• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Face Detection under Complex Background and Illumination

    2015-07-14 01:20:32ShaoDongLvYongDuanSongMeiXuandCongYingHuang

    Shao-Dong Lv, Yong-Duan Song, Mei Xu, and Cong-Ying Huang

    1. Introduction

    Face detection is to find out whether the given images or a video sequence contains human faces, if so, then it gives the specific location of the face, size, quantity, etc.Face detection is a complex pattern recognition problem,which is mainly affected by the complex background and illumination outside. In recent years, with the actual demand for identification and safety certification, the face detection is expected to be adapted to the environment,which forces the researchers to develop a robust, efficient,and real-time face detection algorithm.

    So far, researchers have done lots of research in face detection and have proposed some classical algorithms,for improving the detection rate, but the algorithm training time was very long, and the false detection rate also increased rapidly while the detection rate is improved.

    For face detection under the complex background and illumination, at present there is no single algorithm can achieve a good detection results. We propose an effective and robustness method in this paper. First, we cluster the skin color in the color space by using the skin color to extract the skin likelihood area in images, excluding a large number of irrelevant backgrounds; then for remedying the deficiencies of the Adaboost algorithm, we introduce the cost-sensitive function into the Adaboost algorithm; finally,combine the skin color and cost-sensitive Adaboost algorithm for the face detection. Experimental results show that the proposed detect method has high robustness and a high detection rate, and detection speed.

    2. Skin Color Segmentation

    Skin color is one of the most significant features of the surface, which relies on facial expressions and rotation, but has a certainly robustness for different light. Experimental research shows that the differences in skin color between different ages and races are mainly the differences of brightness, which have nothing to do with the chrominance.After removing the brightness, the color of skin takes on the characteristic of clustering in some color space, so the color is one kind of the most commonly used features in face detection[9]. The commonly used color space are RGB(red, green, blue—three primary colors), YCbCr(encoding the chrominance model CCIR601), HSV (hue, saturation,brightness), etc. In order to reduce the influence of brightness difference as much as possible, this paper selected the YCbCrcolor space for color segmentation.

    2.1 YCbCr Skin Space

    In the Joint Photographic Experts Group (JPEG)Standard, the RGB image is converted to a luminance-chrominance space, usually called YCbCrcolor space, where Y represents the luminosity, and Cband Crrepresent chroma. The YCbCrhas the advantages that the luminance component is isolated from the chrominance,and the skin color can be well clustered in the Cb-Cr-dimensional space[10]. So it is widely used in the face skin color detection. YCbCrcan be obtained by linear transformation of RGB, shown as

    As shown in Fig. 1, we manually select 30 images, and then select 30 skin pixels and 30 non-skin pixels in each image for a statistical skin distribution in the Cb-Crspace,as shown in Fig. 1.

    Fig. 1. YCbCr skin statistics.

    2.2 Skin Color Segmentation

    This paper used the YCbCrcolor space for the face detection, and after testing on a great number of face images, we choose the skin segmentation parameters as shown in (2) and some skin segmentation examples are shown in Fig. 2.

    3. Face Detection

    Face detection is essentially a two-classification problem, which distinguishes the face and non-face areas generally by the pre-established rules. Viola proposed the Adaboost face detection algorithm based on Haar-Like in 2001, which is a milestone in the face detection history. But the traditional Adaboost algorithm is not perfect. This section starts from the analysis of Adaboost algorithm, then combines with the cost-sensitive learning function[11]-[13]to propose a new method that uses the cost-sensitive Adaboost for the face detection.

    Fig. 2. Skin segmentation in YCbCr color space: (a) original picture and (b) skin segmentation result.

    3.1 Adaboost Algorithm

    The Adaboost algorithm is an iterative algorithm, and the core idea is training different classifiers by the same training set, and then combining these weak classifiers to form a final stronger classifier. The algorithm is implemented by changing the data distribution. In each round of training, the algorithm changes the weight of each sample according to whether this sample has been classified correctly and the overall classification accuracy. Then it sends the modified weight of new data to the lower classifier for training, finally puts each trained classifier fusion together as the final decision classifier. The specific derivation could refer to [8].

