• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An Analytical Model of Ballistic Impact on Light Ceramic/Metal Lightweight Armours

    2015-05-02 09:29:26HOUHailiangZHONGQiangZHUXi
    船舶力學(xué) 2015年12期
    關(guān)鍵詞:背板彈體海量

    HOU Hai-liang,ZHONG Qiang,ZHU Xi

    (College of Naval Architecture and power,Naval Univ.of Engineering,Wuhan 430033,China)

    An Analytical Model of Ballistic Impact on Light Ceramic/Metal Lightweight Armours

    HOU Hai-liang,ZHONG Qiang,ZHU Xi

    (College of Naval Architecture and power,Naval Univ.of Engineering,Wuhan 430033,China)

    To explore the design method of light ceramic composite armor,an approximate analytical model of ballistic impact on ceramic/metal composite armor focused on thin back plate and dishingshearing-petal failure is proposed,based on response characteristics experimental investigation and analysis of the response characteristics.The model takes the projectile’s erosion failure and ceramic fragments out of bullet surface into account,moving in the direction of lateral and the anti-impacting to get the dynamic impacting response and failure in the ceramic/metal composite armor metal back panel and formula of ballistic limit velocity of the ceramic/metal composite armor and calculation. Model analysis results are in good agreement with those obtained with the test results.

    explosion mechanics;bullet proof model;high speed fragments; ceramic composite armor;deformation and energy absorption

    0 Introduction

    As ceramic materials are widely used in the design of protective armor for the protection of middle and high speed impact,the impact response characteristics of ceramic materials have been extensively and in-depthly studied[1].However,little energy will be absorbed in the penetration process due to the brittleness and low tensile strength of the ceramic.In the practical applications,ceramic as panels and back panel made of metal materials or fiber-reinforced composite materials are combined to form composite armor structures such as ceramic/metal, ceramic/composite materials combinations to improve its ballistic performance[2].As metal materials have high strength,better ductility and other features,they can provide a rigid support for ceramic panels to the benefit of mushrooming,eroding,fragmenting projectiles and reducing penetration performance,firstly;Then,they can make full deformation to absorb kinetic energy[3]of the projectile.

    There are three different investigation approaches can be followed:the empirical method, numerical simulation and analytical modelling.The empirical method is the most widely used, but it costs too much,and its results are only valid for the specific projectile and target systems.The numerical simulations method requires not only high performance computers to calculate for a long time,but also a lot of material parameters difficult to be determined.So the theoretical method has become an important mean in the ballistic performance research of lightweight ceramic composite armor,by assuming some hypotheses which simplify the actual mechanisms of the penetration process[2].Now,a series of theoretical analytical models to describe lightweight ceramic/metal composite armor penetration process have been proposed.Such as ballistic limit estimation model of Florence[4-5],analytical models by Reijer[6]which consider the erosion and mushrooming of projectile and different backplate deformation modes,as well as analytical models of the constitutive behavior of ceramic powders after fragmentation of ceramic materials;analytical models proposed by Zaera et al[7]used in the ceramic/metal composite armor on the front and oblique shocks,and so on.The stress wave propagation was ignored in all of these models,and the impact process was divided into several time periods to respectively analyse the impulse response of ceramic panel and back metal panel.

    Based on the experimental and analytical results of ballistic impact characteristic of ceramic/metal composite armor in Ref.[3],a theoretical analytical model of dynamic response under the action of impact load was proposed in this paper,and which is verified by experiment.

    1 The model hypothesis

    The initial state of ceramic/metal composite armor under the impact of high speed fragments is shown in Fig.1.According to its responses characteristic,ignoring stress wave propagation process,the impact process can be divided into two stages.The first stage is by the projectile in contact with the ceramic panels to the end of the ceramic cone formation.At this stage,projectiles are eroded,but can not penetrate into ceramic panels,ceramic panels turning into ceramic cones,while the metal back plate remaining intact.At the second stage,back panel begins to move.Because the speed of ceramic cone is less than the initial velocity of projectile,the projectile will gradually penetrate and promote ceramic cone,and make parts of ceramic fragments flow in the the lateral and reverse impacting direction.When the speed of projectile equals with that of ceramic cone,they will impact the back plane together,so the second stage can be divided into two sub-stages:sub-stage of projectile penetrating into ceramic cones and sub-stage of the remaining ceramic cones impacting backplate.To facilitate the analysis,according to the result of the Ref.[3],some basic assumptions are as follows:

    (1)Projectile behavior

    The main approach to destroying energy absorption of projectile is the erosion of projectiles,ignoring the mushrooming deformation of projectiles and bending deformation of its petals. Assume that the projectiles are ideal rigid plastic materials and the initial impacting velocity of the projectile is V0.

