• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Pairing-Free ID-Based Key-Insulated Signature Scheme

    2015-06-01 09:59:24GuoBinZhuHuXiongandZhiGuangQin

    Guo-Bin Zhu, Hu Xiong, and Zhi-Guang Qin

    Pairing-Free ID-Based Key-Insulated Signature Scheme

    Guo-Bin Zhu, Hu Xiong, and Zhi-Guang Qin

    —Without the assumption that the private keys are kept secure perfectly, cryptographic primitives cannot be deployed in the insecure environments where the key leakage is inevitable. In order to reduce the damage caused by the key exposure in the identity-based (ID-based) signature scenarios efficiently, we propose an ID-based key-insulated signature scheme in this paper, which eliminates the expensive bilinear pairing operations. Compared with the previous work, our scheme minimizes the computation cost without any extra cost. Under the discrete logarithm (DL) assumption, a security proof of our scheme in the random oracle model has also been given.

    Index Terms—Identity-based cryptography, keyinsulated, random oracle mode, signature.

    1. Introduction

    As more and more cryptographic primitives have been applied in insecure environments, the key-evolving protocols in the public key setting, such as the key-insulated[1],[2], intrusion-resilience[3],[4], and forward secure[5],[6]cryptosystems, have been put forward independently to deal with the key exposure problem. It is the basic idea behind the key-evolving method that the secret key will be evolved over time, while the corresponding public key remains unaltered during the lifetime of the private key. In this manner, the exposure of the secret keys in a given time period will not affect the secret keys in other time periods. As one of the key-evolution mechanisms, the key-insulated cryptosystem[1],[2]achieves key exposure resilience by dividing the secret key of the user into two parts: a temporary secret key held by the user and a helper key keptby a physically-secure but computationally-limited “helper”. The temporary secret key will be refreshed in each time period with the support from the helper, instead of the public key corresponding to this secret key remaining fixed over the whole lifetime of this private key. Since then, many schemes in this area have been presented including many key-insulated signature schemes[7]-[11].

    However, when the key-insulated signature is deployed in the public key infrastructure (PKI), a certificate should be issued by a certificate authority (CA) to establish the connection between the public key of the user and its corresponding identity. Before the signature is verified, the validity of this identity certificate should be guaranteed. Usually, the cost of maintaining, transferring, and validating the certificate is considered to be expensive. To reduce the overhead and complexity of the certificate management in traditional PKI, Shamir introduced the identity-based public key cryptography (ID-PKC)[12]. In ID-PKC environments, the public key of the user can be easily gained from his known identity information such as the email address or the telephone number. Meanwhile, a fully-trusted private key generator (PKG) is involved to generate the private key. In this case, the certificates in the conventional PKI can be eliminated in the ID-PKC. Observing the benefits of the key-insulated signature and ID-PKC, Zhouet al.[13]formalized the notion of the ID-based key-insulated signature (ID-KIS) scheme and proposed the first concrete construction from bilinear pairings. To afford a strong key-insulated property, Wenget al.[14]re-formalized the definition and security models of the ID-KIS scheme, and proposed a novel scheme along with the secure key-update. Taking different scenarios into account, extensions of the ID-KIS scheme, such as the ID-based parallel key-insulated signature[15],[16], ID-based key-insulated signcryption[17], ID-based key-insulated ring signature[18], ID-based key-insulated proxy signature[19], and ID-based key-insulated signature with batch verification[20], have also been investigated. Nevertheless, all of the existing ID-KIS schemes are constructed based on the bilinear pairings. Although the computation of the pairing is speeding up significantly, the pairing is still considered as the most expensive cryptographic operations so far[21]. Therefore, constructing an efficient and provably-secure ID-KIS scheme without pairing is an interesting and inspiring problem.

    In this paper, we propose an efficient and simpleID-KIS scheme and show its security in the random oracle model with the assumption that the DL problem is intractable. Compared with the previous ID-KIS schemes, our scheme is very efficient in terms of computation cost since the expensive bilinear pairing operation is eliminated from our scheme. To the best of authors’ knowledge, this is the first pairing-free ID-KIS scheme in literature.

    The rest of this paper is organized as follows. The mathematical background and the security model of ID-KIS scheme are given in Section 2. The concrete construction of the proposed scheme and the security proof is followed in Section 3 and Section 4, respectively. Finally, a concise conclusion is presented in Section 5.

    2. Preliminaries

    In this section, we will review some fundamental backgrounds such as the mathematical assumption, and the formal definition and security models of the ID-KIS scheme.

    2.1 Mathematical Assumption

    Definition 2.1[DL Assumption] On input a group G of prime orderqwith a generatorgand elementfor a random value, the DL problem consists of computing the elementx, whereis finite field with orderq.

    The success probability of an algorithmAin solving the DL problem in G is defined as=Pr[A(g,gx)=x∈] and the DL assumption refers thatis negligible.

    2.2 Security Notions

    A. Syntax of ID-KIS Scheme

    An ID-KIS scheme ID-KIS=(Setup, Extract, Update*, Update, Sign, Verify) is specified by the following six polynomial-time algorithms:

    1) Setup: On inputting a security parameterk, this randomized algorithm, which is usually performed by the trusted PKG, outputs the master public/secret key pair (mpk, psk) along with the total number of time periodsN. The PKG publishes the public parameters (mpk,N) and keeps the master secret key msk secretly by itself.

    2) Extract: On inputting user’s identity ID, this randomized algorithm, which is also executed by the PKG, generates the initial private key TSKID,0and the helper key HKID. TSKID,0is sent securely to the corresponding user, and HKIDis stored in a physically-secure but computationally-limited device named “helper”.

