• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Mycosynthesis,characterization and antibacterial properties of AgNPs against multidrug resistant (MDR)bacterial pathogens of female infertility cases

    2015-05-16 00:52:22PonnusamyManogaranGopinath,GanesanNarchonai,DharumaduraiDhanasekaran

    Mycosynthesis,characterization and antibacterial properties of AgNPs against multidrug resistant (MDR)bacterial pathogens of female infertility cases

    Ponnusamy Manogaran Gopinath,Ganesan Narchonai, Dharumadurai Dhanasekaran*,Anandan Ranjani,Nooruddin Thajuddin
    Department of Microbiology,School of Life Sciences,Bharathidasan University,Tiruchirappalli 620 024,India

    ARTICLEINFO

    Article history:

    Received 29 March 2014

    Received in revised form

    15 July 2014

    Accepted 7 August 2014

    Available online 27 August 2014

    Multidrug resistance

    A Recently,biosynthesis of silver nanoparticles using bacteria,fungus and plants has emerged as a simple and viable alternative to more complex physical and chemical synthetic procedures.The present investigation explains rapid and extracellular synthesis of silver nanoparticles using fungus Fusarium oxysporum NGD and characterization of the synthesized silver nanoparticles using UV-Vis spectroscopy,scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction analysis.The size range of the synthesized silver nanoparticles was around 16.3-70 nm.The FTIR studies showed major peaks of proteins involved in the synthesis of silver nanoparticles.Further,antibacterial effect of the silver nanoparticles against multidrug resistant pathogens Enterobacter sp.ANT 02[HM803168],Pseudomonas aeruginosa ANT 04[HM803170],Klebsiella pneumoniae ANT 03[HM803169]and Escherichia coli ANT 01[HM803167]was tested using turbidometric assay at 10,20,30,40 μg AgNPs/ml alone and in combination with ampicillin using agar well diffusion assay.All the resistant bacteria were found to be susceptible to the antibiotic in the presence of the silver nanoparticles.

    ?2015 Shenyang Pharmaceutical University.Production and hosting by Elsevier B.V.All rights reserved.

    1. Introduction

    Infectious agents can impair several essential human functions,including reproduction.Microbes can interfere with thereproductive function in both sexes.Especially,bacterial infections have long been recognized in association with female infertility[1,2].Indeed,the treatment of bacterial infections is increasingly complicated because of their ability to developresistance to antimicrobial agents.This resulted in severe debilitating and even life-threatening local and systemic infections,thus demanding the search for new antibacterial agents[3].

    Presently,nanoscale materials have emerged as novel antimicrobial agents owing to their high surface area to volume ratio and their unique chemical and physical properties [4,5].Metal nanoparticles such as copper,zinc,titanium[6], magnesium,gold[7],and silver[8,9]have proved to be effective against a range of bacteria,viruses and eukaryotic microorganisms[10].Speci fi cally in the case of silver,the broad spectrum antimicrobialactivity encouragesitsuse in biomedical application,water and air puri fi cation,food production,cosmetics,clothing and numerous household products[11].

    Metalnanoparticles havebeenstudiedextensively because of their exclusive catalytic,optical,electronic,magnetic and antimicrobial properties[12,13].Recent studies have shown that nanoparticles-based antimicrobial formulations could act as an effective bactericidal material[14].Therefore a lot of research has been directed in fi nding out an inexpensive and environmental friendly method for nanoparticle synthesis.In accordance to the above,the present study is to synthesize silver nanoparticle using a soil fungus,and assess its antibacterial activity alone and in combination with ampicillin against multidrug resistant bacterial pathogens of female infertility cases.

    2. Materials and methods

    2.1. Collection of microbial strains

    Multidrug resistant bacterial isolates of female infertility cases(Enterobacter sp.ANT 02[HM803168],Pseudomonas aeruginosa ANT 04[HM803170],Klebsiella pneumoniae ANT 03 [HM803169]and Escherichia coli ANT 01[HM803167])were obtained from the Germplasm,Department of Microbiology, Bharathidasan University,Tiruchirappalli,India and maintained on nutrient agar slants.The isolates were tested against various groups of antibiotics in clinical practice to determine their antibiotic resistance[3].The fungus Fusarium oxysporum NGD was also obtained from the Germplasm.

    2.2. Preliminary screening of soil fungi for nanoparticle synthesis

    F.oxysporum NGD was cultured in 250 ml of sabouraud dextrose broth(SDB)at 28±2°C for 7 days at 200 rpm(pH-6.5). After incubation,the biomass was separated by fi ltration and washed in sterile distilled water to remove any medium components.The separated biomass(20 g)was then introduced into 200 ml of sterile distilled water and incubated for 3 days.After 3 days of incubation the clear cell free extract was collected by fi ltration and was used for nanoparticle synthesis.50 ml of AgNO3solution(1 mM fi nal concentration)was challenged with 50 ml of cell fi ltrate in a 250 ml Erlenmeyer conical fl ask and stirred constantly for 30 min.Control (without silver ions)was run along with the experimental fl asks.The ability of the fungito synthesize silver nanoparticles was determined visually based on change in colour of the reaction mixture[9,12].

    2.3. Characterization of AgNPs

    Since rapid reduction of silver ions in F.oxysporum NGD cell fi ltratewasnoticedvisiblythroughgradualchangeinthecolour of the fi ltrate,the reaction mixture was subjected to optical measurements using an UV-Vis spectrophotometer scanning range between 250 and 800 nm at the resolution of 1 nm. Scanning electron microscope(JEOL Model JSM-6390 LV)with secondary electron detectors at an operating voltage of 20 kV was used to record the images of synthesized AgNPs(dry powder).Energy-dispersive X-ray(EDX)spectroscopy analysis for the con fi rmation of elemental silver was carried out using Thermo Noran EDSattachmentequipped with SEM,JEOLModel JSM-6390LV.The size and the morphology of the AgNPs were examined using atomic force microscope(di CP-II Veeco USA). The dried powder of silver nanoparticles was used for X-ray diffraction(XRD)analysis.XRDpatternswererecordedonX'Pert Pro,PANaltyical,USA operating at 40 kV and a current of 30 mA withCuKaradiation(1=1.54A°).Thediffractedintensitieswere recordedfrom30to752θangles.FTIRspectrumofthesynthesis mixture was recorded on a PerkinElmer 1600 instrument in the range 400-4000 cm-1at a resolution of 4 cm-1.