    (2)Ceramic tile

    Assume that the ceramic tile is an infinite plate and its thickness is hc.Since the energydissipated in the formation of new surface due to fragmentation of ceramic is only a small fraction of the kinetic energy of the projectile(about 0.2%of total),a large part of impacting kinetic energy of the projectile redistributed as the kinetic energy of ceramic pieces[8].Therefore,ignoring the forming process of ceramic cone,we assume that the projectile and the ceramic cone effect on the backplate as a whole together.Assume that the diameter of the top ceramic cone equals to that of projectile[3]and its half cone angle is 65°.

    (3)Back plate

    Assume that back plate is a infinite rigid plastic thin plate,whose thickness is hb,and dynamic yield strength is Yb.We assume the deformation failure mode of the metal backpanel:dishing-shearing-petal failure and dishing-petal failure

    Fig.1 Schematic of initial condition

    2 The shock response of the projectile and the ceramic tile

    2.1 StageⅠ

    In the initial stage of the projectile impact on the ceramic panel,the projectile is eroded, but cannot penetrate into the ceramic panel,because the penetration resistance of ceramic materials is much greater than the compressive strength of the projectile.The compression wave in ceramic tile caused by the projectile impact,propagates to the back of the panel,and then causes tensile wave when it reflected on the back panel,and all of these cause the ceramic panel conical crashing failure.Although,the fragmentation of the ceramic materials is throughout the whole process of penetration,but according to the analysis of Den Reijer[6]and Wilkins[9], fragmentation occurs mainly in the initial stage of the impacting process.Den Reijer assumed that when the compression stress wave propagates throughout the thickness of the ceramic panel,the back of the panel began to crack,and when the cracks generated on the back of the panel propagate to the target surface,ceramic cone forms.Therefore,the time required for forming the ceramic cones is:

    where hcis the thickness of ceramic tile,ulongis the velocity of the longitudinal stress wave, vcrackis the radial crack propagation speed.To coincide with the value of the time of duration in the first stage referred by Wilkins[9],Den Reijer assumed that the value of vcrackequals to 1/5 of ulong.Therefore:half angle of ceramic cone is about 65°[9]。

    We take the Tate-Alekseevskii[10-11]equation to describe projectile’s erosion:

    among them,Ypis the dynamic yield strength of the projectile’s material,ρpis the density of the projectile,V(t)is the velocity of the projectile,V(0)=0;L(t)is the length of the projectile.For non-cylindrical projectiles,the equivalent diameter and length are selected according to the following equation:

    where Lpis the actual length of the projectile,Mpis the mass of the projectile,D(z)is the diameter of the position z.

    2.2 StageⅡ

    Assuming the projectile impacts the back plate at the same speed of Vr0with the ceramic cones.According to the conservation of momentum theorem:

    When the ceramic cones generatedt=tc(),the projectile begins to penetrate and promote ceramic cones,and ceramic materials in front of the projectile gradually separate from the surface of the warhead,moving to the side and anti-impacting direction.Ceramic material between the projectile and the back plate becomes thinner gradually.The speed of projectile’s tail is V(t),but the speed of the projectile-ceramic interaction surface is Vi(t).The difference between the two velocities is the erosion velocity of the projectile for this stage.The thickness of ceramic cones is hcone(t),whose speed is Vcone(t).The difference between Vcone(t)and Vi(t) is the speed of the projectile penetrating into ceramic cones.

    When the ceramic cones generatedt=tc(),the back plate begins to move.As the deformation of the back plate at the beginning stage is very small,the displacement and the movements of other parts can be neglected.That is,we can assume that only the part m of the back plate which contacts with the bottom surface of ceramic cones begins to move,and its moving speed equals to that of the ceramic cones,but no displacements are generated.

    (1)When V(t)>Vi(t)

    Tate-Alekseevskii[10-11]equation can be used to describe projectile’s erosion:

    where Rcis the penetration resistance of the ceramic panel.According to Ref.[12],when there is cover plate constraint,the penetration resistance Rcdecreases with the change of the thickness of the ceramic tile for Al2O3ceramics with the density of 3.6 g/cm3.When the thickness of the ceramic tile is more than 24 mm,Rckeeps steady at about 8 000 MPa;For Al2O3ceramics without cover plate constrants,Rcis about 5 100 MPa when the thickness of the ceramic tile is from 27.81 mm to 41.96 mm;For the ceramic cone fragmentations,Rcis less than the value above.ρpand ρcare the densities of the projectiles and the ceramic materials,respectively.According to continuity conditions,the initial velocity and length of the projectile in the second stage equal to those of the ending of the first stage.When t≤tconoid=6hc/ulong,Vcone()t= Vi()

    t=0.

    (2)When V(t)=Vi(t)

    In solving Eqs.(6)~(9),it is possible to get results V(t)

    (a)When V(t)=Vi(t)>Vcone(t),the projectile continues to penetrate into the fragments of ceramic cones.At this time,the resistance of slowing down the projectile is offered by the ceramic cones.According to Newton’s Second Law,we can get:

    And the change of the thickness of the ceramic cones still meets the Eq.(9).

