• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Efficient Slew-Rate Enhanced Operational Transconductance Amplifier

    2015-07-14 01:20:26XiaoPengWanFeiXiangZhangShaoWeiZhenYaJuanHeandPingLuo

    Xiao-Peng Wan, Fei-Xiang Zhang, Shao-Wei Zhen, Ya-Juan He, and Ping Luo

    1. Introduction

    It is well known that the amplifier is the fundamental module in most analog and mixed circuits. And the operational transcondutance amplifier (OTA)[1]is one of the most widely used, which is usually used to drive a capacitive load or a pass transistor in a low dropout regulator (LDR). But due to the limitation of tail current,the driving capability of conventional OTA is weak. And improving the slew rate (SR) is inevitably at the cost of more static power consumption. Today, along with the prevalent use of portable equipment, wireless, and other battery powered systems, the demand for amplifiers with high gain-bandwidth product (GBW), SR, and at the same time very low static power dissipation is growing.

    Slew rate enhancement (SRE) techniques have been developed in recent years to solve the problem. Different techniques have been suggested. For example, the dynamic biasing technique[2]-[4]was used to enhance the SR by increasing the bias current of the input differential pair when the differential-mode input voltage was large.Another differential pair was added to sense the input voltage. In [5]-[8], auxiliary branches carried the extra current required by charging/discharging the load during slewing and the core operational amplifier (op amp) would remain unaffected. Both the main amplifier and SRE op amp sensed the same input signal. The SRE amplifier then needed to detect the slewing condition and inject an extra current to the output node. In [9] and [10], the class-AB input stage was used to produce a larger dynamic output current compared with a common differential input pair.

    In this paper, a SR enhancement structure is proposed,which transforms a conventional OTA into an efficient one without the static power dissipation or input capacitance increase. To increase the SR, a sensing resistor in series with the diode connecting the metal oxide semiconductor(MOS) transistors of the current mirror is applied. Unlike the diode configured MOS transistor of which the voltage drop is in proportion to the square root of current, it is a linear relationship between the voltage across the resistor and the current through it. Therefore, the voltage drop across the resistor is converted into an output current containing a term in proportion to the square of the voltage by the single-transistor amplifier in the current mirror. The proposed structure, which will be shown below, leads to the essential SR and GBW improvements.

    The paper is organized as follows. Section 2 briefly describes the performance of the conventional OTA and the limitation. The proposed SRE technique with the details of its circuit implementation is brought in Section 3. Section 4 presents the simulation results. The paper is concluded in Section 5.

    2. Conventional OTA

    The conventional OTA is shown in Fig. 1. The p-channel differential input stage comprised of M3Land M3Rconverts the input voltage into currents. Mirrors consisting of M1L, M2Land M1R, M2Rmirror the currents to the output stage. The current generated by the mirror of M1Land M2Lis then mirrored to the output port via the mirror formed by M4Land M4R. The mirror gain factor, K,indicates the current gain in the mirrors formed by M1L, M2Land M1R, M2Rwith the following relations:

    where subscripts 1 and 2 indicate that the parameters are corresponding to M1Lor M1Rand M2Lor M2R, respectively.And β=μCoxW/L, where μ is the electron mobility and Coxis the unit-area capacitance of gate oxide, and W/L is the aspect ratio of the MOS transistor.

    Fig. 1. Conventional OTA.

    The conventional OTA is differentiated from other amplifiers by the fact that its only high impedance node is located at the output terminal. The conventional OTA does not employ an output buffer and is, therefore, only capable of driving capacitive loads. The voltage gain of the OTA is given by

    where gm3is the transconductance of the differential pair;ro2and ro4are the small signal output resistance of M2Rand M4R, respectively;indicates that ro2and ro4are in parallel. The GBW is given as

    where Cloadis the load capacitance and Ibiasis the bias current of the differential pair. Then the SR can be expressed as

    It can be seen that for a certain bias current, the GBW and SR increase linearly with the scaling factor K of the current mirror.

    The static power dissipation Pstaticis the sum of the product of the power supply voltage with the currents flowing through each branch from the power supply to the ground, which is given by

    where Vddis the power supply voltage.

    It is obvious that increasing the mirror gain factor K will enhance the SR and GBW at the cost of increasing the static power dissipation. Hence, a trade-off between the driving capability and static power dissipation in the conventional OTA design is required.

    3. Proposed SRE OTA

    As shown in Fig. 2, the common current mirrors in the conventional OTA are modified by adding two resistors and a bias current sink to each one. This structure reinforces the SR, which will be hereinafter referred to as the SR enhanced structure or SRE mirror.

    Fig. 2. Proposed SRE operational transconductance amplifier.