    2.4. Antibacterial activity of AgNPs against multidrug resistant pathogens

    2.4.1. Preparation of MDR bacterial cultures

    The MDR Enterobacter sp.,P.aeruginosa,K.pneumoniae and E. coli were inoculated in sterile Luria Bertani broth(LB)and the broth was incubated at 37°C for 18 h.

    2.4.2. Antibacterial activity of AgNPs

    Effect of AgNPs on bacterial growth was determined in broth culture.To 50 ml LB broth,100 μl of bacterial culture was added,followed by the addition of silver nanoparticles suspensionrangingfrom 10to 40μg/mlforeach testorganism.All the fl asks were incubated at 37°C.Growth of Enterobacter sp., P.aeruginosa,E.coli and K.pneumoniae was indexed by measuring the optical density(OD)at λ=620 nm at regular intervals in UV-Vis spectrophotometer.The control was treated in a similar fashion without silver nanoparticles.The average triplicate value of growth curve was plotted between optical density and time.

    2.5. Effect of AgNP-ampicillin mixture on MDR bacteria

    The antibacterial activity of AgNPs in combination with ampicillin(10 μg/ml)was investigated by agar well diffusion method.Muller Hinton agar plates were inoculated separately with bacterial cultures namely Enterobacter sp.,P.aeruginosa,E. coli and K.pneumoniae at a concentration of 10-4to 10-5CFU/ ml using a sterile cotton swab and three wells(6 mm dia)were punched in each plate using sterile cork borer.100 μl each of ampicillin(10 μg/ml),silver nanoparticle suspension(20 μg/ ml)and mixture of AgNPs and ampicillin were added to agar wells.The plates were incubated at 37°C for 24 h and theantibacterial activity was measured as zone of inhibition.This procedure was repeated thrice.

    3. Results and discussion

    3.1. Synthesis and characterization of silver nanoparticles using F.oxysporum NGD

    The fungus F.oxysporum NGD showed rapid colour change in less than a minute and the colour intensity increased with time and became dark brown within 30 min.Appearance of brown colour is due to the surface plasmon resonance of silver nanoparticles.With the addition of AgNO3solution,the crude cell fi ltrate of F.oxysporum NGD changed from light yellow to brown within 3-7 min,whereas the control showed no colour change under the same experimental conditions (Fig.1).Thus the colour change of the reaction mixture clearly indicates the formation of AgNPs.Further the colour intensity of the reaction sustained even after 24 h of incubation,indicating that the particles were well dispersed in the aqueous medium,and there was no obvious aggregation [9,12].

    Bioreduction of silver ions into nanoparticles was further con fi rmed by spectrophotometric analysis.The UV absorption spectra of silver nanoparticles at different time intervals are presented in Fig.2A.A surface plasmon absorption band with a maximum at 425 nm,indicate the presence of spherical or roughly spherical AgNPs.The position and shape of the plasmon absorption depends on the particles,size and shape,and dielectric constant of the surrounding medium[15].Absorption band at 425 nm rapidly increased initially in 15 min time interval,later reaching a plateau phase after 30 min(Fig.2B), which indicated that the synthesis was completed within 30 min of incubation[16].

    Extracellular synthesis of silver nanoparticles by cell free fi ltrates of Aspergillus terreus[17],F.oxysporum[18],Fusarium acuminatum[13],Penicillium fellatum[19],Phytophthora infestans [20],Alternaria alternata[21],Agaricus bisporus[22]and Biopolarisnodulosa[23]has beendemonstrated.Though theactual mechanism involved in AgNP synthesis has not been worked out in this study,according to the earlier reports several proteins,free amino acids and NADH-dependent reductases[18] secreted by the fungus is responsible for the synthesis of nanoparticles.It could be noticed that in all the previous reports the reaction mixtures required 24 h-48 h for the reduction of the silver ions in the aqueous solution into nanoparticles.In the present study,the synthesis process initiated in few min and completed within 30 min.Therefore, this is the fi rst report on shortest time required to generate silver nanoparticles using fungi.

    The SEM micrographs of silver nanoparticles(5 mg)(Fig.3) were roughly spherical to oval in nature with a little aggregation.The aggregation of AgNPs occurred during drying process(lyophilization)which is required for XRD analysis as well as for antibacterial studies.Ultra sonication technique was employed to separate the aggregated particles prior to antibacterial studies.EDS analysis provided additional evidence for the reduction of silver ions to nanoparticles.The optical absorption peak(Fig.4)approximately at 3 keV is typical for the metallic silver nanocrystals[24].Throughout the scanning range of binding energies,no peak belonging to impurity was detected.The results indicated that the reaction product was composed of highly pure Ag nanoparticles.The spectrum shows strong signal for Ag along with weak oxygen and carbon peak,which may be originated from the biomolecules bound to the surface of silver nanoparticles.The topological images of the AgNPs are shown in Fig.5.The depth image of atomic force microscopy(AFM)(Fig.5B)shows the spherical arrangement of silver nanoparticles within the diameter range of 6.3-12.67 nm.The XRD pattern of silver nanoparticles were compared and interpreted with standard data of International Centre of Diffraction Data(ICDD).Three characteristic peaks for silver nanoparticles appeared at 38.1°, 44.3°and 64.4°2θ angle(Fig.6)which corresponds to energetically distinct sites based on atom density.It suggests that the prepared silver nanoparticles are biphasic in nature.The size range of the nanoparticles was calculated using Scherrer formula(D=0.94 λ/β Cosθ)which was foundto be 16.3-70 nm. The variation in the nanoparticles size range in AFM and XRD studies may due to the aggregation of particles in lyophilisation process.