    3) Update*: On inputting user’s identity ID, the helper key HKID, and the time period indicesiandj, this randomized algorithm, which is run by the helper held by the corresponding user, generates the partial secret key PSKID,i,j.

    4) Update: On inputting the temporary secret key TSKID,jfor the time periodj, and the partial secret key PSKID,i,jfor time period indicesiandj, this randomized algorithm, which is run by the user itself, generates the temporary secret key TSKID,ifor the time periodi.

    5) Sign: On inputting a temporary secret key TSKID,ifor the time periodi, and a messagem, this randomized algorithm outputs a signature (σ,i) ← Sign(TSKID,i,m,i), where ← means generating signature.

    6) Verify: On inputting the master public key mpk, user identity ID, a time periodi, and corresponding signatureσ, this randomized algorithm outputs True if the signature is correct, or ⊥ otherwise.

    The consistency of ID-KIS scheme requires that for?i∈ {1 ,2,… ,N} ,ID ∈{0,1}*, ?m∈M, Verify((σ,i),m, ID)=True always holds, where {}*? is the string with arbitrary length, and (σ,i) ← Sign(TSKID,i,m,i) andMdenote the message space.

    B. Adversaries Model of ID-KIS Scheme

    We review the security model of ID-KIS scheme in the follows. The oracles, which can be accessed by the adversaryA, are depicted as follows.

    a) Initial key extract query: Given an identity ID, this initial secret key oracle outputs the initial private key TSKID,0and helper key HKIDif this identity has not been queried yet; otherwise, nothing is to be carried out. Then the item (ID, TSKID,0, HKID) is stored into a listL.

    b) Helper key extract query: Given an identity ID, this helper key extract oracle executes the extract algorithm to generate the helper key HKID.

    c) Temporary secret key extract query: Given an identity ID along with the time periodi, this temporary secret key oracle executes the update algorithm to output the temporary secret key TSKID,i.

    d) Signing query: Given a messagemfor ID in the time periodi, this signing oracle outputs a valid signatureσsuch that True ←Verify( m pk,ID,i,σ).

    We define two games, one for formalizing the perfect key-insulated property and the other one for simulating the strong key-insulated property. Note that the adoption of helper key extract queries or initial key extract queries can be considered as the difference between these two games.

    Game 1: LetSbe the challenger with the input of security parameterk.

    ·Sexecutes Setup(k) to get (mpk, msk).

    ·SrunsAonkand mpk. During the simulation,Acan make queries adaptively onto the initial key extract query, temporary secret key extract query, and signing query oracles.

    ·Ais to output a tuple (σ*,i*) for messagem*on identity ID*. We say thatAwins Game 1 if the followingconditions are satisfied:

    1) True ←Verify((σ*,i*),m*,ID*);

    2)Ais disallowed to issue an initial key extract query on identity ID*;

    3) (ID*,i*) has not been submitted to the temporary secret key extract query;

    4) The oracle signing query has never queried with (i*,m*, ID*).

    Definition 2.2An ID-KIS scheme is said to be perfectly key-insulated if there is no probabilistic polynomial-time adversaryAwho wins Game 1 with non-negligible advantages.

    Game 2: LetSbe the challenger with the input of security parameterk.

    ·Sexecutes Setup(k) to get (mpk, msk).

    ·SrunsAonkand mpk. During the simulation,Acan make queries adaptively onto the initial key extract query, helper key extract query, and signing query oracles.

    ·Ais to output a tuple (σ*,i*) for messagem*on identity ID*. We say thatAwins Game 2 if the following conditions are satisfied:

    1) True ←Verify((σ*,i*),m*,ID*);

    2)Ais disallowed to issue an initial key extract query on identity ID*;

    3) The oracle signing query has never queried with (i*,m*, ID*).

    Definition 2.3An ID-KIS scheme is said to be strong key-insulated if there is no probabilistic polynomial-time adversaryAwho wins Game 2 with non-negligible advantages.

    In fact, the attacker who can compromise the helper device is captured in Game 2. During this game, the helper key for the target identity ID*can be extracted by the adversary, while only the temporary secret key can be derived by the adversary in Game 1.

    3. Proposed Scheme

    The concrete construction of the proposed ID-KIS scheme without pairing based on [22] is given in this section, which comprises the following parts.

    Setup: Given a security parameterk, the algorithm works as follows:

    1) Run the parameter generator on the inputkto generate a prime orderq, a multiplicative group G of prime orderq, and a generatorg∈G.

    3) For, compute, where

    Extract: Given a user’s identity { }*ID∈0,1 , PKG generates the initial private key and the helper key as follows:

    3) Return the initial secret key (R,TSKID,0) to the user ID secretly and store the helper key (HKID,R) in the helper.

    Update*: The helper generates the partial temporary secret key PSKID,i,jfor the user ID and time period indicesiandjas follows:

    Update: Given the partial temporary secret key PSKID,i,jand the temporary secret key (R,TSKID,j) =(R,SID,j,TID) for a time periodj, the user associated with the identity ID computes his temporary secret key for time periodias TSKID,i=(R,SID,i,TID), whereSID,i=SID,j+ PSKID,i,j.

    4) Output (Y,R,z,TID) as the signature onmin time periodi.

    Verify: To verify a signature (Y,R,z,TID) signed by user ID on messagesm, the verifier performs the following steps:

    1) Computeh=H3(i,Y,R,m).