    In a common current mirror, the output current depends linearly on the input current simply because the non-linearity of the amplifying MOS transistor M2Lis compensated by the non-linearity of the diode-connected MOS transistor M1L. In order to take advantages of the non-linearity of the amplifying MOS transistor M2Lto generate more output current, the non-linearity of the diode-connected MOS transistor must be broken.

    Take the SRE enhanced mirror 1 for example. The resistor R1Lin series with the diode-connected MOS transistor M1Lis applied to sense input current and convert it into a voltage including a term linearly depending on the input current. And the output current will include a term containing the square of input current because of the square law characteristic of the amplifying MOS transistor M2L.

    The current sink Ibias,Lprovides a constant bias current to R2Land produces a voltage drop across it. Eventually, the static voltage drop across R1Lcan be canceled out by the voltage drop across R2Lwith an appropriate bias current,whereas the dynamic performance will not be affected.

    Then, we will analyze the characteristic of the SRE OTA quantitatively. The gate voltage of M2Lis the sum of the voltage across R1Land the drain-to-source voltage of M1Lminus the voltage across R2L, and can be given as

    where IM1Lis the current generated from the differential pair minus the bias current Ibias,L. And then, the single-transistor amplifier M2Lconverts the gate voltage into a current which is in a square law relationship with the voltage and is given as

    As shown in Fig. 3, the bias current of R2L, which is Ibias,L, is realized by mirroring the tail current. It can be seen that Ibias,L=(m/n)Ibias, where m/n<1/2.

    As mentioned before, the bias current of R2Lis properly chosen to set the voltage drop across R2Lto be the same as that across R1Lat the static stage. So, R2L=(n/m-2)R1L/2.Substitute it into (7), the result is

    As a result, the relationship between the quiescent current of M2Land M1Lis IM2L,static=K[IM3L-Ibias(m/n)]=KIM1L, just like the common current mirror. But the value of the quiescent output current is[(n-2m)/2n]Ibias, which is less than the common mirror. And by adjusting the value of m/n, the quiescent operating point can be adjusted. Assuming R1L=R2L, m/n=1/4, and βM1L=βM2L, Fig. 4 shows the normalized current transmission characteristic of the SRE mirror with different sensing resistances versus the common mirror. It can be seen the quiescent output current of SRE mirror is half of that of the common mirror. And when R1L=R2L=0, the SRE mirror is similar to the common mirror, so the curve of IM2Lversus IM3Lis linear. When R1L=R2L≠0, the output current increases non-linearly with the input current just as predicted qualitatively before. And the larger R1Lis, the more significant (IM3L-Ibias/2)2term in (8) is. Therefore, the output current increases more quickly with the input current,and exceeds the output current of the common mirror when the input current is over a certain value. And the quiescent operating point has not been affected. Moreover, increasing βM1Land βM2Lsimultaneously, the output current also increases more quickly with the input current, of which the effect is similar to increasing R1L. Decreasing the value of m/n, the quiescent operating point will be moved upwards,and the output current of SRE mirror exceeds that of the common mirror more easily with the increasing of input current, vice versa.

    As the positive input voltage Vpis much larger than the negative input voltage Vn, the tail current of the differential pair flows entirely through the transistor M3L. Then (8) can be rewritten as

    which is the maximum output current of SRE mirror and also the maximum charging current of the SRE OTA. So the SR can be given as

    Obviously, the SR of the SER OTA can be much larger than the conventional one with the same bias current, as long as the values of R1Land βM2Lare large enough and m/n is small (the quiescent operating point moves upwards).Additionally, when the bias current is improved, the SR increases more quickly because of the I2term while the

    bias conventional one increases linearly with Ibias.

    Then, the static power dissipation of SRE OTA can be expressed as

    As can be seen, when m=1/K, the static power dissipation is the same as the conventional one’s for any value of n.

    When m>1/K, the static power dissipation is less than the conventional one’s. By increasing m and decreasing n,where n should be larger than 2m, Pstaticdecreases. When m approaches to infinity and n to 2m, Pstaticwill become the minimum value VddIbias(1+K/2).

    When m<1/K, the static power dissipation is larger than conventional one’s. Increasing n could decrease the dissipation as much as possible, and the limitation is VddIbias(1+K).

    The SR enhanced structure also changes the small signal voltage gain and GBW. The voltage gain is easy to be deduced from small signal analysis and given by

    The dominated pole is at the output terminal and given as Pd=1/[(ro2R||ro4R)CL], where ro2Rand ro4Rare the small signal output resistance of M2Rand M4R, respectively.Eventually, GBW is given by

    It is obvious that voltage gain and GBW are boosted as well in the SR enhanced structure.

    But the added resistors, R1Land R2L, make the internal pole move towards the low-frequency. This degrades the AC small-signal performance. Fig. 5 depicts the AC small-signal model of the part from the drain of M3Lto the gate of M2Lin Fig. 2. The translation function can be given as

    where

    Fig. 5. Small signal analysis of the internal poles and zeros.