    In the original form, in the process of initializing the samples and updating the sample weights, the Adaboost algorithm treats the negative samples the same as the positive samples. Besides, it selects the best classifier according to the minimum classification error. This is unrealistic in the actual face detection. First, face detection is the small sample detection, we should give enough attention to the positive samples. Second, the structure of Adaboost face detection is the cascade classifier structure,only the area through all of the cascade classifier windows can be tested as the face. The classifiers in the higher lever of the cascade structure are required to detect almost all of the face samples and exclude non-face samples, at this moment, if we just consider the minimum classification error, it will affect the detection rate for face samples.

    In recent years, the cost-sensitive learning problem[14]-[16]has been widely concerned. People not only concern the minimum classification error, but also begin to focus on the minimum of the classification costs. Inspired by them, we introduce the cost-sensitive function into both the samples weights initialization and samples weights updated process, and finally combine it with the color segmentation for the actual face detection.

    3.2 Proposed Cost-Sensitive Adaboost Algorithm

    1) For a given set ofn samples:L ={(xi, yi)},i = 1 ,2,… ,n, where xi∈Xrepresents a set of samples,andyi∈Y={-1,1}represents a sample class, set the number of positive samples forpand that of the negative samples forq .

    2) Define the cost-sensitive function as

    where c is the cost-sensitive factor.

    3) Initialize the sample weights:

    4) For the cycling index t=1, 2, ??, T, loop Step 4) for T times to find T weak classifiers ht.

    a) The classifier error can be expressed as

    where ωt(i)is the ith sample weight in the tth cycling.Select the weak classifierhtin each cycle, which has the smallest errorεt.

    b) Setat= ( 1 2)ln((1 - εt)εt)to update sample weights:

    c) Normalize the sample weights separately:

    Then return to a) until T weak classifiers hthave been obtained.

    5) Finally, we get the strong classifier:

    where sgn(?) is the sign function.

    From the derivation of the above algorithm, the main differences between the algorithm proposed in this paper and the Adaboost algorithm are: 1) First, this paper introduces the cost-sensitive function Ciand applies it into the samples initialization and the process of updating the sample weights. 2) In the sample normalization process,the positive and negative samples are separately normalized.The aim are: 1) After the introduction of cost-sensitive functionCi, as long as c>1 then the initially positive samples weights will be larger than the negative samples,and the classifier will pay more attention to the positive samples. 2) We are able to make the positive sample weights larger than negative sample weights by setting the cost-sensitive functionCi. But if the positive samples and negative samples are not normalized separately, then after a few iterations, the negative sample weights are likely to exceed the weight of the positive samples. Therefore, we normalized the positive and negative samples separately to ensure the main position of the positive samples in the whole process. 3) According to the analysis of the above weight update rule, when the samples are correctly classified, namelyyiht(xi) = 1, the sample weight will fall.But at this time the extent of the positive samples will decrease more slowly than that of the negative samples.Similarly, when the samples are misclassified, namely yiht(xi) = -1, the sample weights will increase, but at this time the degree of positive samples will increase more greatly than that of the negative samples. All of these actions ensure that the modified algorithm will always give enough attention to the positive samples, thus the classifier will have good classification capabilities for the positive samples.

    4. Experimental Results and Discussion

    In order to prove the effectiveness of the proposed cost-sensitive Adaboost, we verify it on the Massachusetts Institute of Technology (MIT) face database. Fig. 3 (a)shows a strong classifier face detection rate under different cost-sensitive functions, (Note that when c=1, the cost-sensitive Adaboost algorithm is equivalent with the Adaboost algorithm). As shown in Fig. 3, under the same false alarm the cost-sensitive Adaboost algorithm has a higher detection rate, so the performance is superior to the traditional Adaboost algorithm. Fig. 3 (b) shows the relationship between the detection rate and weak classifier number. It can be seen that the detection rate of traditional Adaboost algorithm does not increase with the increase of the number of weak classifiers, when the number of weak classifiers is more than 160. This is because the traditional Adaboost algorithm will always increase the weights of the misclassification samples. When the negative samples exist,which is difficult to classify, the classifier will increase the negative samples weights all the time. As a result, the classifier performance degrades. The proposed cost-sensitive Adaboost algorithm can well avoid this phenomenon, because the positive samples always occupy the main position.

    Fig. 3. Performance comparison between cost-sensitive Adaboost and Adaboost algorithm: (a) face detection rate vs. false alarms with different cost-sensitive functions and (b) face detection rate vs. number of weak classifier.