    2) Check whether the following equation:

    holds or not. If it holds, accept the signature; else reject it.

    And the correctness of our scheme can be described as

    4. Analysis of Proposed Scheme

    4.1 Security Proof

    Assuming that the DL problem is hard, we now show the security of our ID-KIS scheme as follows.

    Theorem 4.1In the random oracle model, our ID-KIS scheme is perfectly key-insulated under the assumption that the DL problem in G is intractable. If a probabilistic polynomial-time forger Λ has forged a signature in an attack modeled by Game 1 of Definition 2.2, then the DL problem can be solved.

    Proof. Letbe a random instance of the DL problem in G, wheregis a generator of G with the prime orderq, and the elementαis taken uniformly at random in. By using the forgery algorithm Λ, we will construct an algorithmSwhich outputs the DL solutionαin

    H1-queries: To respond toH1-queries, algorithmSmaintains a table of tuples (R,ID,h1) explained below, whereh1is randomly chosen from. We refer to this table as the TABH1. This table is initially empty. When Λ queries the oracleH1at a point (R,ID), algorithmSresponds as follows:

    2) Otherwise,Spicks a randomh1∈G1, adds the tuple (R, ID,h1) to the TABH1, and responds withH1(R,ID) =h1as the answer.

    H2-queries: To respond toH2-queries, algorithmSmaintains a table of tuples (R, ID,TID,i,h2), whereh2is chosen randomly from. We refer to this table as the TABH2. This table is initially empty. When Λ queries the oracleH2at a point (v, ID,i), algorithmSresponds as follows:

    H3-queries: To respond toH3-queries, algorithmSmaintains a table of tuples (i,Y,R,m,h3) explained below, which is named as the TABH3. This table is initially empty. When Λ queries the oracleH3at a point (i,Y,R,m), algorithmSresponds as follows:

    Initial key extract queries: Every time Λ asks for the initial secret key corresponding to an identity ID,Smaintains a table TABSKof tuples (ID,R,SID,0,TID,hkID,i), which is initially empty, and simulates the oracle as follows.

    Temporary secret key queries: When Λ queries a temporary secret key with identity ID and time periodi, algorithmSresponds as follows:

    1) If the query (i,ID) has already appeared in a tuple (ID,R,SID,0,TID,hkID,i) of TABSK, then algorithmSresponds (R,SID,0,TID) as the answer.

    Signing queries: Regarding to the signing queries, the attacker Λ can ask for a valid signature on the messagem∈ {0 ,1}*, the identity ID, and the time periodi. If the item (i,ID) has already appeared in a tuple (ID,R,SID,0,TID,hkID,i) of TABSK, thenSsigns this message using this temporary secret key according to the sign algorithm depicted in Section 3. It outputs the signature (Y,R,z,TID) for the message and stores the value (i,Y,R,m,h3) in table TABH3, whereh3=H3(i,Y,R,m)to keep consistency. If the item (i,ID) has not been queried to temporary secret key oracles,Sperforms the simulation of the temporary secret key oracle and signs the message using the returning secret key.

    The algorithmScan solve the values ofy,r,α, andfrom the above four independent linear equations since onlyy,r,α,are unknown in these equations. Therefore, we can find a solution of the DL problem by outputtingα.

    Theorem 4.2.In the random oracle model, our ID-KIS scheme is strong key-insulated under the assumption that the DL problem in G is intractable. If a probabilistic polynomial-time forger Λ has forged a signature in an attack modeled by Game 2 of Definition 2.3, then the DL problem can be solved.

    The proof is similar to those of Theorem 4.1 and is omitted here.

    Theorem 4.3.The proposed ID-KIS scheme has secure key updates.

    This theorem follows from the fact that for any target identity ID and the corresponding time periodsiandj, only the partial temporary secret key PSKID,i,jalong with the temporary secret keys TSKID,iand TSKID,iwill be revealed.

    4.2 Performance Analysis

    We compare our scheme with the existing ID-KIS schemes[13],[14]in terms of the signature size and computation cost. According to [22], the exponentiation and multiplication are equivalent to point multiplication and point addition in elliptic curve cryptography (ECC), respectively. Thus, our ID-KIS scheme can be implemented by using ECC with. In view of the computational overhead, we only consider the costly operations and we omit the computation efforts which can be pre-computed. Par denotes a pairing operation, SM a scalar multiplications in G1(exponentiation in G), andEan exponential operation in G2(multiplication in G). The pairing computation Par is more time-consuming than multiplication and exponentiation computation, but Par is eliminated in our scheme. Thus, our scheme is more efficient than the existing schemes according to Table 1.

    Table 1: Comparison between our scheme and related work

    5. Conclusions

    In this paper, we have proposed an efficient ID-KIS scheme that does not require any pairing operation in both signing and verification procedures. The scheme offers both perfect key-insulated and strong key-insulated properties. We also prove the security of our scheme under the DL assumption. Compared with previous schemes, our scheme minimizes the computation cost with no extra cost, which favors this scheme’s practical application.

    [1] Y. Dodis, J. Katz, S. Xu, and M. Yung, “Key-insulated public key cryptosystems,” inPorc. ofInt. Conf. on the Theory and Applications of Cryptographic Techniques, Amsterdam, 2002, pp. 65-82.

    [2] Y. Dodis, J. Katz J, S. Xu, and M. Yung, “Strong key-insulated signature schemes,” inProc. of the 6th Int. Workshop on Practice and Theory in Public Key Cryptography, Miami, 2002, pp. 130-144.