    It can be seen that this new structure produces two poles and one zero. When the sum of R1Land R2Lare much larger than 1/gm1L, the pole 1/[(R1L+R2L)C2] becomes the most significant one. The high-frequency pole and the zero are very close, which cancels each other’s effect out. So,the structure actually produces one pole 1/(R1L+R2L)C2. If the value of R1L+R2Lis very large, this pole will make the GBW and phase margin (PM) deteriorate. To avoid the deterioration, a compensation resistor is used in series with the load capacitor Cloadto generate a zero 1/RCCloadto cancel the pole out. The resistance of Rccan be given as

    4. Simulation Results

    A proposed SRE OTA and a conventional OTA are designed with a power supply voltage of 5 V in a 0.5 μm CMOS process to compare their performance. Fig. 6 shows the curves of the unit gain frequency (UGF) and SR versus the resistance of R1L(R1L=R2L=R1R=R2R), and Fig. 7 shows the parameters versus the bias current.

    From Fig. 6, it can be seen that the SR of SRE OTA increases with the increase of the resistance as analyzed before. The UGF also increases with the increase of the resistance at first, but tends to be saturated and even decreases when the resistance continues increasing. This can be explained as follows. When the resistance increases,the GBW increases whereas the non-dominant pole, which is the internal pole, moves towards the low-frequency. At first because the resistance is not so large, the internal pole is still at the high-frequency far beyond GBW, which does not affect the UGF. Therefore, the UGF increases with GBW. But when the resistance continues increasing, the internal pole moves towards GBW and even becomes lower than it. So, the effect of the internal pole becomes more significant and makes the UGF be saturated and even decreases.

    Fig. 6 UGF and SR vs. different resistances R1L=R2L=R1R=R2R(Ibias=5.32 μA, RC=0, Cload=10 pF, m=1, n=4).

    From Fig. 7, we can see that the SR of the SRE OTA increases much more quickly with the increase of the bias current than the conventional OTA, because it increases non-linearly with the bias current as analyzed in (10),whereas the SR of conventional OTA increases linearly with the bias current. The UGF of SRE OTA also increases more quickly than the conventional one. The reason is that the transconductance gmof the MOS transistor increases with the bias current as is well-known, and gm2Land gm3Lboth contribute to the increasing of the GBW of the SRE OTA whereas only gm3Lcontributes to the increasing of the conventional one according to (3) and (13).

    Fig. 7. GBW and SR with different bias currents(R1L=R2L=R1R=R2R=150 kΩ, RC=7 kΩ, Cload=10 pF, m=1, and n=4).

    The AC small-signal characteristic is shown in Fig. 8. It can be seen that the low-frequency gain and UGF of the SRE OTA are both higher than those of the conventional one, agreeing with the small signal analysis in Section 3.

    The output settling time simulation results are shown in Fig. 9. The output of the SRE OTA settles much faster than the conventional OTA.

    Fig. 8. Frequency response of the SRE OTA and conventional OTA (Ibias=5.32 μA, R1L=R2L=R1R=R2R=150 kΩ, RC=7 kΩ, Cload=10 pF, m=1, and n=4).

    Fig. 9. Output settling time simulation of the SRE OTA and conventional OTA (Ibias=5.32 μA, R1L=R2L=R1R=R2R=150 kΩ,RC=7 kΩ, Cload=10 pF, m=1, and n=4).

    Table 1: Simulation results comparison(Ibias=5.32 μA, R1L=R2L=R1R=R2R=150 kΩ, Rc=7 kΩ, CL=10 pF,m=1, and n=4)

    Simulation results are summarized in Table 1. The figures of merit (FOMs) shown in Table 1 are important quality factors reflecting the driving capability and power dissipation of an amplifier. And FOM1[1], FOM2[10], and FOM3[10]are defined as follows:

    where ILmaxis the maximum output current provided to the load and Isupplyis the total quiescent current of the supply voltage. In this work, these factors have been greatly improved. FOM1, FOM2, and FOM3 have been improved 134%, 728%, and 848% respectively.

    5. Conclusions

    In this study, a sensing resistor in series with the diode configured MOS transistor of the current mirror is applied to increase the SR. Therefore, the voltage drop across the resistor produces a term containing the square of the input current in the output current of the SRE current mirror. As a result, the op amp has a greater SR which has been improved by 8.25 times. And at the same time, the UGF is improved by 2.33 times, whereas, the static power dissipation is reduced 12.7%. Compared with some common methods of SR enhancing, this method does not lead to more power dissipation and even reduces it, which is a great merit. Especially for today, the use of portable equipment, wireless, and other battery powered systems are prevalent, improving the driving capacity with no more power dissipation has great significance. But, the SR of this method is still not high enough, and it is necessary to improve it more for further study.