    (b)When V(t)=Vi(t)=Vcone(t)=Vr0,residual projectile and remaining ceramics impact the back plate with the same speed Vr0.The mass of the residual projectile Mprand the mass of the ceramic cone Mcrare respectively:

    where hcris the thickness of the residual ceramic cones a=RpLA()+hcrtan65°.

    Due to the axial symmetry of the problem,the cylindrical coordinate systemr,θ,()zis set up as shown in Fig.2.The origin of coordinate is located in the center of the undeformed plate and the axis of z directs vertically downward.The thickness of the back plate is 2H,andthe back plate is relaxed at the beginnin g.To simplify the expression,time is set to zero when the speed of the projectile equals to that of the ceramic cones in dynamic response analysis of the back plate.Assume that the area density of the metal back plate is μ1,and take μ2=(Mpr+Mcr)/(πa2)+μ1.

    3 The impact response of the metal back plate

    3.1 Yield criterion

    Suppose that the back panel is an ideal rigid-plastic material.So the three-dimensional von Mises yield criterion for the circular plate subjected to axisymmetric load is:

    where r,θ,z are coordinates of the cylindrical coordinate,and the origin of the coordinate is located in the center of the undeformed plate.Axis z directs vertically downwards.σrand σθare radial and circumferential stresses,respectively,τ is the shear stress of the r-z plane,and σ0is the yield stress of the material of the back plate.

    When the back plate occurs dishing-shearing-petal failure,shear force and bending moment are mainly dominated of the generalized stress in the back plate.Yield criterion can be written as:

    The von Mises yield criterion in three-dimensional coordinate system,whose axises are Mr,Mθand Q,respectively,is an ellipsoid.In this paper, piecewise liners(see Fig.3)approximate was used to describe the ellipsoid yield criterion,which is approximate description as:

    Fig.3 Yield criterion

    3.2 Deformation assumption

    There will generate a plastic hinge circle on the fringes of the impact load whose radius is a.The second plastic hinge circle appears in the location where the shear force is zero,and its position changes over time(see Fig.4).Set r as the distance of any point on the surface to the center of the plate.The three regions of different deformation mechanisms of plate are the central part with a radius of a at the speed of vt,the outer area of R(t)≤r≤∞is free zone,and plastic deformation area of a≤r≤R(t)corresponds to B0C0C1B1.r is the radius of the perimeter of the plastic hinge circle,where R(t)is a function of time.

    Fig.4 Deformation hypothesis

    3.3 Velocity field

    The energy dissipation rates calculated by stress and strain rate and by the general stress and general strain rate are the same,so:

    Assuming that shear strain rate is distributed uniformly along the thickness direction of the plate:

    From the Taylor expansion of radial velocity vr,we can get the radial velocity and the radial and circumferential strain rate as follows,by taking the first term:

    From Eqs.(17)~(19),we can get the expression of general strain rate as follows:

    According to the yield criterion and Eq.(20),the general strain rate of plastic zone a≤r≤R(t)can be expressed as:

    Normal velocity of the plastic zone is obtained by integrating the above equation for r:

    where K1and K2are the functions of time only.The material keep still on the outside plastic hinge circle of r=R(t).From Eq.(23),we can get:

    Assuming that the velocity of the plastic zone on the back plate of the plastic hinge is v. From Eq.(23)we can get:

    Substituting Eq.(24)into Eq.(25),we find:

    To simplify the equation,we make:

    From Eq.(23),we can get the velocity field of the plastic zone a≤r≤R()t,which can be expressed as:

    3.4 Balance equation and its solution

    Ignoring the rotation inertia effect,balance equations of elements in Fig.5 are:

    Fig.5 Schematic of the force on micro elements of the back plate

    where μ is the mass of the back plate per unit area.From Eq.(29),the dynamic equilibrium equation can be expressed as:

    According to the yield condition,the circumferential moment Mθcan be eliminated before integration.Substitute the acceleration field Eq.(28)into equilibrium Eq.(30),the equilibrium equation of the central part 0≤r≤a on the back panel can be expressed as:

    Substitute Eq.(28)into Eq.(32),we can get:

    The expression of Q is the Eq.(33)divided by r on the right side,therefore:

    Because that when r=R(t),Q=0,from Eq.(33),we can get:

    To solve the simultaneous differential equations(34)and(35),we get the dynamic response of the back plate.

    3.5 The deformation and failure of the back plate

    On the other hand,the velocity of the projectile,ceramic cones and the central part 0≤r≤a of the back plate are:

    (1)Bulging and dishing deformation failure

    When the slip velocity equals to 0,Z1=v=U,Shear slip stops,the back is not penetrated and bulging and dishing deformation failure occurs in the back panel.