    [3] G. Itkis. “Intrusion-resilient signatures: generic constructions,or defeating strong adversary with minimal assumptions,” inProc. of the 3rd Int. Conf. on Security in Communication Networks, Amalfi, 2003, pp. 102-118.

    [4] J. Yu, F. Kong, X. Cheng, R. Hao, and J. Fan,“Intrusion-resilient identity-based signature: Security definition and construction,”Journal of Systems and Software, vol. 85, no. 2, pp. 382-391, 2012.

    [5] R. Canetti, S. Halevi, and J. Katz. “ A forward-secure public-key encryption scheme,” inProc. of Int. Conf. on the Theory and Applications of Cryptographic Techniques, Warsaw, 2003, pp. 255-271.

    [6] G. Itkis and L. Reyzin, “Forward-secure signatures with optimal signing and verifying,” inProc. of Int. Conf. on the Theory and Applications of Cryptographic Techniques, Santa Barbara, 2001, pp. 332-354.

    [7] N. González-Deleito, O. Markowitch, and E. Dall’Olio, “A new key-insulated signature scheme,” inProc. of the 6th Int. Conf. on Information and Communications Security, Malaga, 2004, pp. 465-479.

    [8] Z. Le, Y. Ouyang, J. Ford, and F. Makedon, “A hierarchical key-insulated signature scheme in the CA trust model,” inProc. of the 7th Int. Conf. on Information Security, Palo Alto, 2004, pp. 280-291.

    [9] Y. Lee, J. Ahn, S. Kim, and D. Won, “A PKI system for detecting the exposure of a user’s secret key,” inProc. of the 3rd European PKI Workshop: Theory and Practice, Turin, 2006, pp. 248-250.

    [10] G. Ohtake, G. Hanaoka, and K. Ogawa, “An efficient strong key-insulated signature scheme and its application,” inProc. of the 5th European PKI Workshop: Theory and Practice, Trondheim, 2008, pp. 150-165.

    [11] D. H. Yum and P. J. Lee, “Efficient key updating signature schemes based on IBS,”Lecture Notes in Computer Sciencevol. 2898, pp. 167-182, 2003, doi: 10.1007/978-3-540-40974-8_14.

    [12] A. Shamir, “Identity-based cryptosystems and signature schemes,” inProc. of Int. Conf. on the Theory and Applications of Cryptographic Techniques, Santa Barbara, 1985, pp. 47-53.

    [13] Y. Zhou, Z. Cao, and Z. Chai, “Identity based key insulated signature,” inProc. of the 2nd Int. Conf. on Information Security Practice and Experience, Hangzhou, 2006, pp. 226-234.

    [14] J. Weng, S. Liu, K. Chen, and X. Li, “Identity-based key-insulated signature with secure key-updates,” inProc. of the 2nd SKLOIS Conf. on Information Security and Cryptology, Beijing, 2006, pp. 13-26.

    [15] J. Weng, X. Li, K. Chen, and S. Liu, “Identity-based parallel key-insulated signature without random oracles,”Journal of Information Science and Engineering, vol. 24, no. 4, pp. 1143-1157, 2008.

    [16] J. Weng, S. Liu, K. Chen, and X. Li, “Identity-based parallel key-insulated signature: framework and construction,”Journal of Research and Practice in Information Technology, vol. 40, no. 1, pp. 55-68, 2008.

    [17] J. Chen, K. Chen, Y. Wang, X. Li, Y. Long, and Z. Wan,“Identity-based key-insulated signcryption,”Informatica, vol. 23, no. 1, pp. 27-45, 2012.

    [18] H. Wang and Y. Zhang, “Identity-based strong key-insulated ring signature scheme in the standard model,” inProc. of the 7th Int. Conf. on Mobile Ad-hoc and Sensor Networks, Beijing, 2011, pp. 451-455.

    [19] Z. Wan, X. Lai, J. Weng, and Y. Wang, “Identity-based key-insulated proxy signature,”Journal of Electronics (China), vol. 26, no. 6, pp. 853-858, 2009.

    [20] T. Y. Wu, Y. M. Tseng, and C. W. Yu. “ID-based key-insulated signature scheme with batch verification and its novel application,”Int. Journal of Innovative Computing, Information and Control, vol. 8, no. 7, pp. 4797-4810, 2012.

    [21] L. Chen, Z. Cheng, and N. P. Smart. “Identity-based key agreement protocols from pairings,”Int. Journal of Information Security, vol. 6, no. 4, pp. 213-241, 2007.

    [22] J. K. Liu, J. Baek, J. Zhou, Y. Yang, and J. W. Wong,“Efficient online/offline identity-based signature for wireless sensor network,”Int. Journal of Information Security, vol. 9, no. 4, pp. 287-296, 2010.

    [23] D. Pointcheval and J. Stern. “Security arguments for digital signatures and blind signatures,”Journal of Cryptology, vol. 13, no. 3, pp. 361-396, 2000.

    Guo-Bin Zhu was born in Shanxi, China in 1981. He received his B.S. and M.S. degrees from the University of Electronic Science and Technology of China (UESTC), Chengdu in 2002 and 2008, respectively. He is pursuing his Ph.D. degree with the School of Computer Science and Engineering, UESTC. His research interests include network security and cryptography.

    Hu Xiong was born in Guizhou, China in 1982. He received the Ph.D. degree from UESTC, Chengdu in 2009 in information and communication engineering. He is currently an associate professor with the School of Computer Science and Engineering, UESTC. His research interests include network security and cryptography.