    [1] W. M. C. Sansen, Analog Design Essentials; Dordrecht:Springer, 2006, ch. 6.

    [2] E. A. Vittoz, “The design of high-performance analog circuits on digital CMOS chips,” IEEE Journal of Solid-State Circuits, vol. 20, no. 3, pp. 657-665, 1985.

    [3] G. C. Cardarilli and G. Ferri, “CMOS adaptive biasing circuits for low-power applications,” in Proc. of the 21st Int.Conf. on Microelectronics, 1997, pp. 747–750.

    [4] S. Baswa, A. J. Lopez-Martin, R. G. Carvajal, and J.Ramirez-Angulo, “Low-voltage power-efficient adaptive biasing for CMOS amplifiers and buffers,” Electronics Letters, vol. 40, no. 4, pp. 217–219, Feb. 2004.

    [5] K. Nagaraj, “CMOS amplifiers incorporating a novel slew rate enhancement technique,” in Proc. of the IEEE 1990 Custom Integrated Circuit Conf., 1990, pp. 11.6.1–11.6.5.

    [6] R. Krithivasan, L. Yuan, L. Najafizadeh, Z. Chendong, C.Suheng, C. Ulaganathan, and B. J. Blalock, “A high-slew rate SiGe BiCMOS operational amplifier for operation down to deep cryogenic temperatures,” in Proc. of IEEE 2006 Bipolar/BiCMOS Circuits and Technology Meeting, 2006,pp. 72-75.

    [7] H. Lee, P. K. T. Mok, and K. N. Leung, “Design of low-power analog drivers based on slew-rate enhancement circuits for CMOS low-dropout regulators,” IEEE Trans. on Circuits and Systems II, vol. 52, no. 9, pp. 563-567, 2005.

    [8] X. Lei, D.-B. Fu, D.-M. Zhu, and C. Su, “A novel high-transconductance operational amplifier with fast setting time,” in Proc. of the 10th IEEE Int. Conf. on Solid-State and Integrated Circuit Technology, 2010, pp. 500–502.

    [9] A.-R. Kim, H.-R. Kim, Y.-S. Park, Y.-K. Choi, and B.-S.Kong, “Low-power class-AB CMOS OTA with high slew-rate,” in Proc. of 2009 Int. SoC Design Conf., 2009, pp.313–316.

    [10] A. J. López-Martín, S. Baswa, J. Ramirez-Angulo, and R. G.Carvajal, “Low-voltage super class AB CMOS OTA cells with very high slew rate and power efficiency,” IEEE Journal of Solid-State Circuits, vol. 40, no. 5, pp.1068-1077, May 2005.