    The functional groups mainly involved in the reduction of Ag+ions were predicted using FTIR spectroscopy(Fig.7).The absorption peaks of F.oxysporum cell fi ltrate(Fig.7B)located at 1092,1164,1240,1412,1630,2464,2572,2676 and 2778 cm-1in the regionof 500-3000cm-1areeitherred shiftedor increased or diminished in the spectrum of the synthesis mixture containing cell fi ltrate and AgNO3(Fig.7C).The distinct band at 1630 cm-1is assigned to the-NH2group[25]and the band intensity increased and shifted to 1636 cm-1,which indicates the formation of-NH3+groups due to the complexation of amino groups and carboxylic groups[26].During the silver nanoparticle synthesis,the relative intensity of peaks at 1092, 1164,1240,1412,and 2464 cm-1of cell fi ltrate are either diminished or disappeared.The bands at 1092 and 1164 cm-1are attributed to the vibration of C-O and C-OH stretch respectively[27,28].The peaks observed at 2572 and 2778 cm-1are assigned to the symmetric stretching of N-H/N+H2groups and the bands at 2464 and 1412 cm-1corresponds to the characteristic C-H and C-H2symmetric scissoring[29].The absorption peaks at 1240 and 2676 cm-1are due to the C-H stretch and O-H bending respectively[29].In Fig.7C,two new peaks appeared at 1111 and 2340 cm-1,which is assigned to rocking of amino acids NH3structure[30,31]and physisorbtion of CO2generated due to the decomposition of oxygen containing functional groups[32,33]respectively.The changes in the peak intensity and disappearance of peaks in spectrum of synthesis mixture is mainly due to the involvement of the biomolecules and their functional groups for the AgNPs synthesis and all these functional groups are recognized as the carbonyl groups and amide I band of proteins.On the whole,it is observed that the protein molecules of the fungus are mainly responsible for the synthesis of AgNPs. Earlier FTIR reports[34,35]prove the involvement of carbonyl groups present in the amino acid residues and peptides of proteins for the synthesis of AgNPs.These protein molecules may also play a signi fi cant role in the prevention of agglomeration and stabilization of the AgNPs in the aqueous medium by binding on to their surface and forming a protein coat[36].

    3.2. Antibacterial activity of synthesized silver nanoparticles

    The effectiveness of AgNPs on MDR bacterial strains were assessed by comparing bacterial growth rate under normal (control)and AgNPs treated(test)conditions.The lag,log, stationary and death phases were clearly represented in the control group but under treatment with various concentration of AgNPs(10,20,30 and 40 μg/ml),gradual decrease in the growth and lengthy log phase were recorded(Fig.8).This clearly states the concentration dependent inhibitory effect of AgNPs on MDR bacteria.Particularly,in Fig.8A and D there were no increase in the log phase of Enterobacter sp.and E.coli upto 12 h of incubation with 40 μg/ml of AgNPs,indicating complete inhibition of bacteria.Similarly,Fig.8B and C show diminution in the growth rate of P.aeruginosa and K. pneumoniaewhen increasing the AgNPsconcentration. Though silver nanoparticles are widely used in many antibacterial applications,the exact action of this metal on microbes is not clearly understood and is a debated topic.Quite a few mechanisms have been hypothesized that the AgNPs can cause cell lysis or growth inhibition.The proposed mechanisms are,(i)Silver nanoparticles have the ability to adhere to the bacterial cell wall and produces cracks and pits, through which the internal cell contents are released out[37], ultimately leading to structural loss and cell death[38].(ii) Silver ions released by the nanoparticles react with thiol groups(-SH)of bacterial enzymes and other cell membrane components to produce a stable S-Ag bonds or disul fi de bonds(R-S-S-R)[39,40].It has been proposed that the catalytic oxidation reaction of Ag+with the thiol group leads to inactivation or down regulation of 30 S ribosomal subunit protein,succinyl coenzyme A synthetase,maltose transporter (MalK),fructose bisphosphate adolase,transmembrane energy generation and ion transport,etc.This could possibly change the shape of cellular enzymes thereby affecting the cells function.(iii)Soft acid nature of silver eventually reacts with the cellular soft base components namely sulphur and phosphorus.During this reaction,the sulphur and phosphorus content of genomic DNA possibly gets affected by silvernanoparticles which would de fi nitely block DNA replication[41,42]and thus kills the bacteria.(iv)It has also been found that the nanoparticles can inhibit the signal transduction in bacteria by dephosphorylating the peptide substrates on tyrosine residues.All the above said actions of the nanoparticles could cause the cell death.However,the actual and most reliable mechanism is not fully understood or cannot be generalized.

    In thepresentstudy,we observedvaryinginhibitoryeffects of the AgNPs against P.aeruginosa,K.pneumoniae,Enterobacter sp.and E.coli.According to the reports,the inhibitory effect of AgNPs fl uctuates in different bacteria due to the variation in their capsular and cell wall composition,thickness of the S-layer or a combination of these.Likewise,the bacterial growth rate and its byproducts may also in fl uence the inhibitory activity of AgNPs.Thus we conclude that,an increasing concentration of AgNPs is required to achieve a higher inhibitory effect.

    3.3. Antibacterial effect of AgNPs and ampicillin(AMP) complex

    Development of ampicillin resistance among a variety of bacteria is due to hyper production of classical β-lactamases, synthesis of inhibitor-resistant TEM(IRT)β-lactamases,hyperproduction of chromosomal AmpC β-lactamase,OXA βlactamases and changes in membrane permeability.Resistance to antibiotics makes bacteria more dif fi cult and expensive to eradicate.Thus treatment with a combination of drugs is necessary to clear infections of resistant bacteria.

    Ampicillin molecule couples on the surface of silver nanoparticles due to synergistic effect producing AgNPs and ampicillin complex[43].This complex greaten the inhibitory effect against all the ampicillin resistant bacteria when ampicillin alone had no/little inhibitory effect on the test organisms and therefore the bacteria are considered to be resistant to the antibiotic.However,all the bacteria were found to be sensitive to AgNPs to varying extent upto 20 μg/ml dose.Addition of ampicillin in the presence of AgNPs slightly enhanced the inhibitory effect towards all the tested bacteria by an increase of 2-3 mm inhibition zone(Figs.9 and 10).Among the tested organisms Enterobacter sp.(Fig.9A)was found to be highly sensitive with larger inhibition zone when compared to P. aeruginosa(Fig.9B),K.pneumoniae(Fig.9C)and E.coli(Fig.9D).

    As pointed above,all the tested clinical pathogens showed resistance towards ampicillin either by producing β-lactamases or changes in their membrane permeability.While treating these MRD isolates with AgNPs-ampicillin complex, the AgNPs lyse the cell wall and causes the leakage of internal cellular material leading to death of the pathogen.On the other hand,ampicillin enters the cell through damages caused by AgNPs and results in irreversible inhibition of the enzyme transpeptidase which ultimately stops their cell wall synthesis.Thus the results clearly represents that the sensitivity of the MDR bacterial pathogens increased with AgNPs-ampicillin complex in comparison with AgNPs.