    Zhi-Guang Qin was born in Sichuan, China in 1956. He received the Ph.D. degree from UESTC, Chengdu in 1996. He works as a full professor with the School of Computer Science and Engineering and the Dean of the School of Computer Science and Engineering, UESTC. His research interests include information security and wireless networks.

    Manuscript received February 23, 2014; revised April 12, 2014. This work was supported by the National Natural Science Foundation of China under Grant No. 61003230, No. 61370026, No. 61103206, and No. 61300191, and Chongqing Key Lab of Computer Network and Communication Technology under Grant No. CY-CNCL-2012-02.

    G.-B. Zhu is with the School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China (Corresponding author e-mail: zhugb@uestc.edu.cn).

    H. Xiong and Z.-G Qin are with the School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China (e-mail: xionghu.uestc@gmail.com; qinzg@uestc.edu.cn).

    Digital Object Identifier: 10.3969/j.issn.1674-862X.2015.01.007

    午夜福利在线观看免费完整高清在 | 欧美成狂野欧美在线观看| 欧美中文日本在线观看视频| 国产又黄又爽又无遮挡在线| 国语自产精品视频在线第100页| 欧美一区二区精品小视频在线| 亚洲激情在线av| 制服丝袜大香蕉在线| 99热6这里只有精品| 国产色婷婷99| 亚洲精品在线美女| 亚洲自偷自拍三级| 国模一区二区三区四区视频| 国产综合懂色| 亚洲电影在线观看av| 色综合亚洲欧美另类图片| 黄色视频,在线免费观看| 熟女人妻精品中文字幕| 小蜜桃在线观看免费完整版高清| 波多野结衣高清无吗| 色哟哟·www| 在现免费观看毛片| 免费人成在线观看视频色| 午夜两性在线视频| 精品午夜福利在线看| 欧美在线一区亚洲| 高清在线国产一区| 精品福利观看| 91麻豆精品激情在线观看国产| 日韩av在线大香蕉| 欧美极品一区二区三区四区| 亚洲色图av天堂| 日韩中字成人| 欧美xxxx黑人xx丫x性爽| 精品久久久久久成人av| 免费无遮挡裸体视频| 一级a爱片免费观看的视频| 国产精品自产拍在线观看55亚洲| 国产麻豆成人av免费视频| 啦啦啦观看免费观看视频高清| 久久精品91蜜桃| 高清日韩中文字幕在线| 久久久色成人| 真人做人爱边吃奶动态| av在线观看视频网站免费| 久久久久久国产a免费观看| 麻豆成人午夜福利视频| 99久久99久久久精品蜜桃| 欧美又色又爽又黄视频| 乱人视频在线观看| 亚洲av电影不卡..在线观看| 精品不卡国产一区二区三区| 亚洲精品色激情综合| 日本一二三区视频观看| 国产伦精品一区二区三区四那| 国产高潮美女av| 亚洲熟妇熟女久久| 很黄的视频免费| 小蜜桃在线观看免费完整版高清| 日韩成人在线观看一区二区三区| 最近最新免费中文字幕在线| 精品一区二区三区av网在线观看| 永久网站在线| 噜噜噜噜噜久久久久久91| 美女 人体艺术 gogo| 精品久久久久久久人妻蜜臀av| 日本免费一区二区三区高清不卡| 黄色视频,在线免费观看| 两人在一起打扑克的视频| 91在线观看av| avwww免费| 色播亚洲综合网| 精品久久久久久成人av| 国产一区二区三区视频了| 国产精品一区二区三区四区久久| 精品无人区乱码1区二区| 欧美日本视频| 深夜a级毛片| 狠狠狠狠99中文字幕| 又爽又黄无遮挡网站| 内射极品少妇av片p| 五月伊人婷婷丁香| 午夜免费激情av| 丰满人妻熟妇乱又伦精品不卡| av天堂中文字幕网| 国产91精品成人一区二区三区| 18禁裸乳无遮挡免费网站照片| 国产综合懂色| 久久久久亚洲av毛片大全| 亚洲狠狠婷婷综合久久图片| 亚洲avbb在线观看| 亚洲第一区二区三区不卡| 国产精品一区二区三区四区久久| 亚洲人成电影免费在线| 搞女人的毛片| 国产精品,欧美在线| 好男人在线观看高清免费视频| 啦啦啦观看免费观看视频高清| 日韩免费av在线播放| 亚洲狠狠婷婷综合久久图片| 直男gayav资源| 变态另类成人亚洲欧美熟女| 麻豆国产97在线/欧美| 无人区码免费观看不卡| 日本熟妇午夜| 亚洲,欧美精品.