    久久久亚洲精品成人影院| 亚洲欧美精品专区久久| 91久久精品电影网| 亚洲精品日韩av片在线观看| av免费在线看不卡| 2018国产大陆天天弄谢| 一级a做视频免费观看| 欧美另类一区| 色哟哟·www| 国产精品女同一区二区软件| 免费观看在线日韩| 在线a可以看的网站| 色5月婷婷丁香| 亚洲人成网站在线观看播放| 日韩视频在线欧美| 精品一区二区三区视频在线| 草草在线视频免费看| 菩萨蛮人人尽说江南好唐韦庄| 成人美女网站在线观看视频| 成人一区二区视频在线观看| 黄色欧美视频在线观看| 色视频www国产| 在线a可以看的网站| kizo精华| 欧美激情久久久久久爽电影| 亚洲欧美精品自产自拍| 人人妻人人澡人人爽人人夜夜| 91狼人影院| 80岁老熟妇乱子伦牲交| 18+在线观看网站| 搞女人的毛片| 精品酒店卫生间| 亚洲国产高清在线一区二区三| 欧美精品人与动牲交sv欧美| 黄片无遮挡物在线观看| 免费看a级黄色片| 777米奇影视久久| 国产精品熟女久久久久浪| 久久久a久久爽久久v久久| 久久久久久久久久人人人人人人| 国产精品av视频在线免费观看| 欧美zozozo另类| 美女视频免费永久观看网站| 天天一区二区日本电影三级| 国产成人91sexporn| 91精品伊人久久大香线蕉| 中文字幕制服av| 看免费成人av毛片| 亚洲怡红院男人天堂| 色播亚洲综合网| 中文字幕亚洲精品专区| 岛国毛片在线播放| 18禁裸乳无遮挡动漫免费视频 | 51国产日韩欧美| 日韩视频在线欧美| 汤姆久久久久久久影院中文字幕| 91久久精品国产一区二区三区| 少妇 在线观看| 少妇的逼水好多| 我的老师免费观看完整版| 在线观看三级黄色| 亚洲精品第二区| 国产午夜精品一二区理论片| 成人黄色视频免费在线看| 国产精品女同一区二区软件| 亚洲不卡免费看| 久久久久久久久久久免费av| 国产欧美另类精品又又久久亚洲欧美| 国产 精品1| 久久久精品免费免费高清| 日韩av不卡免费在线播放| 久久久久久国产a免费观看| 下体分泌物呈黄色| 久热这里只有精品99| 国产女主播在线喷水免费视频网站| 亚洲欧美成人综合另类久久久| 成人国产麻豆网| 国产精品久久久久久精品电影| 午夜爱爱视频在线播放| 国产老妇伦熟女老妇高清| 国产美女午夜福利| 超碰97精品在线观看| 国产探花在线观看一区二区| 国产探花极品一区二区| 午夜福利在线观看免费完整高清在| 只有这里有精品99| 日韩不卡一区二区三区视频在线| 久久久精品欧美日韩精品| 一本久久精品| 亚洲精品456在线播放app| 国产免费又黄又爽又色| 少妇 在线观看| 免费观看无遮挡的男女| 国产精品国产三级国产专区5o| 黄色欧美视频在线观看| 成人亚洲欧美一区二区av| 久久99精品国语久久久| 精品一区二区免费观看| 噜噜噜噜噜久久久久久91| 亚洲精品国产成人久久av| 欧美zozozo另类| 一级毛片我不卡| 亚洲成人一二三区av| 欧美一级a爱片免费观看看| 在线精品无人区一区二区三 | 国产成人精品久久久久久| 各种免费的搞黄视频| 老司机影院成人| 欧美潮喷喷水| 精品人妻视频免费看| 18禁在线播放成人免费| 国产日韩欧美亚洲二区| 日韩av不卡免费在线播放| 一级二级三级毛片免费看| 男人狂女人下面高潮的视频| 色网站视频免费| 午夜激情久久久久久久| 亚洲精品中文字幕在线视频 | 国产亚洲一区二区精品| 人人妻人人澡人人爽人人夜夜| 97超视频在线观看视频| 建设人人有责人人尽责人人享有的 | 亚洲一级一片aⅴ在线观看| 亚洲精品国产av成人精品| 免费人成在线观看视频色| 亚洲一区二区三区欧美精品 | 国产探花极品一区二区| 国产午夜精品久久久久久一区二区三区| 久久97久久精品| 亚洲av不卡在线观看| 九草在线视频观看| 亚州av有码| 乱系列少妇在线播放| 中文资源天堂在线| 看非洲黑人一级黄片| 精品久久久精品久久久| 成人美女网站在线观看视频| 男女啪啪激烈高潮av片| 久久影院123| 久久久久久久大尺度免费视频| 99久久九九国产精品国产免费| 日本色播在线视频| 久久97久久精品| 国产 一区 欧美 日韩| 日本黄大片高清| 久久ye,这里只有精品| 干丝袜人妻中文字幕| 99久久九九国产精品国产免费| 七月丁香在线播放| 丝袜脚勾引网站| 中国美白少妇内射xxxbb| 免费播放大片免费观看视频在线观看| 亚洲欧美一区二区三区国产| 国产白丝娇喘喷水9色精品| 亚州av有码| 