    In this paper, we combine the skin color segmentation and cost-sensitive Adaboost together for the face detection.In order to verify the effectiveness of the proposed method,we conduct experiments from following two aspects: 1)First, we use the proposed algorithm and the traditional Adaboost to test 80 copies of still images, respectively.These pictures are from the Internet or the camera.Statistical experimental data are shown in Table 1 and Table 2, some of the detection results of the images are shown in Fig. 4. It can be seen from Table 1 and Table 2 that the proposed algorithm has better performance. The detection rate, false detection rate, and detection time are superior to those of the Adaboost. 2) In addition, we conduct the experiment by using our proposed detection method and other methods on the MIT standard face database, the experiments results are shown in Table 3. As shown in Table 3, on the same false alarm rate, the proposed method has a higher detection rate. So, the effectiveness of the proposed algorithm is proved.

    Table 1: Comparison of the face detection performance of our detection method and Adaboost on still images

    Table 2: Average performance of our detection method and Adaboost

    Fig. 4. Some test images and results.

    Table 3: Comparison of the face detection performance of our detection method and other methods on MIT standard face database

    5. Conclusions

    Aiming at reducing the influence of the complex backgrounds and illumination conditions, this paper proposes a face detection method. First, we extract the skin area in the YCbCrcolor space, thereby reducing the calculation complexity for the subsequent face detection.Then based on the Adaboost algorithm, we introduce the cost-sensitive function into the Adaboost algorithm. The experimental results show that the algorithm based on cost-sensitive Adaboost face detection has better performance. Finally, the skin color segmentation and cost-sensitive Adaboost algorithm are combined for the face detection. We test the proposed algorithm on both the real live pictures and MIT standard face database. The experimental results show that the proposed face detection algorithm has a better detection rate, detection speed, and robustness compared with the other methods.

    [1] S. L. Phung, A. Bouzerdoum, and D. Chai, “Skin segmentation using color pixel classification: Analysis and comparison,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 27, no. 1, pp. 148-154, 2005.

    [2] H. Wu, Q. Chen, and M. Yachida, “Face detection from color images using a fuzzy pattern matching method,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 21,no. 6, pp. 557-563, 1999.

    [3] R. Brunelli and T. Poggio, “Face recognition: Features versus templates,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 15, no. 10, pp. 1042-1052, 1993.

    [4] J. Haddadnia, F. Karim, and M. Ahmadi, “Design of RBF neural network using an efficient hybrid learning algorithm with application in human face recognition with pseudo Zernike moment,” IEICE Trans. on Information and Systems,vol. 86, no. 2, pp. 316-325, 2003.

    [5] P. Juell and R. Marsh, “A hierarchical neural network for human face detection,” Pattern Recognition, vol. 29, no. 5,pp. 781-787, 1996.

    [6] R. L. Hsu, M. Abdel-Mottaleb, and A. K. Jain, “Face detection in color images,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 24, no. 5, pp. 696-706, 2002.

    [7] P. Kakumanu and N. Bourbakis. “A local-global graph approach for facial expression recognition,” in Proc. of the 18th IEEE Int. Conf. on Tools with Artificial Intelligence,2006, pp. 685-692.

    [8] H. A. Rowley, S. Baluja, and T. Kanade, “Neural network-based face detection,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 20, no. 1, pp. 23-38,1998.

    [9] P. Viola and M. Jones, “Rapid object detection using a boosted cascade of simple features,” in Proc. of IEEE Conf.on Computer Vision and Pattern Recognition, 2001, pp.511-518.

    [10] E. Hjelm?s and B. K. Low, “Face detection: A survey,”Computer Vision and Image Understanding, vol. 83, no. 3,pp. 236-274, 2001.

    [11] Y. Ban, S. K. Kim, and S. Kim, “Face detection based on skin color likelihood,” Pattern Recognition, vol. 47, no. 4,pp. 1573-1585, 2014.

    [12] Z.-H. Zhou, Cost-Sensitive Learning, Heidelberg: Springer,2011, pp. 17-18.

    [13] P. Viola and M. J. Jones, “Robust real-time face detection,”Int. Journal of Computer Vision, vol. 57, no. 2, pp. 137-154,2004.

    [14] Y. Sun, M. S. Kamel, and A. K. C. Wong, “Cost-sensitive boosting for classification of imbalanced data,” Pattern Recognition, vol. 40, no.12, pp. 3358-3378, 2007.

    [15] K. M. Ting, “A comparative study of cost-sensitive boosting algorithms,” in Proc. of the 17th Int. Conf. on Machine Learning, 2000, pp. 983-990.