| 亚洲最大成人手机在线| 韩国av一区二区三区四区| 亚洲国产精品sss在线观看| 日本免费a在线| 欧美日韩亚洲国产一区二区在线观看| 99视频精品全部免费 在线| 日韩欧美三级三区| 国产成人aa在线观看| 国产精品不卡视频一区二区 | 欧美极品一区二区三区四区| 国产免费一级a男人的天堂| 精品久久国产蜜桃| 中文字幕精品亚洲无线码一区| 在线观看舔阴道视频| 一级a爱片免费观看的视频| 狠狠狠狠99中文字幕| 高清在线国产一区| 大型黄色视频在线免费观看| 亚洲av熟女| 久久精品国产亚洲av天美| 在线天堂最新版资源| 国产精品一区二区三区四区久久| 亚洲欧美激情综合另类| 国产精品亚洲一级av第二区| a级毛片a级免费在线| 免费看日本二区| 亚洲av二区三区四区| 亚洲av免费在线观看| 精品人妻熟女av久视频| 国产精品乱码一区二三区的特点| 欧美午夜高清在线| 国产日本99.免费观看| 亚洲va日本ⅴa欧美va伊人久久| 久久精品国产自在天天线| 亚洲五月天丁香| 亚洲在线自拍视频| 神马国产精品三级电影在线观看| 最近中文字幕高清免费大全6 | 国产综合懂色| 2021天堂中文幕一二区在线观| 亚洲av熟女| 观看免费一级毛片| 国产av在哪里看| 丝袜美腿在线中文| 免费一级毛片在线播放高清视频| 久久精品国产自在天天线| 亚洲欧美清纯卡通| 国产亚洲精品综合一区在线观看| 最新中文字幕久久久久| 国产真实乱freesex| 久久久久免费精品人妻一区二区| 久久精品国产清高在天天线| 99在线视频只有这里精品首页| 亚洲午夜理论影院| 亚洲综合色惰| 国产亚洲欧美98| .国产精品久久| 九色成人免费人妻av| 欧美xxxx黑人xx丫x性爽| 99热精品在线国产| 国产不卡一卡二| 女人十人毛片免费观看3o分钟| 天堂影院成人在线观看| 成人av一区二区三区在线看| 夜夜爽天天搞| 中文字幕高清在线视频| 亚洲av.av天堂| 久99久视频精品免费| 亚洲男人的天堂狠狠| 国产亚洲精品久久久久久毛片| 波多野结衣高清作品| 国产69精品久久久久777片| h日本视频在线播放| 99在线人妻在线中文字幕| 久久精品国产99精品国产亚洲性色| 在线a可以看的网站| 国产成人福利小说| 国产精品永久免费网站| 婷婷精品国产亚洲av在线| 亚洲精品影视一区二区三区av| 免费观看精品视频网站| 国产野战对白在线观看| 亚洲欧美日韩高清专用| 国产白丝娇喘喷水9色精品| 天堂动漫精品| 亚洲美女搞黄在线观看 | 九九在线视频观看精品| 免费大片18禁| 精品国内亚洲2022精品成人| av国产免费在线观看| 一本一本综合久久| 欧美激情久久久久久爽电影| 长腿黑丝高跟| 成熟少妇高潮喷水视频| 久久热精品热| 亚洲国产精品成人综合色| 午夜精品一区二区三区免费看| 久久国产乱子伦精品免费另类| a在线观看视频网站| 日韩欧美在线乱码| www.999成人在线观看| 欧美丝袜亚洲另类 | 亚洲国产精品999在线| 在线观看午夜福利视频| 在线十欧美十亚洲十日本专区| 波多野结衣高清作品| 婷婷丁香在线五月| 99国产极品粉嫩在线观看| 中国美女看黄片| 丁香六月欧美| 亚洲,欧美精品.| 亚洲一区高清亚洲精品| 一进一出抽搐gif免费好疼| 欧美日韩乱码在线| 国产aⅴ精品一区二区三区波| 白带黄色成豆腐渣| 久久精品综合一区二区三区| 精品99又大又爽又粗少妇毛片 | 无遮挡黄片免费观看| 成人无遮挡网站| 在线观看舔阴道视频| 国产精品,欧美在线| 首页视频小说图片口味搜索| 久久热精品热| 禁无遮挡网站| 亚洲精品一卡2卡三卡4卡5卡| 亚洲国产欧美人成| 十八禁国产超污无遮挡网站| 搡女人真爽免费视频火全软件 | 国内毛片毛片毛片毛片毛片| 天堂av国产一区二区熟女人妻| 久久精品国产亚洲av香蕉五月| 免费在线观看成人毛片| 1000部很黄的大片| 俺也久久电影网| 国产在线男女| 亚洲自偷自拍三级| 国产v大片淫在线免费观看| 身体一侧抽搐| www.www免费av| 国产亚洲精品综合一区在线观看| 国产成人福利小说| 别揉我奶头 嗯啊视频| 婷婷精品国产亚洲av在线| 亚洲乱码一区二区免费版| 日本一二三区视频观看| av福利片在线观看| 69av精品久久久久久| 小蜜桃在线观看免费完整版高清| 国产欧美日韩精品亚洲av| 97超级碰碰碰精品色视频在线观看| 小说图片视频综合网站| 一级毛片久久久久久久久女| 小蜜桃在线观看免费完整版高清| 亚洲,欧美精品.