99热全是精品| 国产成人一区二区在线| 自拍欧美九色日韩亚洲蝌蚪91 | 好男人视频免费观看在线| 免费少妇av软件| 国产黄色免费在线视频| 美女内射精品一级片tv| 久久这里有精品视频免费| 日韩国内少妇激情av| 国产一区二区在线观看日韩| 男男h啪啪无遮挡| 干丝袜人妻中文字幕| 国产老妇女一区| 国产亚洲午夜精品一区二区久久 | 国产精品av视频在线免费观看| 国产片特级美女逼逼视频| 久久久久久久久久成人| 国产亚洲91精品色在线| 高清毛片免费看| 1000部很黄的大片| 少妇猛男粗大的猛烈进出视频 | 精品少妇久久久久久888优播| 久久精品国产a三级三级三级| 中文天堂在线官网| 久久午夜福利片| 免费黄频网站在线观看国产| 精品人妻视频免费看| 亚洲综合精品二区| 久久久久国产网址| 欧美国产精品一级二级三级 | 老司机影院成人| 亚洲,欧美,日韩| 亚洲av男天堂| 三级国产精品片| 三级经典国产精品| 欧美性猛交╳xxx乱大交人| 女的被弄到高潮叫床怎么办| 夜夜看夜夜爽夜夜摸| 欧美性猛交╳xxx乱大交人| 伊人久久国产一区二区| 国产精品福利在线免费观看| 老司机影院成人| 国产一区二区三区综合在线观看 | 成人亚洲精品av一区二区| 一级毛片aaaaaa免费看小| 中文资源天堂在线| 2018国产大陆天天弄谢| 国模一区二区三区四区视频| 丝瓜视频免费看黄片| 国产精品蜜桃在线观看| 国产欧美亚洲国产| 日韩人妻高清精品专区| 亚洲精品乱久久久久久| 精品久久久久久久末码| 欧美3d第一页| 男人添女人高潮全过程视频| 99精国产麻豆久久婷婷| 精华霜和精华液先用哪个| 国产黄片视频在线免费观看| 国产中年淑女户外野战色| 国产精品国产av在线观看| 男女边摸边吃奶| 日本猛色少妇xxxxx猛交久久| 丝袜脚勾引网站| 可以在线观看毛片的网站| 美女脱内裤让男人舔精品视频| 3wmmmm亚洲av在线观看| 狂野欧美激情性xxxx在线观看| 国产精品嫩草影院av在线观看| 男女那种视频在线观看| 一级毛片黄色毛片免费观看视频| 各种免费的搞黄视频| 国产精品久久久久久精品电影小说 | 日本爱情动作片www.在线观看| 成人亚洲精品av一区二区| 99久国产av精品国产电影| 最近的中文字幕免费完整| 丝袜喷水一区| 亚洲精品aⅴ在线观看| 久久ye,这里只有精品| 欧美日韩视频高清一区二区三区二| 婷婷色av中文字幕| 五月开心婷婷网| 大码成人一级视频| 国产乱来视频区| 人人妻人人澡人人爽人人夜夜| 亚洲熟女精品中文字幕| 久久综合国产亚洲精品| 天堂俺去俺来也www色官网| 亚洲av二区三区四区| xxx大片免费视频| 日韩 亚洲 欧美在线| 国产毛片在线视频| 成人国产麻豆网| 成年人午夜在线观看视频| 国产成人午夜福利电影在线观看| 自拍偷自拍亚洲精品老妇| 毛片一级片免费看久久久久| 在线观看一区二区三区激情| 汤姆久久久久久久影院中文字幕| 日韩欧美精品免费久久| 波多野结衣巨乳人妻| 99热国产这里只有精品6| 亚洲综合精品二区| 日韩一区二区视频免费看| 亚洲成人中文字幕在线播放| 午夜福利视频精品| 国产淫语在线视频| 免费观看a级毛片全部| 毛片女人毛片| 欧美日本视频| 少妇人妻一区二区三区视频| 欧美zozozo另类| 高清在线视频一区二区三区| 日本免费在线观看一区| 国产精品人妻久久久影院| 亚洲成人久久爱视频| 亚洲欧美成人精品一区二区| 亚洲熟女精品中文字幕| 午夜免费鲁丝| 一级av片app| 国产欧美亚洲国产| 日本wwww免费看| 狂野欧美白嫩少妇大欣赏| 亚洲在久久综合| 我的女老师完整版在线观看| 丝袜脚勾引网站| 久久久久国产网址| 免费不卡的大黄色大毛片视频在线观看| 水蜜桃什么品种好| 欧美+日韩+精品| 亚洲av男天堂| 成人二区视频| 亚洲第一区二区三区不卡| 嫩草影院精品99| 直男gayav资源| 免费高清在线观看视频在线观看| 18禁裸乳无遮挡免费网站照片| 18+在线观看网站| 九九久久精品国产亚洲av麻豆| 最近2019中文字幕mv第一页| 十八禁网站网址无遮挡 | 99热6这里只有精品| 日韩,欧美,国产一区二区三区| 成人国产麻豆网| 在线 av 中文字幕| 中文资源天堂在线| 日韩不卡一区二区三区视频在线| 99久久精品国产国产毛片| 赤兔流量卡办理| 精品人妻视频免费看| 亚洲婷婷狠狠爱综合网| 夜夜爽夜夜爽视频| 免费看a级黄色片| 亚洲综合精品二区| 国产成人一区二区在线| 