2.

    Ying,M.,W.Zhang,H.Yu,X.Q.Lu,J.X.Feng,Y.X.Fan,Y.T.Zhu,and D.Q.Chen,2014:An overview of the China Meteorological Administration tropical cyclone database.J.Atmos.Oceanic Technol,31,287–301,https://doi.org/10.1175/JTECH-D-12-00119.1.

    Zhang,D.-L.,Y.B.Liu,and M.K.Yau,2002:A multiscale numerical study of Hurricane Andrew(1992).Part V:Inner-core thermodynamics.Mon.Wea.Rev.,130,2745–2763,https://doi.org/10.1175/1520-0493(2002)130<2745:AMNSOH>2.0.CO;2.

    午夜福利影视在线免费观看| 69精品国产乱码久久久| 日韩,欧美,国产一区二区三区| 国产伦理片在线播放av一区| 亚洲成av片中文字幕在线观看| 国产免费av片在线观看野外av| 亚洲第一av免费看| 欧美午夜高清在线| 男女床上黄色一级片免费看| 欧美激情 高清一区二区三区| 精品一区二区三卡| 欧美变态另类bdsm刘玥| 天天影视国产精品| 久久久久久久国产电影| 女人被躁到高潮嗷嗷叫费观| 男人爽女人下面视频在线观看| 欧美激情久久久久久爽电影 | 午夜福利在线免费观看网站| 国产一卡二卡三卡精品| 久久亚洲国产成人精品v| 久久精品国产亚洲av香蕉五月 | 亚洲美女黄色视频免费看| 亚洲精华国产精华精| 欧美精品一区二区大全| 91av网站免费观看| 欧美激情极品国产一区二区三区| 男女床上黄色一级片免费看| 美女高潮到喷水免费观看| 国产av精品麻豆| 久久人妻熟女aⅴ| 亚洲精品国产精品久久久不卡| 国产91精品成人一区二区三区 | 午夜福利影视在线免费观看| 精品国产国语对白av| √禁漫天堂资源中文www| 最近最新免费中文字幕在线| 91成年电影在线观看| 亚洲中文av在线| 欧美激情高清一区二区三区| 国产成人精品无人区| 久久久久久久久久久久大奶| 亚洲av国产av综合av卡| 男女免费视频国产| 最新的欧美精品一区二区| 男人操女人黄网站| 亚洲精品国产一区二区精华液| 久久热在线av| 咕卡用的链子| 狂野欧美激情性bbbbbb| 亚洲成人免费电影在线观看| 自线自在国产av| 国产精品国产三级国产专区5o| 国产男人的电影天堂91| 久久久久视频综合| 亚洲av电影在线观看一区二区三区| 一级毛片电影观看| 黄色a级毛片大全视频| 亚洲成人手机| 大片免费播放器 马上看| 在线av久久热| 人妻一区二区av| 亚洲中文av在线| 国产精品av久久久久免费| 男女下面插进去视频免费观看| 性色av乱码一区二区三区2| 亚洲欧美一区二区三区黑人| 男女免费视频国产| 伊人亚洲综合成人网| 两性夫妻黄色片| 少妇人妻久久综合中文| 2018国产大陆天天弄谢| 亚洲国产精品一区三区| 国产激情久久老熟女| 国产伦理片在线播放av一区| 亚洲视频免费观看视频| 日本黄色日本黄色录像| 色94色欧美一区二区| 国产av精品麻豆| 国产黄频视频在线观看| 精品久久蜜臀av无| 美女扒开内裤让男人捅视频| 国产高清videossex| 91精品伊人久久大香线蕉| 不卡av一区二区三区| 曰老女人黄片| 欧美日韩精品网址| 午夜91福利影院| 国产精品1区2区在线观看. | 亚洲七黄色美女视频| 亚洲一卡2卡3卡4卡5卡精品中文| av一本久久久久| 国产亚洲精品一区二区www | 成人国语在线视频| 啦啦啦在线免费观看视频4| 一二三四在线观看免费中文在| 国产精品麻豆人妻色哟哟久久| www.av在线官网国产| 欧美精品一区二区免费开放| 午夜成年电影在线免费观看| 啦啦啦在线免费观看视频4| 欧美日韩av久久| 亚洲一区中文字幕在线| 最新的欧美精品一区二区| 亚洲色图 男人天堂 中文字幕| 免费在线观看黄色视频的| 日韩大片免费观看网站| 中文字幕最新亚洲高清| 丰满少妇做爰视频| 性色av一级| 免费黄频网站在线观看国产| 人妻一区二区av| 午夜免费观看性视频| 亚洲精品一二三| 亚洲成av片中文字幕在线观看| 亚洲精品中文字幕一二三四区 | 久久久精品免费免费高清| 亚洲av美国av| 90打野战视频偷拍视频| 久久天躁狠狠躁夜夜2o2o| 女警被强在线播放| 在线av久久热| 国产日韩一区二区三区精品不卡| 精品少妇内射三级| 老司机亚洲免费影院| 国产视频一区二区在线看| 侵犯人妻中文字幕一二三四区| 欧美日韩黄片免| 欧美97在线视频| 人妻一区二区av| 满18在线观看网站| 国产一区二区三区av在线| 日韩制服骚丝袜av| 大码成人一级视频| 9色porny在线观看| 黑人操中国人逼视频| 久久精品国产综合久久久| 亚洲国产欧美网| 我要看黄色一级片免费的| 一级a爱视频在线免费观看| 韩国高清视频一区二区三区| 亚洲精品一区蜜桃| 无遮挡黄片免费观看| 久久久精品免费免费高清| 久久久精品免费免费高清| 亚洲精品美女久久久久99蜜臀| 黄色视频不卡| 香蕉丝袜av| 视频在线观看一区二区三区| 国产极品粉嫩免费观看在线| 国产精品秋霞免费鲁丝片| 麻豆av在线久日| 99香蕉大伊视频| 国产区一区二久久| 婷婷丁香在线五月| 中文字幕最新亚洲高清| 欧美人与性动交α欧美软件| 亚洲va日本ⅴa欧美va伊人久久 | 老司机靠b影院| 精品亚洲成a人片在线观看| 亚洲男人天堂网一区| 桃红色精品国产亚洲av| 99精国产麻豆久久婷婷| 久久人妻福利社区极品人妻图片| 国产伦人伦偷精品视频| 亚洲七黄色美女视频| 国产欧美日韩一区二区精品| 亚洲第一欧美日韩一区二区三区 | 国产有黄有色有爽视频| 免费观看a级毛片全部| 成人三级做爰电影| 黄色毛片三级朝国网站| 一级a爱视频在线免费观看| 午夜福利视频在线观看免费| 久久天堂一区二区三区四区| 19禁男女啪啪无遮挡网站| 亚洲欧美精品自产自拍| 十八禁人妻一区二区| 国产成人一区二区三区免费视频网站| 十分钟在线观看高清视频www| 法律面前人人平等表现在哪些方面 | 免费观看a级毛片全部| av片东京热男人的天堂| 亚洲 欧美一区二区三区| 狂野欧美激情性bbbbbb| 国产深夜福利视频在线观看| 久久天堂一区二区三区四区| 人妻一区二区av| 国产男女超爽视频在线观看| 欧美精品一区二区免费开放| 国产高清videossex| 亚洲国产精品一区三区| 亚洲自偷自拍图片 自拍| 亚洲精品第二区| 黄色 视频免费看| av在线老鸭窝| 高清视频免费观看一区二区| 国产亚洲精品久久久久5区| 免费高清在线观看视频在线观看| 午夜老司机福利片| 人人澡人人妻人| 97人妻天天添夜夜摸| 搡老岳熟女国产| 国产欧美亚洲国产| 免费高清在线观看视频在线观看| 国产男人的电影天堂91| 不卡av一区二区三区| 国产精品影院久久| 一二三四社区在线视频社区8| 男女免费视频国产| 性少妇av在线| 久久国产精品人妻蜜桃| 久久精品亚洲熟妇少妇任你| 丝袜在线中文字幕| 久久久久精品人妻al黑| 91国产中文字幕| av网站在线播放免费| 美国免费a级毛片| 久久久久久久大尺度免费视频| 99精品欧美一区二区三区四区| 在线看a的网站| 啦啦啦免费观看视频1| 色94色欧美一区二区| 成年人黄色毛片网站| 