    [16] W. Fan, S. J. Stolfo, and J. Zhang, “AdaCost:misclassification cost-sensitive boosting,” in Proc. of the 16th Int. Conf. on Machine Learning, 1999, pp. 97-105.

    [17] Y. Ma and X. Ding, “Real-time multi-view face detection and pose estimation based on cost-sensitive adaboost,”Tsinghua Science & Technology, vol. 10, no. 2, pp. 152-157,2005.

    [18] Lin C, “Face detection in complicated backgrounds and different illumination conditions by using YCbCrcolor space and neural network,” Pattern Recognition Letters, vol. 28,no. 16, pp. 2190-2200, 2007.

    99九九线精品视频在线观看视频| 国产午夜精品论理片| 精品不卡国产一区二区三区| 99热网站在线观看| 六月丁香七月| 一卡2卡三卡四卡精品乱码亚洲| 美女被艹到高潮喷水动态| 免费无遮挡裸体视频| 日本与韩国留学比较| 国产高清视频在线观看网站| 亚洲欧美日韩高清专用| 亚洲欧美日韩高清在线视频| 精品熟女少妇av免费看| 91麻豆精品激情在线观看国产| 欧美zozozo另类| 国产单亲对白刺激| 大香蕉久久网| 午夜a级毛片| 日日干狠狠操夜夜爽| 夜夜夜夜夜久久久久| 小蜜桃在线观看免费完整版高清| 日日啪夜夜撸| 国产一区二区亚洲精品在线观看| 免费在线观看成人毛片| 日韩成人伦理影院| 97人妻精品一区二区三区麻豆| 国产一区二区三区在线臀色熟女| 成年免费大片在线观看| 一个人看视频在线观看www免费| 在线观看av片永久免费下载| or卡值多少钱| 亚洲欧美清纯卡通| 黄色欧美视频在线观看| 在线观看av片永久免费下载| 成人漫画全彩无遮挡| 可以在线观看的亚洲视频| 大又大粗又爽又黄少妇毛片口| 亚洲国产高清在线一区二区三| 国产精品久久久久久精品电影| 亚洲aⅴ乱码一区二区在线播放| 国产精品久久久久久久久免| 白带黄色成豆腐渣| 国产精品一及| 国内精品宾馆在线| 精品久久久久久久久久免费视频| 一区二区三区高清视频在线| 亚洲无线在线观看| 成人二区视频| 国产午夜精品论理片| 最好的美女福利视频网| 在线观看美女被高潮喷水网站| 99热这里只有是精品在线观看| 日韩成人伦理影院| 最新中文字幕久久久久| 久久久久九九精品影院| av专区在线播放| 国产高潮美女av| АⅤ资源中文在线天堂| 午夜福利视频1000在线观看| 国产在线男女| 又粗又爽又猛毛片免费看| 久久久久久久午夜电影| 少妇熟女欧美另类| 国产成人一区二区在线| 2021天堂中文幕一二区在线观| 淫秽高清视频在线观看| 少妇熟女欧美另类| 亚洲av五月六月丁香网| 国产私拍福利视频在线观看| 国产欧美日韩一区二区精品| 亚洲三级黄色毛片| 自拍偷自拍亚洲精品老妇| 国产一区二区亚洲精品在线观看| 可以在线观看的亚洲视频| 精品人妻一区二区三区麻豆 | 2021天堂中文幕一二区在线观| 成人漫画全彩无遮挡| 免费看av在线观看网站| av福利片在线观看| 少妇的逼好多水| 亚洲欧美中文字幕日韩二区| 亚洲性久久影院| 亚洲国产精品sss在线观看| 男女之事视频高清在线观看| 日韩欧美国产在线观看| 又粗又爽又猛毛片免费看| 激情 狠狠 欧美| 最新在线观看一区二区三区| 人人妻人人澡人人爽人人夜夜 | 中出人妻视频一区二区| 欧美日韩综合久久久久久| 色综合亚洲欧美另类图片| 最后的刺客免费高清国语| 中文在线观看免费www的网站| 全区人妻精品视频| 97在线视频观看| 日本撒尿小便嘘嘘汇集6| 亚洲无线观看免费| 久久久成人免费电影| 日本一二三区视频观看| 亚洲欧美成人精品一区二区| 热99在线观看视频| 男插女下体视频免费在线播放| 又黄又爽又刺激的免费视频.