    4. Conclusion

    Silver nanoparticles have been synthesized using fungal extract and positively complexed with ampicillin in order to destroy the ampicillin resistant bacterial pathogens.Though AgNPs and ampicillin complex undoubtedly combat antibiotic resistance pathogens,further researches are required to fi nd out the exact mechanism of AgNPs and ampicillin complex formation to improve their inhibitory activity.Further investigations are required in this direction for the complete elimination of multidrug resistant pathogens using AgNPs as an adjuvant.

    Acknowledgements

    The authors acknowledge with thanks the Department of Science and Technology,Government of India,for providing the fi nancial assistance in the form of Research Fellowship under the DST-Promotion of University Research and Scienti fi cExcellence (PURSE)scheme (Ref.No.41891/E8/2010 dated 12.12.11)to P.M.Gopinath.

    We also thank University Grants Commission,Government of India for providing fi nancial assistance(Ref.No.41-1135/2012(SR)dated 26.06.2012).

    REFERENCES

    [1]Comhaire FH,Mahmoud AMA,Depuydt CE,et al. Mechanisms and effects of male genital tract infection on sperm quality and fertilizing potential:the andrologist's viewpoint.Hum Reprod Update 1999;5:393-398.

    [2]Khalili MB,Shari fi-Yazdi MK.The effect of bacterial infection on the quality of human^as spermatozoa.Iranian J Pub Health 2001;35:62-67.

    [3]Anchana Devi C,Ranjani A,Dhanasekaran D,et al. Surveillance of multidrug resistant bacteria pathogens from female infertility cases.Afr J Biotechnol 2013;12:4129-4134.

    [4]Kim JS,Kuk E,Yu KN,et al.Antimicrobial effects of silver nanoparticles.Nanomed Nanotech Biol Med 2007;3:95-101.

    [5]Morones JR,Elechiguerra JL,Camacho A,et al.The bactericidal effect of silver nanoparticles.Nanotechnology 2005;16:2346-2353.

    [6]Schabes-Retchkiman PS,Canizal G,Herrera-Becerra R,et al. Biosynthesis and characterization of Ti/Ni bimetallic nanoparticles.Opt Mater 2006;29:95-99.

    [7]Gu H,Ho PL,Tong E,et al.Presenting vancomycin on nanoparticles to enhance antimicrobial activities.Nano Lett 2003;3:1261-1263.

    [8]Dhanasekaran D,Latha S,Saha S,et al.Biosynthesis and antimicrobial potential of metal nanoparticles.Int J Green Nanotechnol 2011;3:72-82.

    [9]Dhanasekaran D,Latha S,Saha S,et al.Extracellular biosynthesis,characterisation and in-vitro antibacterial potential of silver nanoparticles using Agaricus bisporus.J Exp Nanosci 2013;8:579-588.

    [10]Gong P,Li H,He X,et al.Preparation and antibacterial activity of Fe3O4@Ag nanoparticles.Nanotechnology 2007;18:604-611.

    [11]Marambio-Jones C,Hoek EMV.A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment.J Nanopart Res 2010;12:1531-1551.

    [12]Duran N,Marcato PD,Alves OL,et al.Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains.J Nanobiotechnology 2005;3:1-7.

    [13]Ingle A,Gade A,Pierrat S,et al.Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria.Curr Nanosci 2008;4:141-144.

    [14]Gade AK,Bonde P,Ingle AP,et al.Exploitation of Aspergillus niger for synthesis of silver nanoparticles.J Biobased Mater Bio 2008;2:243-247.

    [15]Pal S,Tak YK,Song JM.Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle?A study of the gram-negative bacterium Escherichia coli.Appl Environ Microbiol 2007;73:1712-1720.

    [16]Gherbawy YA,Shalaby IM,El-sadek MSA,et al.The antifasciolasis properties of silver nanoparticles produced by Trichoderma harzianum and their improvement of the antifasciolasis drug triclabendazole.Int J Mol Sci 2013;14:21887-21898.

    [17]Li Y,Duan X,Qian Y,et al.Nanocrystalline silver particles: synthesis,agglomeration,and sputtering induced by electron beam.J Colloid Interface Sci 1999;209:347-349.

    [18]Ahmad A,Mukherjee P,Senapati S,et al.Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum.Colloid Surf B 2003;28:313-318.

    [19]Kathiresan K,Manivannan S,Nabeel MA,et al.Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment.Colloid Surf B 2009;71:133-137.

    [20]Thirumurugan G,Shaheedha SM,Dhanaraju MD.In vitro evaluation of antibacterial activity of silver nanoparticles synthesised by using Phytophthora infestans.Int J ChemTech Res 2009;1:714-716.

    [21]Gajbhiye M,Kesharwani J,Ingle A,et al.Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fl uconazole.Nanomed Nanotech Biol Med 2009;5:382-386.

    [22]Dhanasekaran D,Thangaraj R.Evaluation of larvicidal activity of biogenic nanoparticles against fi lariasis causing Culex mosquito vector.Asian Pac J Trop Dis 2013;3:174-179.

    [23]Saha S,Sarkar J,Chattopadhyay D,et al.Production of silver nanoparticles by a phytopathogenic fungus Bipolaris nodulosa and its antimicrobial activity.Dig J Nanomater Biostruct 2010;5:887-895.

    [24]Kalishwaralal K,Deepak V,Ramkumarpandian S,et al. Extracellular biosynthesis of silver nanoparticles by the culture supernatant of Bacillus licheniformis.Mater Lett 2008;62:4411-4413.

    [25]Serratosa JM,Johns WD,Shimoyama A.IR study of alkylammonium vermiculite complexes.Clay Clay Miner 1970;18:113.

    [26]Peniche C,Arguelles-Monal W,Davidenko N,et al.Selfcuring membranes of chitosan/PAA IPNs obtained by radical polymerization:preparation,characterization and interpolymer complexation.Biomaterials 1999;20:1869-1878.

    [27]Ahmad I,Jie MSFLK.Oleochemicals from isoricinoleic acid (Wrightia tinctoria seed oil).Ind Eng Chem Res 2008;47:2091-2095.

