白 婧, 李永祥(西北師范大學 數(shù)學與統(tǒng)計學院, 甘肅 蘭州 730070)
?
含一階導數(shù)項的三階周期邊值問題解的存在唯一性
白 婧, 李永祥*
(西北師范大學 數(shù)學與統(tǒng)計學院, 甘肅 蘭州 730070)
三階常微分方程的周期邊值問題一直是常微分方程研究的熱點.研究非線性項含一階導數(shù)項的三階周期邊值問題
三階周期邊值問題; 存在性與唯一性; Leray-Schauder不動點定理
本文利用Leray-Schauder不動點定理,討論了三階周期邊值問題
(1)
解的存在唯一性.其中I=[0,ω],f:I×R2→R連續(xù).
三階常微分方程周期邊值問題是微分方程中人們關注的問題,在這方面已有很多研究成果,見文獻[1-14].A. Cabada[1]用上下解方法獲得了三階周期邊值問題
u?(t)=f(t,u(t)),a≤t≤b,
u(i)(a)-u(i)(b)=λi,i=0,1,2
(2)
解的存在性.其中f為Carathéodory函數(shù),a、b、λi∈R.L. Kong[2]等利用Schauder不動點定理考慮了三階周期邊值問題
f滿足下列條件:
(A1)f(t,u)為[0,2π]×(0,+∞)上的非負函數(shù),并且f(t,u)在[0,2π]上可積;
(A2) 對?t∈[0,2π],u>0,f(t,u)不增且滿足
u?(t)+αu″(t)+βu′(t)=
f(t,u(t)),t∈[0,2π],
(4)
其中α、β為正常數(shù),在滿足特定的條件下,利用錐上的Krasnoselskii不動點定理,得出方程(4)正周期解的存在性.
在上述文獻中非線性均不含導數(shù)項,本文在非線性含有一階導數(shù)項的情形下,利用Leray-Schauder不動點定理得到方程(1)解的存在唯一性.
對?h∈L2(I),a0,a1≠0,考慮三階線性周期邊值問題
在文獻[8]中有:
引理 1 假設如下條件成立
|k∈Z}=?,
則線性周期邊值問題(5)有唯一解u:=Th∈W3,2(I),且解算子T:L2(I)→W3,2(I)為線性全連續(xù)算子.
又由嵌入W3,2(I)W1,2(I)的緊性,則T:L2(I)→W1,2(I)為線性全連續(xù)算子.
W1,2(I)中按范數(shù)
‖
構成Banach空間,為方便起見,用X表示該Banach空間.
引理 2 設a0,a1≠0,則線性周期邊值問題(5)的解算子T:L2(I)→X的范數(shù)滿足
‖T‖L(L2(I),X)≤M,
其中
(6)
其中
且有Parseval等式
成立.因此
u=Th∈W3,2(I)
也可展為Fourier級數(shù)
(7)
所以
u?
從而
u?(t)+a1u′(t)+a0u(t)=
(8)
由Fourier展式的唯一性
(9)
所以
(10)
因此,‖T‖L(L2(I),X)≤M.
引理 3[9](Leray-Schauder不動點定理) 設F:X→X全連續(xù),若方程簇
λF(x)=x, 0<λ<1
的解集在X中有界,則F在X中有不動點.
定理 1 假設下列條件成立:
(H1) 存在常數(shù)α0、α1≥0及C>0,使得
(H2)M(α0+α1)<1;
則周期邊值問題(1)至少存在一個解.
證明 令
F(u)(t)=f(t,u(t),u′(t))+
a1u′(t)+a0u(t),
(11)
則F:X→L2(I)連續(xù),把有界集映為有界集.因此,復合算子A=T°F:X→X為全連續(xù)算子.根據(jù)算子T的定義,三階周期邊值問題(1)的解等價于算子A的不動點.對A應用Leray-Schauder不動點定理,考慮方程簇
u=λAu, 0<λ<1,
(12)
要證同倫簇方程的解集在X中有界.