亚州av有码| 国产乱来视频区| 国产成人freesex在线| 91aial.com中文字幕在线观看| 亚洲aⅴ乱码一区二区在线播放| 精品99又大又爽又粗少妇毛片| 色5月婷婷丁香| 男女下面进入的视频免费午夜| 亚洲国产精品成人久久小说| 熟女av电影| 亚洲欧美日韩无卡精品| 天天躁日日操中文字幕| 真实男女啪啪啪动态图| 亚洲欧美精品自产自拍| 国产精品爽爽va在线观看网站| 狂野欧美白嫩少妇大欣赏| 伦精品一区二区三区| 成人黄色视频免费在线看| 亚洲精品影视一区二区三区av| 免费少妇av软件| 久久99蜜桃精品久久| 亚洲av成人精品一区久久| 少妇高潮的动态图| 成人国产麻豆网| 只有这里有精品99| 国产精品精品国产色婷婷| 日韩一区二区三区影片| 亚洲人成网站在线观看播放| 日韩中字成人| 久久久久久久午夜电影| 欧美日韩视频高清一区二区三区二| 亚洲国产精品国产精品| 神马国产精品三级电影在线观看| 日本av手机在线免费观看| 欧美潮喷喷水| av又黄又爽大尺度在线免费看| 如何舔出高潮| 只有这里有精品99| 国产美女午夜福利| 亚洲欧美精品自产自拍| av国产久精品久网站免费入址| 伦精品一区二区三区| 最近最新中文字幕免费大全7| 婷婷色av中文字幕| 午夜福利高清视频| 成人无遮挡网站| 欧美激情国产日韩精品一区| 国产一区二区亚洲精品在线观看| 久久久a久久爽久久v久久| 国产精品av视频在线免费观看| 日韩一区二区三区影片| 男女啪啪激烈高潮av片| 热99国产精品久久久久久7| 白带黄色成豆腐渣| 听说在线观看完整版免费高清| 99热这里只有是精品50| 日本与韩国留学比较| 亚洲va在线va天堂va国产| 久久99热6这里只有精品| 好男人在线观看高清免费视频| 干丝袜人妻中文字幕| 99精国产麻豆久久婷婷| 舔av片在线| 亚洲精品乱码久久久v下载方式| 久久久久久久久久人人人人人人| 爱豆传媒免费全集在线观看| 亚洲国产精品成人久久小说| 国产成人午夜福利电影在线观看| 视频区图区小说| 午夜福利视频1000在线观看| 一级毛片aaaaaa免费看小| 国产爱豆传媒在线观看| 精品一区在线观看国产| 亚洲精品国产av蜜桃| 国产白丝娇喘喷水9色精品| 亚洲av.av天堂| 丝袜脚勾引网站| 成人免费观看视频高清| 日日撸夜夜添| 久久久久国产精品人妻一区二区| 99久久九九国产精品国产免费| 国产男女内射视频| 特大巨黑吊av在线直播| 欧美xxⅹ黑人| 午夜福利视频精品| 中文字幕人妻熟人妻熟丝袜美| 午夜福利网站1000一区二区三区| 国产成人免费无遮挡视频| 亚洲精华国产精华液的使用体验| 国产男人的电影天堂91| 亚洲成人久久爱视频| 国产午夜福利久久久久久| av卡一久久| 国产午夜精品一二区理论片| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲自拍偷在线| 简卡轻食公司| 久久久久久久久久久免费av| 午夜激情久久久久久久| 男女那种视频在线观看| 日本wwww免费看| 亚洲av不卡在线观看| 在线看a的网站| 男女啪啪激烈高潮av片| 69av精品久久久久久| 久久精品熟女亚洲av麻豆精品| 国产成人免费观看mmmm| 免费看日本二区| 黄片无遮挡物在线观看| 成年人午夜在线观看视频| 黄色日韩在线| av在线播放精品| 欧美激情久久久久久爽电影| 99九九线精品视频在线观看视频| 亚洲天堂国产精品一区在线| 久久99精品国语久久久| 男人爽女人下面视频在线观看| 精品国产一区二区三区久久久樱花 | 天天一区二区日本电影三级| 午夜免费鲁丝| 欧美激情国产日韩精品一区| 黄色怎么调成土黄色| 色5月婷婷丁香| 美女xxoo啪啪120秒动态图| 午夜精品一区二区三区免费看| 亚洲精品乱久久久久久| 涩涩av久久男人的天堂| 日韩制服骚丝袜av| 熟妇人妻不卡中文字幕| 日本黄大片高清| 亚洲综合精品二区| 亚洲av二区三区四区| 日韩强制内射视频| 日韩一区二区视频免费看| 又粗又硬又长又爽又黄的视频| 亚洲国产成人一精品久久久| 少妇人妻一区二区三区视频| 日韩一区二区三区影片| 婷婷色麻豆天堂久久| 熟女人妻精品中文字幕| 久久久久久久久久久免费av| 精品99又大又爽又粗少妇毛片| 久久久午夜欧美精品| 国产成人aa在线观看| 国产永久视频网站| 一个人观看的视频www高清免费观看| 日日摸夜夜添夜夜添av毛片| 亚洲精品国产色婷婷电影| 