| 国产一级毛片七仙女欲春2| 国产男人的电影天堂91| 日本撒尿小便嘘嘘汇集6| 伊人久久精品亚洲午夜| 最新中文字幕久久久久| 麻豆国产av国片精品| 午夜视频国产福利| 久久精品久久久久久噜噜老黄 | 亚洲av第一区精品v没综合| 精品午夜福利视频在线观看一区| 麻豆久久精品国产亚洲av| 麻豆国产97在线/欧美| 秋霞在线观看毛片| 亚洲av五月六月丁香网| 女生性感内裤真人,穿戴方法视频| 国产日本99.免费观看| 国产午夜精品论理片| 一a级毛片在线观看| 欧美xxxx黑人xx丫x性爽| 国产成人a区在线观看| 成人av一区二区三区在线看| 两个人视频免费观看高清| 亚洲图色成人| 老熟妇仑乱视频hdxx| 18禁在线播放成人免费| 久久久久久久久久久丰满| 亚洲国产高清在线一区二区三| 精品久久国产蜜桃| 国产精品久久电影中文字幕| 大型黄色视频在线免费观看| 日韩欧美免费精品| 真实男女啪啪啪动态图| 日本五十路高清| 亚洲av熟女| 国产乱人偷精品视频| av在线蜜桃| 日韩强制内射视频| 欧美另类亚洲清纯唯美| 成人毛片a级毛片在线播放| 狂野欧美激情性xxxx在线观看| 国产69精品久久久久777片| 欧美不卡视频在线免费观看| 亚洲精品粉嫩美女一区| 欧美极品一区二区三区四区| 麻豆久久精品国产亚洲av| 听说在线观看完整版免费高清| 极品教师在线视频| 我的老师免费观看完整版| 日韩强制内射视频| 成年av动漫网址| 亚洲电影在线观看av| 欧美性猛交黑人性爽| 久久精品国产99精品国产亚洲性色| 波野结衣二区三区在线| 国产一区二区激情短视频| 欧美3d第一页| 久久精品91蜜桃| 91久久精品国产一区二区三区| 精品午夜福利视频在线观看一区| 久久久久久九九精品二区国产| 最近视频中文字幕2019在线8| 晚上一个人看的免费电影| 国产精品久久久久久久电影| 欧美一区二区国产精品久久精品| av黄色大香蕉| 欧美又色又爽又黄视频| 亚洲精品国产成人久久av| 成人二区视频| 国产免费一级a男人的天堂| 九九热线精品视视频播放| 特大巨黑吊av在线直播| 精品一区二区三区人妻视频| 卡戴珊不雅视频在线播放| 亚洲人成网站高清观看| 五月伊人婷婷丁香| 国产片特级美女逼逼视频| 国产亚洲精品av在线| 深夜a级毛片| 亚洲精品影视一区二区三区av| 国产大屁股一区二区在线视频| 国产女主播在线喷水免费视频网站 | 国产v大片淫在线免费观看| 插逼视频在线观看| 欧美日韩乱码在线| 真实男女啪啪啪动态图| 日本与韩国留学比较| 18禁裸乳无遮挡免费网站照片| 日韩欧美在线乱码| 在线免费观看的www视频| 久久人人爽人人片av| 看十八女毛片水多多多| 中文字幕熟女人妻在线| 天堂网av新在线| 国产午夜精品久久久久久一区二区三区 | 午夜福利成人在线免费观看| 中文字幕av成人在线电影| 岛国在线免费视频观看| 国产在线男女| 国产精品免费一区二区三区在线| 国产v大片淫在线免费观看| 亚洲欧美精品自产自拍| 国产高清有码在线观看视频| 国产激情偷乱视频一区二区| 久久久久久伊人网av| 日本撒尿小便嘘嘘汇集6| 九九在线视频观看精品| 最近中文字幕高清免费大全6| av在线老鸭窝| 色在线成人网| 1024手机看黄色片| 变态另类成人亚洲欧美熟女| 91在线精品国自产拍蜜月| 久久久精品大字幕| 