    Eqs.(34)and(35)turn to:

    Iterative solution to calculate Z1and Z2need continuing by Eqs.(38)and(39)until Z1equals to 0 and the response of the back plate ends.

    (2)Dishing-shearing-petal failure

    When the shear slip distance is greater than the thickness of plate,the back plate is penetrated,and shear failure will occur.At this time,U is the residual velocity of the projectile, and Eqs.(34)and(35)turn into:

    Iterative solution to calculate Z1and Z2is continued by Eqs.(40)and(41)until Z1equals to 0 and the response of the back panel ends.

    4 Experimental verification

    In order to verify the accuracy of ballistic analysis model,results of the analysis are compared with Ref.[3],and calculation parameters are shown in Tab.1.

    Tab.1 Parameters for calculation

    Tab.2 shows the comparison of experimental and analytical results on residual length and velocity.The table illustrates that most of remaining length of the projectile is larger than that the experimental results,because the erosion and the mushrooming deformation were ignored. But due to the fact that target plate is penetrated or the initial impacting velocity of the projectile is close to the ballistic limiting velocity of the target,the deviation of the most of the results is less than 20%.According to the experimental results,the energy absorbed due to the damage of the projectile is about 5%~12%of its initial impact kinetic energy.Therefore,because of this approximation,during the penetrating process,the total deviation of calculation results of the energy absorption is within 2.4%.The deviation between experimental and analytical results of residual velocity is less than 10%.

    Tab.2 Relationship between experimental and analytical results on residual characteristic

    5 Conclusions

    An approximate analytical model focused on thin back plate and dishing-shearing-petal failure of ceramic/metal composite armor subjected to ballistic impact was proposed,according to the results of the experimental investigation.The erosion failure of the projectile and the movement in the direction of lateral and the anti-impacting of ceramic fragments were taken into account in the analytical model.The dynamic response and failure mode of metallic back plate of the ceramic/metal composite armor were obtained.The formulas of ballistic limit velocity of the ceramic/metal composite armor and calculation methods of residual velocity of projectile were proposed.Model analysis results are in good agreement with those obtained with the test results.

    [1]Hou Hailiang,Zhu Xi,Kan Yulong.Advance of dynamic behavior of ceramic material under the impact of projectile[J]. Acta Armamentarii,2008,29(1):94-99.(in Chinese)

    [2]Hou Hailiang,Zhu Xi,Kan Yulong.Advance of ballistic performance of light ceramic composite armour under the impact of projectile[J].Acta Armamentarii,2008,29(2):208-216.(in Chinese)

    [3]Hou Hailiang,Zhu Xi,Li Wei.Investigation on bullet proof mechanism of light ceramic/steel armor[J].Acta Armamentarii, 2013,34(1):105-114.(in Chinese)

    [4]Florence A L.Interaction of projectiles and composite armor plate[R].Stanford Research Institute,Menlo Park,CA,USA., AMIVIRG-CR-69-15,August,1969.

    [5]Hetherington J G,Rajagopalan B P.An investigation into the energy absorbed during ballistic perforation of composite armors[J].Int.J Impact Engng.,1991,11:33-40.

    [6]Den Reijer P C.Impact on ceramic faced armour[D].Ph.D.Thesis,Delft Technical University,The Netherlands,1991.

    [7]Zaera R,Sánchez-Gálvez V.Analytical modelling of normal and oblique ballistic impact on ceramic/metal lightweight armours[J].Int.J Impact Engng.,1998,21(3):133-148.

    [8]Woodward R L,Gooch W A,Jr R G O’Donnell,et al.A study of fragmentation in the ballistic impact of ceramics[J].Int. J Impact Engng.,1994,15(5):605-618.

    [9]Wilkins M L.Mechanics of penetration and perforation[J].Int J Eng Sci,1978,16:793-807.

    [10]Tate A.A theory for the deceleration of long rods after impact[J].J Mech.Phys.Solids,1967,15:387-399.

    [11]Tate A.Further results in the theory of long rod penetration[J].J Mech.Phys.Solids,1969,17:141-150.

    [12]LI Ping.Dynamic response of ceramic and mechanism against long rod penetrators[D].Beijing:Beijing Institute of Technology,2002.(in Chinese)

    [13]Anderson C E,Jr Morris B L.The ballistic performance of confined Al2O3 ceramic tiles[J].Int.J Impact Engng,1992,12 (2):167-187.