青春草亚洲视频在线观看| 亚洲国产欧美网| 国产成人欧美| 亚洲精品一区蜜桃| 久久久久网色| 国产在线观看jvid| 国产成人精品无人区| 色综合欧美亚洲国产小说| 精品少妇内射三级| 自线自在国产av| 国产一区二区激情短视频 | 首页视频小说图片口味搜索| 淫妇啪啪啪对白视频 | 一区福利在线观看| 肉色欧美久久久久久久蜜桃| 各种免费的搞黄视频| 天天躁日日躁夜夜躁夜夜| 丁香六月天网| 国产精品二区激情视频| 这个男人来自地球电影免费观看| 国产成人啪精品午夜网站| 超碰成人久久| 久久久久久久国产电影| 美女中出高潮动态图| 精品久久久久久久毛片微露脸 | 日本猛色少妇xxxxx猛交久久| 国产亚洲精品一区二区www | 国产熟女午夜一区二区三区| 两个人看的免费小视频| 一边摸一边做爽爽视频免费| 国产精品国产av在线观看| 亚洲精华国产精华精| 男女高潮啪啪啪动态图| 亚洲三区欧美一区| 在线永久观看黄色视频| 九色亚洲精品在线播放| 好男人电影高清在线观看| 亚洲成av片中文字幕在线观看| 亚洲一区二区三区欧美精品| 国产极品粉嫩免费观看在线| 搡老乐熟女国产| 久久国产精品影院| av视频免费观看在线观看| 99国产综合亚洲精品| 日本av免费视频播放| 日本猛色少妇xxxxx猛交久久| 91精品伊人久久大香线蕉| 黄色视频在线播放观看不卡| 女人高潮潮喷娇喘18禁视频| 男女床上黄色一级片免费看| 精品福利永久在线观看| 精品一区二区三区四区五区乱码| 国产区一区二久久| 久久香蕉激情| 免费不卡黄色视频| 黄色怎么调成土黄色| 成年女人毛片免费观看观看9 | 国产免费福利视频在线观看| 18禁黄网站禁片午夜丰满| 久久久久久久久免费视频了| 少妇 在线观看| 欧美变态另类bdsm刘玥| 国产成人精品久久二区二区91| 大码成人一级视频| 99九九在线精品视频| 亚洲国产欧美日韩在线播放| 国产精品麻豆人妻色哟哟久久| 久久亚洲精品不卡| 免费观看av网站的网址| 日韩有码中文字幕| 一级毛片精品| 在线观看www视频免费| 男人添女人高潮全过程视频| 午夜福利免费观看在线| 欧美人与性动交α欧美精品济南到| 2018国产大陆天天弄谢| 欧美国产精品va在线观看不卡| 韩国精品一区二区三区| 亚洲精品美女久久av网站| 在线看a的网站| 亚洲第一欧美日韩一区二区三区 | 国产一区二区三区综合在线观看| 香蕉国产在线看| 少妇猛男粗大的猛烈进出视频| 日本91视频免费播放| 黄频高清免费视频| 免费不卡黄色视频| 亚洲 欧美一区二区三区| 在线观看www视频免费| 久热这里只有精品99| 亚洲精华国产精华精| 成人影院久久| 侵犯人妻中文字幕一二三四区| 天天影视国产精品| av有码第一页| 日本wwww免费看| 黑人操中国人逼视频| 女人高潮潮喷娇喘18禁视频| 久久免费观看电影| 久久99热这里只频精品6学生| 自线自在国产av| 99国产精品免费福利视频| 国产av又大| 国产成人av激情在线播放| 欧美性长视频在线观看| h视频一区二区三区| 亚洲av国产av综合av卡| 久久久久精品国产欧美久久久 | 欧美精品亚洲一区二区| 男女无遮挡免费网站观看| 免费女性裸体啪啪无遮挡网站| 热99re8久久精品国产| 国产成人精品久久二区二区免费| 日韩中文字幕欧美一区二区| 亚洲国产日韩一区二区| 女警被强在线播放| 一本综合久久免费| av线在线观看网站| www.av在线官网国产| 亚洲熟女精品中文字幕| 看免费av毛片| 精品亚洲乱码少妇综合久久| 91成年电影在线观看| 操美女的视频在线观看| 免费一级毛片在线播放高清视频 | 国产精品国产av在线观看| 免费人妻精品一区二区三区视频| 亚洲综合色网址| 国产精品1区2区在线观看. | 91av网站免费观看| 