| 色av中文字幕| 午夜福利18| 欧美色视频一区免费| 99久久九九国产精品国产免费| 欧美一区二区国产精品久久精品| 脱女人内裤的视频| 精品国产三级普通话版| 欧美色欧美亚洲另类二区| 亚洲一区二区三区色噜噜| 女人十人毛片免费观看3o分钟| 中文字幕av在线有码专区| 国产私拍福利视频在线观看| 欧洲精品卡2卡3卡4卡5卡区| 日韩人妻高清精品专区| 久久性视频一级片| 在线观看免费视频日本深夜| 亚洲七黄色美女视频| 国产在线男女| 成年女人永久免费观看视频| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 久9热在线精品视频| 亚洲色图av天堂| 偷拍熟女少妇极品色| 日韩大尺度精品在线看网址| 亚洲自偷自拍三级| 日本一本二区三区精品| av国产免费在线观看| 国产中年淑女户外野战色| 夜夜看夜夜爽夜夜摸| 两个人视频免费观看高清| 日韩欧美在线乱码| 久久久久久大精品| av专区在线播放| 他把我摸到了高潮在线观看| 亚洲人成网站在线播| 亚洲成人精品中文字幕电影| 在线看三级毛片| 国内精品美女久久久久久| 亚洲精华国产精华精| 伊人久久精品亚洲午夜| 欧美日韩乱码在线| 熟妇人妻久久中文字幕3abv| 制服丝袜大香蕉在线| 久久久久久久久中文| 亚洲18禁久久av| 高清在线国产一区| 精品一区二区免费观看| 亚洲第一电影网av| 亚洲国产精品sss在线观看| 99热6这里只有精品| 一区二区三区高清视频在线| 久久久久九九精品影院| 国产精品亚洲一级av第二区| 性色avwww在线观看| 久久久久国产精品人妻aⅴ院| 国产精品自产拍在线观看55亚洲| 91在线观看av| 俄罗斯特黄特色一大片| 亚洲一区二区三区不卡视频| 在线观看美女被高潮喷水网站 | 十八禁网站免费在线| 天堂影院成人在线观看| 色吧在线观看| 亚洲人成网站高清观看| 宅男免费午夜| 99热这里只有是精品50| 国产成年人精品一区二区| 丰满人妻熟妇乱又伦精品不卡| 色噜噜av男人的天堂激情| 男人狂女人下面高潮的视频| 最好的美女福利视频网| 18禁黄网站禁片午夜丰满| 午夜福利在线观看免费完整高清在 | 国产精品99久久久久久久久| 观看美女的网站| 国产亚洲精品综合一区在线观看| 国产精品自产拍在线观看55亚洲| 91狼人影院| a级毛片a级免费在线| 看片在线看免费视频| 91麻豆精品激情在线观看国产| 亚洲国产精品久久男人天堂| www.色视频.com| 日本在线视频免费播放| 亚洲av.av天堂| 99久久成人亚洲精品观看| 一区福利在线观看| 蜜桃久久精品国产亚洲av| 国产不卡一卡二| 亚洲av不卡在线观看| 村上凉子中文字幕在线| 又爽又黄无遮挡网站| 村上凉子中文字幕在线| 亚洲第一欧美日韩一区二区三区| 国产不卡一卡二| 午夜福利成人在线免费观看| 男人舔女人下体高潮全视频| 日本三级黄在线观看| avwww免费| 精品久久久久久成人av| www.色视频.com| 99久久成人亚洲精品观看| 九九久久精品国产亚洲av麻豆| 如何舔出高潮| 亚洲美女视频黄频| 尤物成人国产欧美一区二区三区| 久久中文看片网| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 国产精品久久久久久久久免 | 国产成人aa在线观看| 日韩免费av在线播放| 熟女人妻精品中文字幕| 国产av在哪里看| 国产亚洲欧美98| 色在线成人网| 免费看日本二区| 亚洲精品成人久久久久久| 99热这里只有是精品在线观看 | 丰满人妻熟妇乱又伦精品不卡| 黄色女人牲交| 99热这里只有是精品50| 女生性感内裤真人,穿戴方法视频| 免费一级毛片在线播放高清视频| 中文字幕熟女人妻在线| 国产免费男女视频| 一个人观看的视频www高清免费观看| 国产伦一二天堂av在线观看| 一区二区三区四区激情视频 | 久久久国产成人免费| 每晚都被弄得嗷嗷叫到高潮| x7x7x7水蜜桃| 色在线成人网| 亚洲美女搞黄在线观看 | www日本黄色视频网| 精品午夜福利视频在线观看一区| 久久这里只有精品中国| 日韩欧美国产一区二区入口| 亚洲人成电影免费在线| 人人妻人人澡欧美一区二区| 老司机午夜福利在线观看视频| 午夜福利欧美成人| av黄色大香蕉| 亚洲综合色惰| 脱女人内裤的视频| 国产精品自产拍在线观看55亚洲| 99国产精品一区二区三区| 日本a在线网址| 伊人久久精品亚洲午夜| 嫩草影院入口| 亚洲电影在线观看av| 1024手机看黄色片| 嫩草影视91久久| 97超级碰碰碰精品色视频在线观看| 精品久久久久久,| 国产精品久久久久久久久免 | 美女高潮的动态| 丁香欧美五月| 亚洲第一电影网av| 天堂动漫精品| 18+在线观看网站| 一个人免费在线观看电影| 成人高潮视频无遮挡免费网站| 日日干狠狠操夜夜爽| 一个人看的www免费观看视频| 97热精品久久久久久| 国产精品亚洲一级av第二区| 可以在线观看的亚洲视频| 日韩欧美国产一区二区入口| 婷婷丁香在线五月| 国产精品一及| 欧美潮喷喷水| 欧美一区二区国产精品久久精品| 国产精品99久久久久久久久| 久久天躁狠狠躁夜夜2o2o| 在线天堂最新版资源| 一级作爱视频免费观看| 久久人人精品亚洲av| 精品午夜福利视频在线观看一区| 91麻豆精品激情在线观看国产| 高潮久久久久久久久久久不卡| 最近视频中文字幕2019在线8| 