    輕型陶瓷/金屬復(fù)合裝甲抗彈分析模型研究

    侯海量,仲強(qiáng),朱錫
    (海軍工程大學(xué)艦船工程系,武漢430033)

    為探討輕型陶瓷復(fù)合裝甲結(jié)構(gòu)設(shè)計,在彈道沖擊響應(yīng)特性試驗研究與分析的基礎(chǔ)上,針對薄金屬背板支撐的陶瓷復(fù)合裝甲,以金屬背板發(fā)生碟型變形—剪切—花瓣型失效為分析對象,建立了陶瓷/金屬復(fù)合裝甲侵徹過程的近似解析模型。模型考慮了彈體的侵蝕失效及陶瓷碎片脫離彈頭表面,向側(cè)向和反沖擊方向的運動,得到了陶瓷/金屬復(fù)合裝甲中金屬背板的動態(tài)沖擊響應(yīng)及失效,陶瓷/金屬復(fù)合裝甲的彈道極限速度計算公式和彈體的剩余速度計算方法,模型分析結(jié)果與試驗結(jié)果吻合良好。

    爆炸力學(xué);抗彈機(jī)理;高速破片;陶瓷復(fù)合裝甲;變形吸能

    O344.7

    :A

    侯海量(1977-),男,海軍工程大學(xué)高級工程師,碩士生導(dǎo)師;

    1007-7294(2015)12-1535-14

    O344.7

    :A

    10.3969/j.issn.1007-7294.2015.12.010

    仲強(qiáng)(1990-),男,海軍工程大學(xué)碩士研究生;

    朱錫(1961-),男,海軍工程大學(xué)教授,博士生導(dǎo)師。

    Received date:2015-07-04

    Foundation item:Supported by the National Natural Scinence Foundation of China(Grant Nos.51179200 and 51209211)

    Biography:HOU Hai-liang(1977-),male,senior engineer of Naval Univ.of Engineering,E-mail:hou9611104@163.com; ZHONG Qiang(1990-),male,master;ZHU Xi(1961-),male,professor/tutor.