久久这里只有精品中国| 啦啦啦啦在线视频资源| 在线观看av片永久免费下载| 给我免费播放毛片高清在线观看| 色综合色国产| 中国国产av一级| 级片在线观看| av国产免费在线观看| 国产精品嫩草影院av在线观看| 久久精品国产亚洲av涩爱 | 欧美色视频一区免费| 国产成人freesex在线 | 国产精品国产高清国产av| 久久人人爽人人爽人人片va| 亚洲第一电影网av| 一级a爱片免费观看的视频| 国产片特级美女逼逼视频| 伦理电影大哥的女人| 女生性感内裤真人,穿戴方法视频| 亚洲不卡免费看| 国产精品久久久久久亚洲av鲁大| 欧美激情久久久久久爽电影| 99九九线精品视频在线观看视频| 看片在线看免费视频| 国产伦精品一区二区三区视频9| 欧美xxxx性猛交bbbb| 国产精品一区二区三区四区免费观看 | 卡戴珊不雅视频在线播放| 久久韩国三级中文字幕| 99久久无色码亚洲精品果冻| 精品久久久久久久久久久久久| 人妻夜夜爽99麻豆av| 久久久久久国产a免费观看| 一进一出抽搐动态| 内射极品少妇av片p| 无遮挡黄片免费观看| 岛国在线免费视频观看| 真实男女啪啪啪动态图| 欧美又色又爽又黄视频| 18禁在线无遮挡免费观看视频 | 看非洲黑人一级黄片| 亚洲精品国产av成人精品 | 欧美一区二区亚洲| 亚洲人成网站在线播| 夜夜看夜夜爽夜夜摸| 国产一区二区三区在线臀色熟女| 麻豆av噜噜一区二区三区| 黄色一级大片看看| 亚洲熟妇中文字幕五十中出| 女人被狂操c到高潮| 网址你懂的国产日韩在线| 一进一出好大好爽视频| 俺也久久电影网| 精品久久久久久久人妻蜜臀av| 国产不卡一卡二| 18禁在线无遮挡免费观看视频 | 国产高清激情床上av| 欧美xxxx黑人xx丫x性爽| 亚洲国产精品久久男人天堂| 晚上一个人看的免费电影| 老熟妇乱子伦视频在线观看| 日韩精品有码人妻一区| 最近中文字幕高清免费大全6| 99久国产av精品| 日本成人三级电影网站| 欧美性猛交黑人性爽| 成人性生交大片免费视频hd| 天堂av国产一区二区熟女人妻| 麻豆久久精品国产亚洲av| 精品久久久久久久久av| 美女 人体艺术 gogo| 18+在线观看网站| 国产一区二区在线观看日韩| 性色avwww在线观看| 看黄色毛片网站| 深夜a级毛片| 国产成人影院久久av| 国产精品野战在线观看| 自拍偷自拍亚洲精品老妇| 六月丁香七月| 啦啦啦观看免费观看视频高清| 国产乱人视频| 校园人妻丝袜中文字幕| 国产av一区在线观看免费| 国产亚洲精品av在线| 日韩欧美精品v在线| 一区二区三区免费毛片| 97超碰精品成人国产| 国产亚洲91精品色在线| 国产精品一区二区免费欧美| 搡女人真爽免费视频火全软件 | 黄色一级大片看看| 久久6这里有精品| 国产精品亚洲美女久久久| 成人特级av手机在线观看| 亚洲在线自拍视频| 国产男人的电影天堂91| 久久人妻av系列| 老司机影院成人| 国产毛片a区久久久久| 欧美一区二区亚洲| 亚洲人成网站在线观看播放| 亚洲国产欧美人成| 青春草视频在线免费观看| 97超视频在线观看视频| 国产又黄又爽又无遮挡在线| 久久久久久久久大av| 国产精品久久电影中文字幕| 热99在线观看视频| 老司机福利观看| 国产精品福利在线免费观看| 国产精品一二三区在线看| 中文字幕av成人在线电影| 国产淫片久久久久久久久| 国产极品精品免费视频能看的| 在线观看午夜福利视频| 小说图片视频综合网站| 久久久久九九精品影院| 午夜福利在线观看免费完整高清在 | 99久久精品国产国产毛片| 国产高清不卡午夜福利| 日韩av在线大香蕉| 黄色日韩在线| 久久久久九九精品影院| 不卡一级毛片| 毛片女人毛片| 12—13女人毛片做爰片一| 男人和女人高潮做爰伦理| 亚洲人成网站在线播放欧美日韩| 久久久久国内视频| 精品熟女少妇av免费看| 