    [28]Galande C,Mohite AD,Naumov AV,et al.Quasi-molecular fl uorescence from graphene oxide.Sci Rep 2011;1:1-5.

    [29]Bright A,Devi TSR,Gunasekaran S.Spectroscopical vibrational band assignment and qualitative analysis of biomedical compounds with cardiovascular activity.Int J Chem Tech Res 2010;2:379-388.

    [30]Hodzic IM,Niketic SR.Synthesis and characterization of a novel(glycinato-N,O)yttrium(III)complex.J Serb Chem Soc 2001;66:331-334.

    [31]Malekfar R,Daraei A.Raman scattering and electrical properties of TGS:PCo(9%)crystal as ambient temperature IR detector.Acta Phys Pol A Gen Phys 2008;114:859.

    [32]Feng X,Matranga C,Vidic R,et al.A vibrational spectroscopic study of the fate of oxygen-containing functional groups and trapped CO2in single-walled carbon nanotubes during thermal treatment.J Phys Chem B 2004;108:19949-19954.

    [33]Matranga C,Chen L,Bockrath B,et al.Displacement of CO2by Xe in single-walled carbon nanotube bundles.Phys Rev B 2004;70:165416.

    [34]Balaji DS,Basavaraja S,Deshpande R,et al.Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus.Colloid Surf B 2009;68:88-92.

    [35]Mandal S,Gole A,Lala N,et al.Studies on the reversible aggregation of cysteine-capped colloidal silver particles interconnected via hydrogen bonds.Langmuir 2001;17:6262-6268.

    [36]Shaligram NS,Bule M,Bhambure R,et al.Biosynthesis of silver nanoparticles using aqueous extract from the compactin producing fungal strain.Process Biochem 2009;44:939-943.

    [37]Feng QL,Wu J,Chen GQ,et al.A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus.J Biomed Mater Res 2000;52:662-668.

    [38]Guggenbichler JP.The Erlanger silver catheter:in vitro results for antimicrobial activity.J Infect 1999;27:S24-9.

    [39]Davies RL,Etris SF.The development and functions of silver in water puri fi cation and disease control.Catal Today 1997;36:107-114.

    [40]Yamanaka M,Hara K,Kudo J.Bactericidal actions of a silver ion solution on Escherichia coli,studied by energy- fi ltering transmission electron microscopy and proteomic analysis. Appl Environ Microbiol 2005;71:7589-7593.

    [41]Klueh U,Wagner V,Kelly S,et al.Ef fi cacy of silver-coated fabric to prevent bacterial.colonization and subsequent device-based bio fi lm formation.J Biomed Mater Res 2000;53:621-631.

    [42]Fox CL,Modak SM.Mechanism of silver sulfadiazine action on burn wound infections.Antimicrob Agents Chemother 1974;5:582-588.

    [43]Brown AN,Smith K,Samuels TA,et al.Nanoparticles functionalized with ampicillin destroy multiple-antibioticresistant isolates of Pseudomonas aeruginosa and Enterobacter aerogenes and methicillin-resistant Staphylococcus aureus. Appl Environ Microbiol 2012;78:2768-2774.

    *Corresponding author.Bioprocess Technology Laboratory,Department of Microbiology,School of Life Sciences,Bharathidasan University,Tiruchirappalli 620 024,India.Tel.:+91 9486258493.

    E-mail addresses:dhansdd@gmail.com,pmg.bdu@gmail.com(D.Dhanasekaran).

    Peer review under responsibility of Shenyang Pharmaceutical University.

    http://dx.doi.org/10.1016/j.ajps.2014.08.007

    1818-0876/?2015 Shenyang Pharmaceutical University.Production and hosting by Elsevier B.V.All rights reserved.