    猜你喜歡
    背板彈體海量
    一種傅里葉域海量數(shù)據(jù)高速譜聚類方法
    尾錐角對彈體斜侵徹過程中姿態(tài)的影響研究
    橢圓截面彈體斜侵徹金屬靶體彈道研究*
    爆炸與沖擊(2022年2期)2022-03-17 07:28:44
    樂凱太陽能電池背板:強(qiáng)勁支持光伏產(chǎn)業(yè)
    海量快遞垃圾正在“圍城”——“綠色快遞”勢在必行
    STOPAQ粘彈體技術(shù)在管道施工中的應(yīng)用
    上海煤氣(2018年6期)2018-03-07 01:03:22
    光伏含氟背板隱憂
    能源(2017年5期)2017-07-06 09:25:55
    一個圖形所蘊(yùn)含的“海量”巧題
    層壓過程對背板粘接涂層的影響
    播放器背板注塑模具設(shè)計
    中國塑料(2015年8期)2015-10-14 01:10:55
    国产高清激情床上av| 精品国产一区二区久久| 日韩免费av在线播放| 极品人妻少妇av视频| 国产精品九九99| 色尼玛亚洲综合影院| 日韩精品免费视频一区二区三区| 久久热在线av| 久久久国产精品麻豆| 精品久久久久久,| www日本在线高清视频| 国产亚洲精品av在线| 亚洲精华国产精华精| 亚洲精品av麻豆狂野| 夜夜躁狠狠躁天天躁| 欧美成人免费av一区二区三区| 欧美中文日本在线观看视频| 国产成人影院久久av| 最近最新中文字幕大全免费视频| 亚洲狠狠婷婷综合久久图片| 国产亚洲欧美在线一区二区| 久久欧美精品欧美久久欧美| 国产精品久久久久久亚洲av鲁大| 色在线成人网| 手机成人av网站| 日本 av在线| 久热爱精品视频在线9| 中文字幕久久专区| 久久亚洲真实| 91成人精品电影| 国产1区2区3区精品| 成人手机av| 黄色 视频免费看| 欧美日本视频| 亚洲aⅴ乱码一区二区在线播放 | 亚洲片人在线观看| 男女做爰动态图高潮gif福利片 | 亚洲人成77777在线视频| 日韩视频一区二区在线观看| 香蕉丝袜av| 又大又爽又粗| 亚洲人成伊人成综合网2020| 午夜久久久在线观看| 淫妇啪啪啪对白视频| 精品卡一卡二卡四卡免费| 欧美不卡视频在线免费观看 | 免费女性裸体啪啪无遮挡网站| 国内毛片毛片毛片毛片毛片| 国产乱人伦免费视频| 亚洲天堂国产精品一区在线| 欧美国产日韩亚洲一区| 天堂影院成人在线观看| 麻豆国产av国片精品| 亚洲成av人片免费观看| cao死你这个sao货| 久久国产亚洲av麻豆专区| 亚洲情色 制服丝袜| svipshipincom国产片| 亚洲色图av天堂| 免费久久久久久久精品成人欧美视频| 黄片大片在线免费观看| 久久天躁狠狠躁夜夜2o2o| av中文乱码字幕在线| 国产激情欧美一区二区| 亚洲五月婷婷丁香| 亚洲国产看品久久| 看片在线看免费视频| 免费一级毛片在线播放高清视频 | 久久中文字幕人妻熟女| 免费女性裸体啪啪无遮挡网站| 午夜福利在线观看吧| 欧美色视频一区免费| 亚洲精品久久国产高清桃花| 亚洲少妇的诱惑av| 亚洲一区高清亚洲精品| 国产精品影院久久| 久久久久精品国产欧美久久久| 露出奶头的视频| 村上凉子中文字幕在线| 久久欧美精品欧美久久欧美| 亚洲中文日韩欧美视频| 久久久久久久久中文| 国产精品电影一区二区三区| 国产av一区在线观看免费| 欧美中文综合在线视频| 69精品国产乱码久久久| 黄色视频不卡| 黄网站色视频无遮挡免费观看| 国产高清videossex| 日本 欧美在线| 亚洲精品在线观看二区| 黑人操中国人逼视频| 啪啪无遮挡十八禁网站| 国产亚洲精品第一综合不卡| 亚洲欧美日韩高清在线视频| 色综合站精品国产| 午夜福利影视在线免费观看| 一本久久中文字幕| 亚洲精品中文字幕一二三四区| 久久久久久国产a免费观看| cao死你这个sao货| 热99re8久久精品国产| 国产av一区在线观看免费| 欧美日韩亚洲国产一区二区在线观看| 夜夜夜夜夜久久久久| 制服诱惑二区| 丝袜美腿诱惑在线| 国产91精品成人一区二区三区| 可以在线观看毛片的网站| 大码成人一级视频| 亚洲精品久久国产高清桃花| 久久香蕉国产精品| 亚洲精华国产精华精| 男女之事视频高清在线观看| 国产色视频综合| 精品久久蜜臀av无| 亚洲第一电影网av| 禁无遮挡网站| 日本vs欧美在线观看视频| 国内精品久久久久久久电影| 日韩一卡2卡3卡4卡2021年| 法律面前人人平等表现在哪些方面| 日韩欧美国产在线观看| 看黄色毛片网站| 欧美日韩瑟瑟在线播放| 亚洲 欧美 日韩 在线 免费| 91成人精品电影| 99精品欧美一区二区三区四区| 天堂√8在线中文| 九色亚洲精品在线播放| 久久久久亚洲av毛片大全| 欧美黑人欧美精品刺激| 波多野结衣一区麻豆| 国内精品久久久久久久电影| 可以在线观看毛片的网站| 国产视频一区二区在线看| 久久狼人影院| 日本a在线网址| 久久久国产成人免费| 中文字幕色久视频| 久久 成人 亚洲| 免费在线观看影片大全网站| av在线播放免费不卡| 大陆偷拍与自拍| 午夜免费激情av| 日韩一卡2卡3卡4卡2021年| 黄片播放在线免费| 国产精品1区2区在线观看.