精品一区二区三区视频在线| 老熟妇仑乱视频hdxx| 欧美激情在线99| 亚洲国产精品合色在线| 毛片一级片免费看久久久久| 国语自产精品视频在线第100页| 亚洲aⅴ乱码一区二区在线播放| 日韩,欧美,国产一区二区三区 | 国产精品爽爽va在线观看网站| 真人做人爱边吃奶动态| 露出奶头的视频| 中文字幕av在线有码专区| 床上黄色一级片| 人妻丰满熟妇av一区二区三区| 波多野结衣高清作品| 天堂网av新在线| 波多野结衣高清作品| 国产色婷婷99| a级毛片免费高清观看在线播放| 可以在线观看毛片的网站| 国产成人福利小说| 97超碰精品成人国产| 听说在线观看完整版免费高清| 亚洲精华国产精华液的使用体验 | 亚洲一区高清亚洲精品| 少妇被粗大猛烈的视频| 亚洲图色成人| 亚洲精品色激情综合| 日本一本二区三区精品| 有码 亚洲区| 国产在线男女| 日韩欧美免费精品| 欧美不卡视频在线免费观看| 午夜老司机福利剧场| 欧美区成人在线视频| 久久久久九九精品影院| 成人av一区二区三区在线看| 国产中年淑女户外野战色| 亚洲精品在线观看二区| 久久草成人影院| 欧美bdsm另类| 欧美国产日韩亚洲一区| 黑人高潮一二区| 黄色欧美视频在线观看| 国产黄a三级三级三级人| 啦啦啦韩国在线观看视频| 精品久久久久久久久av| 真人做人爱边吃奶动态| 免费看美女性在线毛片视频| 少妇高潮的动态图| 最后的刺客免费高清国语| 亚洲电影在线观看av| 一本一本综合久久| 天天躁夜夜躁狠狠久久av| 精品无人区乱码1区二区| 欧美日本亚洲视频在线播放| 精品日产1卡2卡| 在线观看一区二区三区| 国产aⅴ精品一区二区三区波| 色吧在线观看| 99热精品在线国产| 深爱激情五月婷婷| 看十八女毛片水多多多| 给我免费播放毛片高清在线观看| 天天躁夜夜躁狠狠久久av| 日本撒尿小便嘘嘘汇集6| 国产 一区精品| 欧美成人免费av一区二区三区| 搡女人真爽免费视频火全软件 | 少妇丰满av| 久久精品国产亚洲av天美| 久久久久久久久大av| 亚洲人成网站高清观看| 久久久久久大精品| 成人高潮视频无遮挡免费网站| 日日摸夜夜添夜夜爱| 国产高清不卡午夜福利| 麻豆国产av国片精品| 男人舔奶头视频| 国产亚洲欧美98| 婷婷色综合大香蕉| 国产又黄又爽又无遮挡在线| 久久人人爽人人爽人人片va| 国产精品不卡视频一区二区| 免费人成视频x8x8入口观看| 亚洲人成网站在线播放欧美日韩| 乱系列少妇在线播放| 日韩一本色道免费dvd| 好男人在线观看高清免费视频| 国产爱豆传媒在线观看| 99在线视频只有这里精品首页| 嫩草影视91久久| 免费在线观看成人毛片| 日韩精品有码人妻一区| 天堂网av新在线| 国产精品爽爽va在线观看网站| 成年av动漫网址| 国产真实伦视频高清在线观看| 色av中文字幕| 精品一区二区免费观看| 成人综合一区亚洲| av在线天堂中文字幕| 天天一区二区日本电影三级| 亚洲va在线va天堂va国产| 成人av一区二区三区在线看| 成人二区视频| 免费电影在线观看免费观看| 赤兔流量卡办理| 综合色av麻豆| 黄色一级大片看看| 久久午夜亚洲精品久久| 人人妻人人澡欧美一区二区| 成年av动漫网址| 国产精品人妻久久久影院| 午夜免费男女啪啪视频观看 | av.在线天堂| 国产成人aa在线观看| 午夜福利18| 日本在线视频免费播放| 国产精品三级大全| 国产精品乱码一区二三区的特点| 午夜福利视频1000在线观看| 99国产极品粉嫩在线观看| 校园春色视频在线观看| 日韩三级伦理在线观看| 国产精品不卡视频一区二区| 亚洲高清免费不卡视频| 22中文网久久字幕| 成人亚洲精品av一区二区| 我的女老师完整版在线观看| 麻豆一二三区av精品| 免费观看人在逋| 三级男女做爰猛烈吃奶摸视频| 久久久国产成人免费| 亚洲自拍偷在线| 亚洲av电影不卡..