設u∈X為方程簇(12)中某個方程的解,則
u=T(λF(u))
為
h=λF(u)
相應的線性方程(5)的解.由假設條件(H1)得如下的范數(shù)估計
(13)
所以
‖u‖X=‖Th‖X≤‖T‖L(L2(I),X)‖h‖2≤
M‖h‖2 (14) 故 (15) 因此,同倫簇方程(12)的解集在X中有界.由引理3中Leray-Schauder不動點定理知,算子A在X中存在不動點u,u為三階周期邊值問題(1)的解. 下面討論三階周期邊值問題(1)解的存在唯一性.為此,需加強條件(H1)為(H1)′存在常數(shù)α0、α1≥0,使得 (16) 定理 2 假設條件(H1)′、(H2)成立,則三階周期邊值問題(1)存在唯一解. 證明 由定理1知三階周期邊值問題(1)至少存在一個解.設u1、u2為三階周期邊值問題(1)的2個解.令 u=u2-u1, 則 u=T(F(u2)-F(u1)) 為 h=F(u2)-F(u1) 對應的線性周期邊值問題(5)的解.因此,由引理1及假設條件(H1)′可得 (α0+α1)‖u‖X. (17) 所以 ‖u2-u1‖X=‖T(F(u2)-F(u1))‖X≤ ‖T‖L(L2(I),X)‖F(xiàn)(u2)-F(u1)‖2≤ M(α0+α1)‖u2-u1‖X, (18) 從而 ‖u2-u1‖X=0, 即 u2=u1. 所以周期邊值問題(1)存在唯一解. [1] Cabada A. The method of lower and upper solutions for second, third, fouth and higher order boundary value problems[J]. J Math Anal Appl,1994,185:302-320. [2] Kong L, Wang S, Wang J. Positive solution of a singular nonlinear third-order periodic boundary value problem [J]. J Comput Appl Math,2001,132:247-253. [3] Sun J, Liu Y. Multiple positive solutions of sigular third-order periodic boundary value problem [J]. Acta Math Sci,2005,25:81-88. [4] Feng Y. On the exixtence and multiplicity of positive periodic solutions of a nonlinear third-order equation[J]. Appl Math lett,2009,22:1220-1224. [5] Chu J, Zhou Z. Positive solutions for singular non-linear third order periodic boundary value problems[J]. Nonlinear Anal,2006,64:1528-1542. [6] Li Y. Positive periodic solutions for fully third-order ordinary differential equations [J]. Comput Appl Math,2010,59:3464-3471. [7] 姚慶六. 變系數(shù)三階周期邊值問題的正解[J]. 吉首大學學報:自然科學版,2010,31(6):9-13. [8] Li Y. Existence and uniqueness for higher order periodic boundary value problem under spetral separarion conditions[J]. J Math Anal Appl,2006,322:530-539. [9] Ren J L, Cheng Z B, Chen Y L. Existence results of periodic solutions for third order nonlinear sigular differential equation [J]. Math Nach,2013,286:1022-1042. [10] Cheng Z B. Exixtence of positive periodic solutions for third-order differential equation with strong singularity[J]. Adv Difference Equ,2014,162:1-12. [11] Cheng Z B, Ren J L. Existence of positive periodic solution for variable-coefficient third order differential equation with singularity[J]. Math Meth Appl Sci,2014,37:2281-2289. [12] 李小龍. Banach空間非線性三階周期邊值問題的正解[J]. 應用數(shù)學,2013,26(3):652-657. [13] Wang Y, Lian H, Ge W. Periodic solutions for a second order nonlinear funtional differential equation[J]. Appl Math Lett,2007,20:110-115. [14] Li Y H, Zhang X Y. Multiple positive solutions of boundary value problems for system of nonlinear third-order differential equations[J]. J Math Res Appl,2013,3:321-329. [15] Chen L, Hu L G, Ma X D. Positive solutions to singular eigenvale problems for third-order differential equations[J]. Acta Anal Funct Appl,2012,14:377-387. [16] Deimling K. Nonlinear Functional Analysis[M]. Berlin:Springer-Verlag,1985. 2010 MSC:34A12 (編輯 余 毅) Existence and Uniqueness Result for Third-order Periodic Boundary Value Problem with the First Derivatives BAI Jing, LI Yongxiang Third-order periodic boundary value problem has always been the hot of the ordinary differential equation. In this paper, we discuss the solvability of the third-order periodic boundary value problem with nonlinear termu′,u?(t)=f(t,u(t),u′(t)),0≤t≤ω,u(i)(0)=u(i)(ω),i=0,1,2, wheref:[0,ω]× R2→ R is a continuous function. Using the method of Fourier analysis and the perturbation technique of nonlinear term, the existence and uniqueness of solution are obtained by Leray-Schauder fixed point theorem. Since many former studies have focused on nonlinear term without derivative, our results generalize the previous conclusions. third order periodic boundary value problem; existence and uniqueness; Leray-Schauder fixed point theorem 2015-03-30 國家自然科學基金(11261053)和甘肅省自然科學基金(1208R-JZA129) O175.8 A 1001-8395(2015)06-0834-04 10.3969/j.issn.1001-8395.2015.06.008 *通信作者簡介:李永祥(1963—),男,教授,主要從事非線性泛函分析的研究,E-mail:liyx@nwnu.edu.cn 其中,f:[0,ω]×R2→R連續(xù),通過Fourier分析的方法及非線性項的擾動技巧,利用Leray-Schauder不動點定理得出解的存在性與唯一性.之前的許多研究主要集中在非線性項不含導數(shù)項的情形,對之前所得結論進行了推廣.
(CollegeofMathematicsandStatistics,NorthwestNormalUniversity,Lanzhou730070,Gansu)