| 久久久久久人人人人人| 日本免费一区二区三区高清不卡 | 亚洲av熟女| 一进一出抽搐动态| 在线播放国产精品三级| 黑人操中国人逼视频| 黑人巨大精品欧美一区二区mp4| 神马国产精品三级电影在线观看 | 精品国产乱子伦一区二区三区| 久久精品亚洲熟妇少妇任你| 999精品在线视频| 亚洲片人在线观看| 国产亚洲精品久久久久5区| 中文字幕色久视频| 一区二区三区激情视频| 久久久精品欧美日韩精品| 久久草成人影院| 777久久人妻少妇嫩草av网站| 国产91精品成人一区二区三区| 国产av又大| 午夜免费鲁丝| 一级a爱片免费观看的视频| 高清黄色对白视频在线免费看| 欧美国产日韩亚洲一区| 91字幕亚洲| 露出奶头的视频| 国产成人欧美在线观看| 欧美日韩瑟瑟在线播放| 国产99白浆流出| 十分钟在线观看高清视频www| www国产在线视频色| 精品欧美一区二区三区在线| 在线观看免费午夜福利视频| 久久久久久久久久久久大奶| 成在线人永久免费视频| 免费av毛片视频| 亚洲专区中文字幕在线| 久久 成人 亚洲| 国产激情久久老熟女| 母亲3免费完整高清在线观看| 免费看美女性在线毛片视频| a级毛片在线看网站| 国产亚洲欧美98| 免费观看精品视频网站| 国语自产精品视频在线第100页| 欧美一区二区精品小视频在线| 国产精品久久久av美女十八| 欧美激情 高清一区二区三区| 国产亚洲欧美在线一区二区| 午夜亚洲福利在线播放| 一本久久中文字幕| 嫩草影院精品99| 国产蜜桃级精品一区二区三区| 久久久久久人人人人人| 手机成人av网站| 亚洲三区欧美一区| 精品电影一区二区在线| 国产一区在线观看成人免费| 嫩草影院精品99| bbb黄色大片| 啦啦啦观看免费观看视频高清 | 长腿黑丝高跟| 女性生殖器流出的白浆| 在线观看一区二区三区| 妹子高潮喷水视频| 曰老女人黄片| 国产精品亚洲av一区麻豆| 久久人妻福利社区极品人妻图片| 国产蜜桃级精品一区二区三区| 亚洲成人免费电影在线观看| 好男人电影高清在线观看| 精品国产一区二区三区四区第35| 久久人妻熟女aⅴ| 波多野结衣一区麻豆| 日韩欧美在线二视频| 国产成人免费无遮挡视频| 超碰成人久久| 两性午夜刺激爽爽歪歪视频在线观看 | 国产成人精品久久二区二区91| 日本五十路高清| 嫩草影视91久久| 欧美乱色亚洲激情| 欧美最黄视频在线播放免费| 色尼玛亚洲综合影院| 一级作爱视频免费观看| 国产乱人伦免费视频| 久久国产乱子伦精品免费另类| 夜夜看夜夜爽夜夜摸| 91在线观看av| 亚洲欧美日韩高清在线视频| 国产成人啪精品午夜网站| 性欧美人与动物交配| 国产精品永久免费网站| 亚洲av五月六月丁香网| 国产成人系列免费观看| 亚洲精品中文字幕一二三四区| 精品久久蜜臀av无| 国产伦一二天堂av在线观看| 999久久久国产精品视频| 国产高清激情床上av| 欧美激情极品国产一区二区三区| 亚洲av熟女| 91麻豆av在线| 热99re8久久精品国产| 国产精品美女特级片免费视频播放器 | 亚洲精品国产区一区二| 国产亚洲精品第一综合不卡| 亚洲欧美日韩无卡精品| 黄频高清免费视频| 成人三级做爰电影| 亚洲av五月六月丁香网| 男女做爰动态图高潮gif福利片 | 午夜久久久久精精品| 欧美 亚洲 国产 日韩一| 精品久久久精品久久久| 免费在线观看视频国产中文字幕亚洲| 波多野结衣高清无吗| 久久久久久大精品| 免费在线观看亚洲国产| 国产亚洲精品一区二区www| 黑人巨大精品欧美一区二区mp4| 久久久久久人人人人人| 亚洲第一av免费看| 91精品三级在线观看| 极品教师在线免费播放| 久久精品91无色码中文字幕| 人人妻人人澡人人看| tocl精华| 天天添夜夜摸| 巨乳人妻的诱惑在线观看| 中文字幕精品免费在线观看视频| 成年人黄色毛片网站| 宅男免费午夜| av免费在线观看网站| 老熟妇乱子伦视频在线观看| 最近最新中文字幕大全电影3 | 美女大奶头视频| 久久天堂一区二区三区四区| 久久中文看片网| 亚洲激情在线av| 中文字幕人成人乱码亚洲影| 国产精品影院久久| 久久久久久人人人人人| 亚洲色图综合在线观看| 久久青草综合色| 国产亚洲精品综合一区在线观看 | 极品教师在线免费播放| 成人手机av| 国产日韩一区二区三区精品不卡| 亚洲精品中文字幕在线视频| 国产一区二区激情短视频| 两人在一起打扑克的视频| 亚洲va日本ⅴa欧美va伊人久久| 韩国精品一区二区三区| 国产成人精品在线电影| 日本a在线网址| 亚洲一码二码三码区别大吗| 日本 欧美在线| 久久性视频一级片| 一本久久中文字幕| 波多野结衣一区麻豆| 别揉我奶头~嗯~啊~动态视频| 热99re8久久精品国产| 久久人妻av系列| 成人国产综合亚洲| 日韩成人在线观看一区二区三区| 亚洲欧美日韩另类电影网站| 中文字幕久久专区| 美女大奶头视频| 