在线观看| 亚洲熟妇中文字幕五十中出| 内射极品少妇av片p| 99riav亚洲国产免费| 男女啪啪激烈高潮av片| 国产91av在线免费观看| 九色成人免费人妻av| av在线亚洲专区| 国模一区二区三区四区视频| 嫩草影视91久久| 中文字幕免费在线视频6| 亚洲18禁久久av| 欧美日韩国产亚洲二区| 性色avwww在线观看| 此物有八面人人有两片| 直男gayav资源| 精品久久久久久久久av| 日韩精品中文字幕看吧| 亚洲国产色片| av国产免费在线观看| 成人美女网站在线观看视频| 观看美女的网站| 国产精品久久久久久久电影| 国产精品一二三区在线看| www.色视频.com| 日日摸夜夜添夜夜添小说| av福利片在线观看| 欧美成人a在线观看| 国语自产精品视频在线第100页| 亚洲av免费高清在线观看| 蜜臀久久99精品久久宅男| 直男gayav资源| 丰满乱子伦码专区| .国产精品久久| 狂野欧美白嫩少妇大欣赏| 成人国产麻豆网| 国产精品野战在线观看| 久久韩国三级中文字幕| 中文字幕av成人在线电影| 亚洲久久久久久中文字幕| 国产黄a三级三级三级人| 亚洲国产精品合色在线| 在线免费十八禁| 亚洲精品成人久久久久久| 淫妇啪啪啪对白视频| 一个人免费在线观看电影| 国产精品久久久久久久电影| 成人鲁丝片一二三区免费| 日韩欧美三级三区| 内射极品少妇av片p| 亚洲av免费高清在线观看| 成人三级黄色视频| 大又大粗又爽又黄少妇毛片口| 日日干狠狠操夜夜爽| 亚洲成人久久性| 欧美极品一区二区三区四区| 女生性感内裤真人,穿戴方法视频| 伦理电影大哥的女人| 国产成人aa在线观看| 国产精品av视频在线免费观看| 国产欧美日韩精品一区二区| 天天躁日日操中文字幕| 亚洲精品在线观看二区| 久久人妻av系列| 观看美女的网站| 精品一区二区三区人妻视频| 亚洲av电影不卡..在线观看| 国产精品日韩av在线免费观看| 亚洲经典国产精华液单| 秋霞在线观看毛片| 免费电影在线观看免费观看| 熟妇人妻久久中文字幕3abv| 日韩亚洲欧美综合| 午夜a级毛片| 久久久久久久久中文| 性色avwww在线观看| 国产精品福利在线免费观看| 欧美一级a爱片免费观看看| 一区二区三区四区激情视频 | 综合色av麻豆| 高清午夜精品一区二区三区 | 日本熟妇午夜| 国产欧美日韩一区二区精品| 精品国产三级普通话版| 亚洲精华国产精华液的使用体验 | 成人综合一区亚洲| 免费人成视频x8x8入口观看| 亚洲av中文av极速乱| 国产综合懂色| 亚洲av一区综合| 国产女主播在线喷水免费视频网站 | 此物有八面人人有两片| 国产综合懂色| 91在线精品国自产拍蜜月| 22中文网久久字幕| 又爽又黄a免费视频| 亚洲av一区综合| 成人毛片a级毛片在线播放| 久久精品国产亚洲av天美| av在线天堂中文字幕| 色哟哟哟哟哟哟| 九九爱精品视频在线观看| 中文字幕熟女人妻在线| 亚洲第一区二区三区不卡| 成熟少妇高潮喷水视频| 亚洲精品国产成人久久av| 亚洲国产高清在线一区二区三| 晚上一个人看的免费电影| a级毛片免费高清观看在线播放| 99视频精品全部免费 在线| 久久草成人影院| 久久精品综合一区二区三区| 中文亚洲av片在线观看爽| 欧美成人精品欧美一级黄| 女生性感内裤真人,穿戴方法视频| 校园春色视频在线观看| 欧美性猛交黑人性爽| 日本黄色视频三级网站网址| 亚洲av电影不卡..在线观看| 激情 狠狠 欧美| av在线蜜桃| 国产av一区在线观看免费| 欧美日韩乱码在线| 天天躁夜夜躁狠狠久久av| 真实男女啪啪啪动态图| 亚洲aⅴ乱码一区二区在线播放| 亚洲精品在线观看二区| 黄色欧美视频在线观看| 18禁在线无遮挡免费观看视频 | 国产高清三级在线| 少妇猛男粗大的猛烈进出视频 | 亚洲aⅴ乱码一区二区在线播放|