    Silver nanoparticles

    Fusarium oxysporum

    AgNPs-Ampicillin complex Infertility

    亚洲一区中文字幕在线| 亚洲精品一区av在线观看| 99精品在免费线老司机午夜| 亚洲国产精品合色在线| 国产男靠女视频免费网站| 十八禁网站免费在线| 久久人妻熟女aⅴ| 母亲3免费完整高清在线观看| 后天国语完整版免费观看| 夜夜夜夜夜久久久久| 脱女人内裤的视频| 久久精品91蜜桃| 午夜a级毛片| 欧美日韩中文字幕国产精品一区二区三区 | 日日夜夜操网爽| 九色亚洲精品在线播放| av天堂在线播放| 国产精品二区激情视频| 一区二区三区精品91| 午夜久久久在线观看| 欧美人与性动交α欧美软件| 97碰自拍视频| 黄色视频,在线免费观看| 真人一进一出gif抽搐免费| 天堂影院成人在线观看| 夜夜看夜夜爽夜夜摸 | 老司机午夜十八禁免费视频| 午夜91福利影院| 少妇粗大呻吟视频| 女性生殖器流出的白浆| 欧美人与性动交α欧美精品济南到| 国产人伦9x9x在线观看| 日韩中文字幕欧美一区二区| 国产成年人精品一区二区 | 亚洲欧美精品综合久久99| 久久久久精品国产欧美久久久| 在线观看免费高清a一片| 国产亚洲精品久久久久久毛片| avwww免费| 黄频高清免费视频| 欧美中文日本在线观看视频| 精品久久久精品久久久| 国产三级在线视频| 亚洲七黄色美女视频| 国产单亲对白刺激| 不卡av一区二区三区| 新久久久久国产一级毛片| 国产一区二区三区在线臀色熟女 | 午夜免费成人在线视频| 欧美激情高清一区二区三区| 99热国产这里只有精品6| 怎么达到女性高潮| 欧美一区二区精品小视频在线| 男女床上黄色一级片免费看| 一级作爱视频免费观看| 国产精品电影一区二区三区| 99久久人妻综合| 美女高潮到喷水免费观看| 久久久国产成人免费| 精品一区二区三区av网在线观看| 激情视频va一区二区三区| 午夜免费观看网址| 男人操女人黄网站| 精品高清国产在线一区| 天天影视国产精品| 免费人成视频x8x8入口观看| 夫妻午夜视频| 久久久久久免费高清国产稀缺| a级片在线免费高清观看视频| 麻豆av在线久日| 国产精品 欧美亚洲| 激情在线观看视频在线高清| 一进一出好大好爽视频| 波多野结衣一区麻豆| av国产精品久久久久影院| 999精品在线视频| 99国产精品免费福利视频| 中文欧美无线码| 亚洲情色 制服丝袜| 国产亚洲av高清不卡| 日韩 欧美 亚洲 中文字幕| 高清黄色对白视频在线免费看| 欧美中文日本在线观看视频| 女同久久另类99精品国产91| 十八禁网站免费在线| av福利片在线| 精品久久久久久成人av| 日韩国内少妇激情av| 久久久久久免费高清国产稀缺| 亚洲成人精品中文字幕电影 | 久久午夜综合久久蜜桃| 成人av一区二区三区在线看| 亚洲欧美日韩无卡精品| 丝袜美足系列| 国产午夜精品久久久久久| 大香蕉久久成人网| 欧美av亚洲av综合av国产av| 国产又爽黄色视频| 久久狼人影院| 丰满的人妻完整版| 国产成人精品在线电影| a级毛片在线看网站| 性少妇av在线| 淫妇啪啪啪对白视频| av电影中文网址| 777久久人妻少妇嫩草av网站| 欧美 亚洲 国产 日韩一| 久久午夜亚洲精品久久| 成在线人永久免费视频| 两个人免费观看高清视频| 亚洲精品国产精品久久久不卡| 淫秽高清视频在线观看| 久久久精品欧美日韩精品| 日韩欧美一区视频在线观看| 精品久久久久久久毛片微露脸| 宅男免费午夜| 精品国产美女av久久久久小说| 国产成人系列免费观看| 国产精品免费视频内射| 日韩精品青青久久久久久| 国产av一区二区精品久久| 久久久国产精品麻豆| 免费高清视频大片| 久久中文看片网| 极品教师在线免费播放| 99精国产麻豆久久婷婷| 午夜福利欧美成人| 午夜免费成人在线视频| 欧美+亚洲+日韩+国产| 午夜免费成人在线视频| 男女做爰动态图高潮gif福利片 | 黑人巨大精品欧美一区二区mp4| 国产精品香港三级国产av潘金莲| 国产主播在线观看一区二区| 天天躁夜夜躁狠狠躁躁| 亚洲人成网站在线播放欧美日韩| 看免费av毛片| 亚洲一区二区三区不卡视频| 亚洲精品中文字幕在线视频| av在线播放免费不卡| av视频免费观看在线观看| cao死你这个sao货| 两人在一起打扑克的视频| 精品熟女少妇八av免费久了| 黄色成人免费大全| 久久久久国产精品人妻aⅴ院| 999久久久国产精品视频| 精品一品国产午夜福利视频| 国产精品九九99| 国产精品美女特级片免费视频播放器 | 国产国语露脸激情在线看| 亚洲精品国产一区二区精华液| 美女福利国产在线| 在线观看免费视频日本深夜| 日本 av在线| 一级,二级,三级黄色视频| 国产高清国产精品国产三级| 在线十欧美十亚洲十日本专区| 国产免费男女视频| 丝袜美足系列| 欧美日韩精品网址| 亚洲精品美女久久久久99蜜臀| 国产国语露脸激情在线看| 亚洲va日本ⅴa欧美va伊人久久| 一区二区日韩欧美中文字幕| 女警被强在线播放| 国产精品一区二区精品视频观看| 90打野战视频偷拍视频| 性少妇av在线| 免费在线观看日本一区| 中文字幕最新亚洲高清| 免费av中文字幕在线| 国产精品久久久久成人av| 久久狼人影院| 国产精品美女特级片免费视频播放器 | 制服人妻中文乱码| 91成人精品电影| 欧美激情高清一区二区三区| 亚洲五月天丁香| 国产精品成人在线| 男人操女人黄网站| 中文字幕精品免费在线观看视频| a级片在线免费高清观看视频| 国产成人av教育| 激情在线观看视频在线高清| 91成年电影在线观看| 国产单亲对白刺激| 国产精品综合久久久久久久免费 | 精品人妻在线不人妻| 国产野战对白在线观看| 黑人巨大精品欧美一区二区蜜桃| 久久久精品欧美日韩精品| 午夜久久久在线观看| 妹子高潮喷水视频| 久久99一区二区三区| 亚洲情色 制服丝袜| 涩涩av久久男人的天堂| a在线观看视频网站| 国产精品电影一区二区三区| 男女午夜视频在线观看| 