99热精品在线国产| 国内毛片毛片毛片毛片毛片| 黄色日韩在线| 真人一进一出gif抽搐免费| 好男人电影高清在线观看| 亚洲成a人片在线一区二区| 日韩欧美精品v在线| 国产精品久久电影中文字幕| 亚洲精品色激情综合| 亚洲av中文字字幕乱码综合| 69人妻影院| 小说图片视频综合网站| 亚洲成人久久爱视频| 村上凉子中文字幕在线| 高清在线国产一区| 国产成人福利小说| 成人精品一区二区免费| 岛国在线免费视频观看| 亚洲 欧美 日韩 在线 免费| 很黄的视频免费| 美女免费视频网站| 午夜久久久久精精品| 床上黄色一级片| 中文资源天堂在线| 夜夜爽天天搞| 国产高清视频在线播放一区| 美女高潮的动态| 久久这里只有精品中国| 啦啦啦韩国在线观看视频| 乱人视频在线观看| 免费av不卡在线播放| 在现免费观看毛片| 国产午夜精品久久久久久一区二区三区 | 国产免费av片在线观看野外av| 午夜精品一区二区三区免费看| 亚洲最大成人av| 成人高潮视频无遮挡免费网站| 亚洲精品影视一区二区三区av| 精品一区二区三区人妻视频| 美女高潮的动态| 久久99热这里只有精品18| 精品国内亚洲2022精品成人| 亚洲av第一区精品v没综合| 欧美区成人在线视频| 日韩 亚洲 欧美在线| 一级a爱片免费观看的视频| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 又爽又黄a免费视频| 九色成人免费人妻av| 搞女人的毛片| 青草久久国产| 亚洲真实伦在线观看| 欧美国产日韩亚洲一区| 女生性感内裤真人,穿戴方法视频| 日韩国内少妇激情av| 日本一二三区视频观看| 欧美日本亚洲视频在线播放| 亚洲天堂国产精品一区在线| 中文字幕熟女人妻在线| 三级男女做爰猛烈吃奶摸视频| 简卡轻食公司| 在线观看一区二区三区| 99精品在免费线老司机午夜| 嫩草影院新地址| 久久精品91蜜桃| 欧美色欧美亚洲另类二区| 久久99热这里只有精品18| 看片在线看免费视频| 91久久精品国产一区二区成人| 1000部很黄的大片| 欧美黄色淫秽网站| 久久久久久久久久黄片| 国产精品99久久久久久久久| 毛片女人毛片| 国产午夜精品久久久久久一区二区三区 | 久久久久久久久大av| 精品久久久久久久人妻蜜臀av| 69av精品久久久久久| 亚洲成人久久性| 亚洲精品456在线播放app | 99在线视频只有这里精品首页| 深夜a级毛片| 亚洲在线自拍视频| 51午夜福利影视在线观看| 成年女人看的毛片在线观看| 久久精品国产99精品国产亚洲性色| 欧美黄色片欧美黄色片| 国产免费男女视频| 午夜精品在线福利| 18禁黄网站禁片免费观看直播| 真实男女啪啪啪动态图| av在线天堂中文字幕| 久久国产精品影院| 很黄的视频免费| 免费av毛片视频| 免费av观看视频| 久久久久国内视频| 男人舔奶头视频| 黄色丝袜av网址大全| 麻豆国产97在线/欧美| 老熟妇乱子伦视频在线观看| 亚洲成人久久爱视频| 草草在线视频免费看| 人人妻人人看人人澡| 亚洲精品久久国产高清桃花| av在线观看视频网站免费| 老女人水多毛片| 在线观看美女被高潮喷水网站 | 精品久久久久久久末码| 日韩精品青青久久久久久| 久久伊人香网站| 女生性感内裤真人,穿戴方法视频| 成年版毛片免费区| 午夜精品久久久久久毛片777| 最新中文字幕久久久久| 中文字幕av在线有码专区| 亚洲精品久久国产高清桃花| 亚洲乱码一区二区免费版| 国产成人a区在线观看| 嫩草影院新地址| 日本黄大片高清| 欧美日韩亚洲国产一区二区在线观看| 国产国拍精品亚洲av在线观看| 在线十欧美十亚洲十日本专区| 国产淫片久久久久久久久 | 最近在线观看免费完整版| 精品久久久久久久久亚洲 | 午夜免费成人在线视频| 十八禁国产超污无遮挡网站| 亚洲av第一区精品v没综合| 成人毛片a级毛片在线播放| 国产69精品久久久久777片| 国产高清视频在线观看网站| 欧美激情久久久久久爽电影| 真人一进一出gif抽搐免费| 欧美中文日本在线观看视频| 欧美+日韩+精品| 欧美成狂野欧美在线观看| 中文字幕人成人乱码亚洲影| 国内精品久久久久精免费| 亚洲国产精品成人综合色| 久久欧美精品欧美久久欧美| 十八禁国产超污无遮挡网站| 岛国在线免费视频观看| 老熟妇仑乱视频hdxx| 成人亚洲精品av一区二区| 精品午夜福利在线看| 看十八女毛片水多多多| 97超级碰碰碰精品色视频在线观看| 欧美黑人欧美精品刺激| 老熟妇乱子伦视频在线观看| 免费在线观看成人毛片| 五月玫瑰六月丁香| 欧美激情久久久久久爽电影| 午夜激情福利司机影院| 欧美黄色片欧美黄色片| 成人国产综合亚洲| 午夜激情欧美在线| 亚州av有码| 黄色配什么色好看| 美女 人体艺术 gogo| 美女高潮喷水抽搐中文字幕| 欧美日韩瑟瑟在线播放| 一级黄片播放器| 亚州av有码| 网址你懂的国产日韩在线| 色视频www国产| 亚洲精品粉嫩美女一区| 国产视频一区二区在线看| 极品教师在线视频| 九九热线精品视视频播放| 精品国产亚洲在线| 一卡2卡三卡四卡精品乱码亚洲|