国产精品免费大片| 9热在线视频观看99| 国产精品麻豆人妻色哟哟久久| 久久精品国产亚洲av高清一级| 操美女的视频在线观看| 美女扒开内裤让男人捅视频| 狂野欧美激情性bbbbbb| 久久狼人影院| 国产精品久久久久久人妻精品电影 | 亚洲 国产 在线| 欧美日韩中文字幕国产精品一区二区三区 | 久久精品aⅴ一区二区三区四区| 黑丝袜美女国产一区| 精品国产乱码久久久久久小说| 黑人欧美特级aaaaaa片| 自线自在国产av| 欧美黄色片欧美黄色片| 国产亚洲精品第一综合不卡| 国产av精品麻豆| 日韩大片免费观看网站| 午夜激情av网站| 91麻豆精品激情在线观看国产 | 亚洲国产精品一区三区| 超碰97精品在线观看| 高清黄色对白视频在线免费看| 一级毛片女人18水好多| 巨乳人妻的诱惑在线观看| 亚洲欧美精品自产自拍| av国产精品久久久久影院| 青春草视频在线免费观看| 日本一区二区免费在线视频| 咕卡用的链子| 亚洲久久久国产精品| 在线av久久热| 婷婷色av中文字幕| 亚洲精品中文字幕一二三四区 | av一本久久久久| 不卡一级毛片| 黑丝袜美女国产一区| 欧美中文综合在线视频| 999精品在线视频| 久久国产精品大桥未久av| 午夜激情久久久久久久| 婷婷成人精品国产| videosex国产| 午夜成年电影在线免费观看| 涩涩av久久男人的天堂| 操出白浆在线播放| 国产日韩欧美视频二区| 亚洲九九香蕉| 国产亚洲欧美精品永久| 亚洲av成人不卡在线观看播放网 | 一本久久精品| 捣出白浆h1v1| 自拍欧美九色日韩亚洲蝌蚪91| 老司机靠b影院| cao死你这个sao货| 日本av手机在线免费观看| 婷婷成人精品国产| 国产男女超爽视频在线观看| 一级毛片电影观看| 亚洲精品一区蜜桃| 在线观看免费日韩欧美大片| 久久久久网色| 色94色欧美一区二区| 男女高潮啪啪啪动态图| videos熟女内射| 久久香蕉激情| 国产免费视频播放在线视频| 欧美一级毛片孕妇| 国产精品国产三级国产专区5o| 成人亚洲精品一区在线观看| 免费久久久久久久精品成人欧美视频| 91九色精品人成在线观看| 精品国产一区二区三区四区第35| 久久九九热精品免费| 王馨瑶露胸无遮挡在线观看| 免费黄频网站在线观看国产| 久久久久久久久久久久大奶| 脱女人内裤的视频| 免费黄频网站在线观看国产| 欧美精品人与动牲交sv欧美| 久久热在线av| 国产高清视频在线播放一区 | 99久久国产精品久久久| 天天躁日日躁夜夜躁夜夜| 日韩 欧美 亚洲 中文字幕| 嫁个100分男人电影在线观看| 日日摸夜夜添夜夜添小说| 国产又爽黄色视频| 亚洲七黄色美女视频| 伦理电影免费视频| 美女视频免费永久观看网站| 香蕉丝袜av| 窝窝影院91人妻| 国产视频一区二区在线看| 亚洲国产中文字幕在线视频| 欧美+亚洲+日韩+国产| 1024视频免费在线观看| 亚洲 欧美一区二区三区| 老熟女久久久| 日韩人妻精品一区2区三区| 中文字幕av电影在线播放| 王馨瑶露胸无遮挡在线观看| 亚洲成av片中文字幕在线观看| www.熟女人妻精品国产| 啦啦啦免费观看视频1| 女人精品久久久久毛片| 午夜免费成人在线视频| 久久精品久久久久久噜噜老黄| 999精品在线视频| a在线观看视频网站| 欧美精品啪啪一区二区三区 | 国产精品av久久久久免费| 黄片播放在线免费| 日韩 欧美 亚洲 中文字幕| 久久久精品国产亚洲av高清涩受| 精品福利观看| 大香蕉久久网| 黑人猛操日本美女一级片| 嫩草影视91久久| 日韩大码丰满熟妇| 超碰成人久久| 十八禁网站网址无遮挡| 日韩大片免费观看网站| 在线观看www视频免费| 免费观看av网站的网址| 青青草视频在线视频观看| 天天躁狠狠躁夜夜躁狠狠躁| 国产成人影院久久av| 