亚洲男人天堂网一区| a级片在线免费高清观看视频| 19禁男女啪啪无遮挡网站| 国产精品 国内视频| 久久人人爽av亚洲精品天堂| 波多野结衣av一区二区av| 视频在线观看一区二区三区| 精品久久久精品久久久| 国产91精品成人一区二区三区| x7x7x7水蜜桃| 亚洲中文字幕日韩| 精品免费久久久久久久清纯| 国产成人一区二区三区免费视频网站| 国产区一区二久久| 国内久久婷婷六月综合欲色啪| 午夜91福利影院| 在线观看免费视频日本深夜| 久久亚洲精品不卡| 国产精品av久久久久免费| 久久性视频一级片| 人妻丰满熟妇av一区二区三区| 老司机深夜福利视频在线观看| 亚洲专区中文字幕在线| 国产精品九九99| 69精品国产乱码久久久| av网站在线播放免费| 女性被躁到高潮视频| 免费看a级黄色片| 亚洲av成人av| 久久久久国内视频| 婷婷丁香在线五月| 乱人伦中国视频| 久久天躁狠狠躁夜夜2o2o| 国产精品野战在线观看 | 亚洲男人的天堂狠狠| 老司机靠b影院| а√天堂www在线а√下载| 91老司机精品| 两个人免费观看高清视频| 精品国产一区二区久久| 丝袜在线中文字幕| 中亚洲国语对白在线视频| 美女福利国产在线| 十八禁网站免费在线| 国产亚洲欧美精品永久| 午夜影院日韩av| tocl精华| 一级a爱视频在线免费观看| 亚洲av日韩精品久久久久久密| 久久伊人香网站| 久久人人97超碰香蕉20202| 久久精品成人免费网站| 曰老女人黄片| 欧美日韩亚洲综合一区二区三区_| 久久影院123| 亚洲国产精品sss在线观看 | 夜夜看夜夜爽夜夜摸 | 久久久久久久久中文| 亚洲精品久久成人aⅴ小说| 免费在线观看黄色视频的| 一级黄色大片毛片| 日韩av在线大香蕉| 欧美 亚洲 国产 日韩一| 国产三级黄色录像| 国产在线精品亚洲第一网站| 精品国产美女av久久久久小说| 最新在线观看一区二区三区| 18禁观看日本| 两性夫妻黄色片| 黄色毛片三级朝国网站| 色婷婷久久久亚洲欧美| 老汉色∧v一级毛片| 男人的好看免费观看在线视频 | 国产成人欧美在线观看| 12—13女人毛片做爰片一| 中亚洲国语对白在线视频| 日韩免费高清中文字幕av| 欧美黑人欧美精品刺激| 国内久久婷婷六月综合欲色啪| 村上凉子中文字幕在线| 亚洲五月婷婷丁香| 国产精品野战在线观看 | 麻豆av在线久日| 国产成人av教育| 久久久久久久久中文| 黄片小视频在线播放| 亚洲第一欧美日韩一区二区三区| 神马国产精品三级电影在线观看 | 国产精品综合久久久久久久免费 | 女警被强在线播放| 久久精品亚洲熟妇少妇任你| 日本五十路高清| 黄片小视频在线播放| 欧美日韩亚洲综合一区二区三区_| 婷婷丁香在线五月| 亚洲国产精品999在线| 国产成人av教育| 动漫黄色视频在线观看| 久久精品成人免费网站| 亚洲欧美精品综合一区二区三区| 久久人妻福利社区极品人妻图片| 欧美日韩国产mv在线观看视频| 男女床上黄色一级片免费看| 亚洲情色 制服丝袜| 国产野战对白在线观看| 香蕉丝袜av| 亚洲人成伊人成综合网2020| 可以在线观看毛片的网站| 国产精品1区2区在线观看.| 91字幕亚洲| 淫秽高清视频在线观看| 91精品国产国语对白视频| 岛国视频午夜一区免费看| 国产精品 欧美亚洲| 国产又爽黄色视频| 亚洲欧美精品综合久久99| 免费看a级黄色片| 日韩有码中文字幕| 国产精品99久久99久久久不卡| 人人妻人人爽人人添夜夜欢视频| 一级,二级,三级黄色视频| 熟女少妇亚洲综合色aaa.| 免费在线观看视频国产中文字幕亚洲| 伊人久久大香线蕉亚洲五| 一个人免费在线观看的高清视频| 精品高清国产在线一区| 亚洲av日韩精品久久久久久密| 我的亚洲天堂| 免费高清视频大片| av国产精品久久久久影院| 亚洲av美国av| 国产人伦9x9x在线观看| 国产91精品成人一区二区三区| 可以免费在线观看a视频的电影网站| 国产精品国产高清国产av| 国产精品久久久av美女十八| 中文字幕另类日韩欧美亚洲嫩草| 精品久久蜜臀av无| 丁香欧美五月| 人妻久久中文字幕网| 亚洲av成人不卡在线观看播放网| 国产麻豆69| 女人被躁到高潮嗷嗷叫费观| 久9热在线精品视频| 国产99白浆流出| 在线观看午夜福利视频| 亚洲五月色婷婷综合| av网站免费在线观看视频| 在线观看舔阴道视频| 午夜福利欧美成人| 男女之事视频高清在线观看| 99热国产这里只有精品6| 午夜成年电影在线免费观看| 一区二区三区激情视频| 日韩大码丰满熟妇| 精品少妇一区二区三区视频日本电影| a在线观看视频网站| 在线观看66精品国产| 亚洲国产欧美一区二区综合| 一级黄色大片毛片| 男人的好看免费观看在线视频 | av有码第一页| 欧美日韩视频精品一区| 国产精品一区二区免费欧美| 色哟哟哟哟哟哟| 久久中文字幕一级| 国产精品乱码一区二三区的特点 | 亚洲成a人片在线一区二区| 神马国产精品三级电影在线观看 | 啦啦啦免费观看视频1| 亚洲第一欧美日韩一区二区三区| 国产三级在线视频| 最近最新免费中文字幕在线| 中出人妻视频一区二区| 美女国产高潮福利片在线看| 国产真人三级小视频在线观看| 亚洲色图 男人天堂 中文字幕| 999久久久精品免费观看国产| 一边摸一边抽搐一进一小说| 精品国产超薄肉色丝袜足j| 久久久久国内视频| 亚洲熟女毛片儿| 日韩人妻精品一区2区三区| 午夜激情av网站| 日日干狠狠操夜夜爽| 欧美 亚洲 国产 日韩一| 国产一区二区激情短视频| 欧美日韩视频精品一区| 亚洲在线自拍视频| 女性被躁到高潮视频| 精品电影一区二区在线| 黑丝袜美女国产一区| 国产激情欧美一区二区| 90打野战视频偷拍视频| 久久青草综合色| 老汉色av国产亚洲站长工具| 中文字幕高清在线视频| videosex国产| 亚洲午夜理论影院| 国产有黄有色有爽视频| 手机成人av网站| 精品福利永久在线观看| 日韩精品中文字幕看吧| 久久精品国产清高在天天线| 51午夜福利影视在线观看| 色综合欧美亚洲国产小说| 亚洲成人免费电影在线观看| 日本免费a在线| 欧美精品啪啪一区二区三区| 