97超碰精品成人国产| 一边亲一边摸免费视频| 美女被艹到高潮喷水动态| 麻豆成人av视频| 搡女人真爽免费视频火全软件| 亚洲精品国产av蜜桃| 精品国产三级普通话版| 亚洲人成网站在线播| 欧美日韩在线观看h| 久久99热6这里只有精品| 日韩欧美精品v在线| 亚洲国产成人一精品久久久| 黄片wwwwww| 国产久久久一区二区三区| 少妇人妻 视频| 免费黄网站久久成人精品| 成人国产麻豆网| 又爽又黄a免费视频| 美女国产视频在线观看| 国产亚洲av片在线观看秒播厂| 日本午夜av视频| 久久久久久久大尺度免费视频| 久久精品国产自在天天线| 特大巨黑吊av在线直播| 在线观看一区二区三区| 超碰97精品在线观看| 2021天堂中文幕一二区在线观| 久久精品国产亚洲网站| 亚洲精品乱码久久久久久按摩| 好男人在线观看高清免费视频| 亚洲欧美一区二区三区黑人 | 国产91av在线免费观看| 亚洲成人中文字幕在线播放| 亚洲av不卡在线观看| 亚洲欧美成人综合另类久久久| 精品人妻一区二区三区麻豆| 一级毛片 在线播放| 尤物成人国产欧美一区二区三区| 国产精品一及| 老女人水多毛片| 又粗又硬又长又爽又黄的视频| 成人午夜精彩视频在线观看| 亚洲精品国产色婷婷电影| 高清视频免费观看一区二区| 91在线精品国自产拍蜜月| 国产成人精品福利久久| 69人妻影院| 色网站视频免费| 插阴视频在线观看视频| 国产午夜福利久久久久久| 大香蕉97超碰在线| 欧美日韩综合久久久久久| 亚洲,一卡二卡三卡| 欧美人与善性xxx| 夫妻午夜视频| videos熟女内射| 国产一区二区在线观看日韩| 国产精品99久久99久久久不卡 | 日日摸夜夜添夜夜爱| 午夜免费男女啪啪视频观看| 日韩av免费高清视频| 欧美一级a爱片免费观看看| 亚洲av男天堂| 久久精品国产a三级三级三级| 日韩伦理黄色片| 亚洲av不卡在线观看| 日韩欧美精品v在线| 亚洲精品成人av观看孕妇| 日韩一本色道免费dvd| 国产 精品1| 永久免费av网站大全| 男人和女人高潮做爰伦理| .国产精品久久| 国精品久久久久久国模美| 久久久久久久久久成人| av一本久久久久| 国产伦精品一区二区三区四那| 国产成人精品婷婷| 精品一区二区三卡| 亚洲精品色激情综合| 国产综合懂色| 免费av毛片视频| 欧美 日韩 精品 国产| 2021天堂中文幕一二区在线观| 狂野欧美激情性bbbbbb| 久久热精品热| 国产成人aa在线观看| 午夜福利高清视频| 亚洲人与动物交配视频| 久久久久久九九精品二区国产| 国产 精品1| 亚洲精品乱码久久久久久按摩| 国产人妻一区二区三区在| av网站免费在线观看视频| 国产人妻一区二区三区在| 人妻夜夜爽99麻豆av| 亚洲国产精品成人久久小说| 大话2 男鬼变身卡| 在线 av 中文字幕| 亚洲av日韩在线播放| 久久久久精品性色| 欧美xxⅹ黑人| 日本欧美国产在线视频| 三级国产精品欧美在线观看| 久久国内精品自在自线图片| 制服丝袜香蕉在线| 精品一区二区三区视频在线| 边亲边吃奶的免费视频| 黄色视频在线播放观看不卡| 男女啪啪激烈高潮av片| 少妇熟女欧美另类| 汤姆久久久久久久影院中文字幕| 国产精品国产三级国产专区5o| 日产精品乱码卡一卡2卡三| 青春草国产在线视频| 亚洲精品,欧美精品| 亚洲精品中文字幕在线视频 | av卡一久久| 99精国产麻豆久久婷婷| 日韩免费高清中文字幕av| av.在线天堂| 毛片女人毛片| 国产男女超爽视频在线观看| 国语对白做爰xxxⅹ性视频网站| av.在线天堂| 国产片特级美女逼逼视频| 成人毛片a级毛片在线播放| 久久久色成人| 久久久久久九九精品二区国产| 国产精品久久久久久精品电影小说 | 晚上一个人看的免费电影| 国内揄拍国产精品人妻在线| 日日啪夜夜爽| 国产成人91sexporn| 国产成人a区在线观看| 国产欧美另类精品又又久久亚洲欧美| 在线观看人妻少妇| 国产一区亚洲一区在线观看| tube8黄色片| 一本色道久久久久久精品综合| 直男gayav资源| 亚洲欧美成人综合另类久久久| 国产精品伦人一区二区| 亚洲欧美精品专区久久| 建设人人有责人人尽责人人享有的 | 夫妻午夜视频| 99久久精品一区二区三区| 男女边吃奶边做爰视频| 久热这里只有精品99| 久久精品综合一区二区三区| 日韩视频在线欧美| 有码 亚洲区| 99久久精品一区二区三区| 激情五月婷婷亚洲| 小蜜桃在线观看免费完整版高清| 亚洲最大成人av|