91九色精品人成在线观看| a级片在线免费高清观看视频| 日韩一卡2卡3卡4卡2021年| 国产精品国产三级国产专区5o| 成在线人永久免费视频| 正在播放国产对白刺激| 精品亚洲乱码少妇综合久久| 国产黄色免费在线视频| 精品高清国产在线一区| 巨乳人妻的诱惑在线观看| 国产色视频综合| 丝袜脚勾引网站| 国产在线免费精品| 久久久国产一区二区| 女人被躁到高潮嗷嗷叫费观| 大型av网站在线播放| 久久久久久久精品精品| 少妇精品久久久久久久| 国产精品偷伦视频观看了| 亚洲国产精品一区三区| 精品亚洲成国产av| 十八禁人妻一区二区| 国产在视频线精品| 热99久久久久精品小说推荐| 精品国产一区二区久久| 亚洲精品第二区| 99国产综合亚洲精品| 亚洲情色 制服丝袜| 波多野结衣av一区二区av| 日本av免费视频播放| 老司机亚洲免费影院| 国产在线免费精品| 男女高潮啪啪啪动态图| 精品亚洲成a人片在线观看| 超色免费av| 岛国在线观看网站| 午夜福利免费观看在线| 国产一区二区 视频在线| 免费少妇av软件| 别揉我奶头~嗯~啊~动态视频 | 18禁国产床啪视频网站| 国产一区二区在线观看av| 一区二区三区激情视频| 日本a在线网址| 女人爽到高潮嗷嗷叫在线视频| 国产精品自产拍在线观看55亚洲 | 亚洲精品国产精品久久久不卡| 国产成人av激情在线播放| 亚洲男人天堂网一区| 黄色a级毛片大全视频| 欧美黑人欧美精品刺激| 久久久久精品国产欧美久久久 | 在线天堂中文资源库| 国产精品 欧美亚洲| 国产精品麻豆人妻色哟哟久久| 国产国语露脸激情在线看| 日韩中文字幕欧美一区二区| 大型av网站在线播放| 欧美乱码精品一区二区三区| 久久久久精品人妻al黑| 国产人伦9x9x在线观看| 男人添女人高潮全过程视频| 99久久精品国产亚洲精品| 99久久人妻综合| 美女主播在线视频| 动漫黄色视频在线观看| 美女大奶头黄色视频| 夜夜骑夜夜射夜夜干| 美女高潮到喷水免费观看| 人人妻人人添人人爽欧美一区卜| 欧美午夜高清在线| 免费av中文字幕在线| 巨乳人妻的诱惑在线观看| av片东京热男人的天堂| 黑人巨大精品欧美一区二区蜜桃| 久9热在线精品视频| 亚洲精品在线美女| 亚洲av国产av综合av卡| 又紧又爽又黄一区二区| 久久免费观看电影| 97精品久久久久久久久久精品| 欧美成狂野欧美在线观看| 18禁观看日本| 久久性视频一级片| 亚洲熟女毛片儿| 亚洲美女黄色视频免费看| 亚洲欧美激情在线| 亚洲天堂av无毛| 亚洲专区中文字幕在线| 国产极品粉嫩免费观看在线| 极品少妇高潮喷水抽搐| 各种免费的搞黄视频| 男女无遮挡免费网站观看| 欧美少妇被猛烈插入视频| 亚洲,欧美精品.| 国精品久久久久久国模美| 91成年电影在线观看| netflix在线观看网站| 肉色欧美久久久久久久蜜桃| 男人爽女人下面视频在线观看| 亚洲精品久久久久久婷婷小说| 精品国产超薄肉色丝袜足j| 99精品久久久久人妻精品| 天天躁夜夜躁狠狠躁躁| 国产成人av教育| 亚洲少妇的诱惑av| 中文字幕色久视频| 精品人妻1区二区| 久久久久久亚洲精品国产蜜桃av| 精品亚洲成国产av| 国产男人的电影天堂91| 精品一品国产午夜福利视频| 欧美国产精品一级二级三级| 在线永久观看黄色视频| 欧美久久黑人一区二区| 亚洲久久久国产精品| 日日爽夜夜爽网站| 90打野战视频偷拍视频| 美国免费a级毛片| 国产伦人伦偷精品视频| 侵犯人妻中文字幕一二三四区| 国产熟女午夜一区二区三区| 999精品在线视频| 操出白浆在线播放| 国产亚洲av片在线观看秒播厂| 十分钟在线观看高清视频www| 日韩 欧美 亚洲 中文字幕| 久久影院123| 亚洲中文av在线| 搡老熟女国产l中国老女人| 欧美精品一区二区大全| 久热爱精品视频在线9|