麻豆av在线久日| 中文亚洲av片在线观看爽| 中文欧美无线码| 每晚都被弄得嗷嗷叫到高潮| 无人区码免费观看不卡| 男女午夜视频在线观看| 亚洲avbb在线观看| 国产精品免费一区二区三区在线| 国产在线精品亚洲第一网站| av有码第一页| 精品久久久久久久久久免费视频 | 国产一卡二卡三卡精品| 99热国产这里只有精品6| 欧美人与性动交α欧美软件| av国产精品久久久久影院| 亚洲第一av免费看| 日本vs欧美在线观看视频| 午夜两性在线视频| 日本a在线网址| 男女高潮啪啪啪动态图| 亚洲全国av大片| 欧美激情高清一区二区三区| 欧美最黄视频在线播放免费 | 国产精品永久免费网站| 免费在线观看完整版高清| 国产日韩一区二区三区精品不卡| 欧美激情极品国产一区二区三区| 国产熟女xx| 多毛熟女@视频| 欧美国产精品va在线观看不卡| 欧美午夜高清在线| 桃色一区二区三区在线观看| 97人妻天天添夜夜摸| 成在线人永久免费视频| 美女国产高潮福利片在线看| 亚洲精华国产精华精| 亚洲欧美精品综合一区二区三区| 亚洲色图 男人天堂 中文字幕| 大型黄色视频在线免费观看| 国产单亲对白刺激| 一区福利在线观看| 丰满人妻熟妇乱又伦精品不卡| 欧美黑人精品巨大| 久久影院123| 19禁男女啪啪无遮挡网站| 天堂影院成人在线观看| 新久久久久国产一级毛片| 亚洲一区二区三区欧美精品| 真人做人爱边吃奶动态| 午夜免费观看网址| 久久久国产一区二区| 日韩欧美一区视频在线观看| 人人妻人人添人人爽欧美一区卜| 日韩视频一区二区在线观看| 欧美日韩av久久| 两性夫妻黄色片| 日韩欧美国产一区二区入口| av网站在线播放免费| 18禁国产床啪视频网站| 窝窝影院91人妻| 久久中文字幕一级| 久久国产精品影院| 99热国产这里只有精品6| 亚洲自拍偷在线| 日本wwww免费看| 丰满饥渴人妻一区二区三| 男女之事视频高清在线观看| 欧美久久黑人一区二区| 精品一区二区三卡| 亚洲欧美激情综合另类| avwww免费| 精品一区二区三区av网在线观看| 国产精品爽爽va在线观看网站 | 国产成人精品无人区| 黄网站色视频无遮挡免费观看| bbb黄色大片| 一级a爱片免费观看的视频| 国产人伦9x9x在线观看| 国产免费现黄频在线看| 99国产精品99久久久久| 国产精品二区激情视频| 高清在线国产一区| 国产野战对白在线观看| 欧美日韩一级在线毛片| 国产无遮挡羞羞视频在线观看| 日韩高清综合在线| 亚洲精品中文字幕在线视频| 女人精品久久久久毛片| 国产精品久久久人人做人人爽| 午夜免费鲁丝| 精品乱码久久久久久99久播| 真人做人爱边吃奶动态| 啪啪无遮挡十八禁网站| 少妇粗大呻吟视频| 极品人妻少妇av视频| 国产高清激情床上av| 欧美最黄视频在线播放免费 | 黄色丝袜av网址大全| 在线观看一区二区三区| 97超级碰碰碰精品色视频在线观看| 精品电影一区二区在线| 在线观看免费日韩欧美大片| 一二三四在线观看免费中文在| 亚洲黑人精品在线| 欧美日韩亚洲高清精品| 成熟少妇高潮喷水视频| 亚洲熟妇熟女久久| 欧美人与性动交α欧美软件| 国产色视频综合| 午夜影院日韩av| 欧美大码av| 国产精品自产拍在线观看55亚洲| 一级黄色大片毛片| 精品一区二区三区四区五区乱码| av欧美777| 亚洲精品av麻豆狂野| 亚洲国产精品一区二区三区在线| 999久久久精品免费观看国产| 电影成人av| 国产精品国产高清国产av| 日本免费a在线| 好看av亚洲va欧美ⅴa在| 黄色视频不卡| 免费一级毛片在线播放高清视频 | 无人区码免费观看不卡| 黄色女人牲交| 久久 成人 亚洲| 国产精品久久久久久人妻精品电影| 999久久久精品免费观看国产| 在线av久久热| 黄片小视频在线播放| 女人爽到高潮嗷嗷叫在线视频| 亚洲国产欧美一区二区综合| 成人国产一区最新在线观看| 成人18禁在线播放| 国产一区二区三区在线臀色熟女 | 交换朋友夫妻互换小说| 手机成人av网站| 国产伦人伦偷精品视频| 欧美人与性动交α欧美软件| 精品国产乱码久久久久久男人| 欧美乱色亚洲激情| 母亲3免费完整高清在线观看| 亚洲专区中文字幕在线| 免费av中文字幕在线| 亚洲中文av在线| 国产精品98久久久久久宅男小说| 国产成人一区二区三区免费视频网站| 丰满的人妻完整版| 搡老熟女国产l中国老女人| 免费看十八禁软件| 欧美日本亚洲视频在线播放| 欧美大码av| 中文字幕另类日韩欧美亚洲嫩草| 国产无遮挡羞羞视频在线观看| 老司机午夜福利在线观看视频| 免费高清视频大片| 亚洲av成人一区二区三| 香蕉丝袜av| 欧美日韩瑟瑟在线播放| 欧美在线一区亚洲| 午夜激情av网站| 麻豆av在线久日| 欧美日韩黄片免| 国产精品美女特级片免费视频播放器 | 日本免费一区二区三区高清不卡 | 在线观看66精品国产| 日韩一卡2卡3卡4卡2021年| 在线永久观看黄色视频| 国产亚洲精品综合一区在线观看 | 国产成人av激情在线播放| 十八禁网站免费在线| 国产激情欧美一区二区| 亚洲av日韩精品久久久久久密| 搡老熟女国产l中国老女人| 男女下面插进去视频免费观看| 99久久久亚洲精品蜜臀av| 欧洲精品卡2卡3卡4卡5卡区| 国产精品自产拍在线观看55亚洲| 久久精品91蜜桃| 精品日产1卡2卡| 国产免费现黄频在线看| 亚洲三区欧美一区| 亚洲欧美精品综合久久99| 久久久久久久午夜电影 | 热99re8久久精品国产| 人人妻,人人澡人人爽秒播| 欧美黄色淫秽网站| av在线播放免费不卡| 亚洲国产中文字幕在线视频| 午夜免费观看网址| 搡老熟女国产l中国老女人| 如日韩欧美国产精品一区二区三区| 国产不卡一卡二| 91精品国产国语对白视频| 国产成人影院久久av| 久久人人精品亚洲av| 国产高清videossex| 欧美激情高清一区二区三区| 99久久久亚洲精品蜜臀av| 在线播放国产精品三级| 国产亚洲精品久久久久5区| 纯流量卡能插随身wifi吗| 国产精品 欧美亚洲| 中文字幕另类日韩欧美亚洲嫩草| 欧美一区二区精品小视频在线|