国产欧美日韩一区二区精品| 成人欧美大片| 美女午夜性视频免费| 午夜福利视频1000在线观看 | 国产在线观看jvid| 日本 欧美在线| 91老司机精品| 此物有八面人人有两片| 国产av精品麻豆| 多毛熟女@视频| 亚洲精品在线美女| 老汉色av国产亚洲站长工具| 亚洲免费av在线视频| 一级黄色大片毛片| 成在线人永久免费视频| 亚洲欧洲精品一区二区精品久久久| 此物有八面人人有两片| 亚洲精品久久国产高清桃花| 精品卡一卡二卡四卡免费| 午夜福利欧美成人| 青草久久国产| 日日爽夜夜爽网站| 久久亚洲真实| 亚洲国产中文字幕在线视频| 久久久久久人人人人人| 日韩欧美免费精品| 亚洲欧洲精品一区二区精品久久久| 纯流量卡能插随身wifi吗| 日本a在线网址| 欧美久久黑人一区二区| 欧美+亚洲+日韩+国产| 一个人观看的视频www高清免费观看 | 一个人观看的视频www高清免费观看 | 日韩视频一区二区在线观看| 在线av久久热| 欧美精品亚洲一区二区| 琪琪午夜伦伦电影理论片6080| 亚洲avbb在线观看| 午夜精品国产一区二区电影| 亚洲国产精品成人综合色| 怎么达到女性高潮| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲欧美一区二区三区黑人| 亚洲精品国产色婷婷电影| 久久国产精品影院| aaaaa片日本免费| 久久人妻av系列| 国产亚洲精品综合一区在线观看 | a级毛片在线看网站| 怎么达到女性高潮| 亚洲人成网站在线播放欧美日韩| 亚洲片人在线观看| 国产精品自产拍在线观看55亚洲| 久久九九热精品免费| 久久久久国产一级毛片高清牌| 91老司机精品| 国产熟女xx| 搞女人的毛片| 免费无遮挡裸体视频| 成人永久免费在线观看视频| netflix在线观看网站| 久久国产精品人妻蜜桃| 高清在线国产一区| 99久久综合精品五月天人人| 99在线视频只有这里精品首页| 99riav亚洲国产免费| 亚洲成a人片在线一区二区| 少妇的丰满在线观看| av电影中文网址| 免费看a级黄色片| 黄片大片在线免费观看| 熟妇人妻久久中文字幕3abv| 伊人久久大香线蕉亚洲五| 国产精品久久久人人做人人爽| 亚洲精品国产精品久久久不卡| 69av精品久久久久久| 性少妇av在线| 成人亚洲精品av一区二区| 夜夜躁狠狠躁天天躁| 国产成+人综合+亚洲专区| 夜夜看夜夜爽夜夜摸| 亚洲国产毛片av蜜桃av| 国产一卡二卡三卡精品| 99国产综合亚洲精品| 桃色一区二区三区在线观看| 亚洲av五月六月丁香网| 久久久精品欧美日韩精品| 久久热在线av| 一级a爱片免费观看的视频| 日韩有码中文字幕| 色老头精品视频在线观看| www.999成人在线观看| 精品一区二区三区四区五区乱码| 亚洲av成人一区二区三| 无遮挡黄片免费观看| av超薄肉色丝袜交足视频| 精品一区二区三区四区五区乱码| 国产精品一区二区在线不卡| 少妇 在线观看| 一区福利在线观看| 性色av乱码一区二区三区2| 免费不卡黄色视频| 熟妇人妻久久中文字幕3abv| 999久久久国产精品视频| 久久久久久久精品吃奶| 一区二区三区国产精品乱码| 亚洲视频免费观看视频| 久久久久国产一级毛片高清牌| 午夜精品国产一区二区电影| 丝袜人妻中文字幕| xxx96com| 亚洲一区二区三区色噜噜| 欧美老熟妇乱子伦牲交| 日韩一卡2卡3卡4卡2021年| 精品一区二区三区视频在线观看免费| 91精品三级在线观看| 桃色一区二区三区在线观看| 国产视频一区二区在线看| 久久久久久久午夜电影| www.精华液| 涩涩av久久男人的天堂| 午夜精品在线福利| 欧美激情久久久久久爽电影 | 久久影院123| 亚洲国产精品999在线| 日本一区二区免费在线视频| 亚洲欧美日韩另类电影网站| 日韩欧美三级三区| 日韩三级视频一区二区三区| 亚洲九九香蕉| 精品国产国语对白av| av欧美777| av福利片在线| 亚洲电影在线观看av| 亚洲一码二码三码区别大吗| 男男h啪啪无遮挡| 久久天堂一区二区三区四区| 欧洲精品卡2卡3卡4卡5卡区| 在线观看www视频免费| 欧美日本亚洲视频在线播放| 欧美人与性动交α欧美精品济南到| 久久国产精品影院| 亚洲av熟女| 国产精品乱码一区二三区的特点 | 自拍欧美九色日韩亚洲蝌蚪91| 亚洲精品在线观看二区| 欧美成人免费av一区二区三区| 国产av一区二区精品久久| 亚洲情色 制服丝袜| 国产三级黄色录像| 熟妇人妻久久中文字幕3abv| 国产精品久久视频播放| 国产成人欧美| 夜夜夜夜夜久久久久| 国产精品香港三级国产av潘金莲| 精品久久久久久成人av| 国产成人系列免费观看| 免费看十八禁软件| 一区二区三区精品91| 又黄又粗又硬又大视频| 亚洲第一青青草原| 欧美另类亚洲清纯唯美| 亚洲专区国产一区二区| 亚洲,欧美精品.| 亚洲人成伊人成综合网2020| 9热在线视频观看99| 天天添夜夜摸| av天堂久久9| 日本五十路高清| 久久久久国内视频| 亚洲国产日韩欧美精品在线观看 | 日韩有码中文字幕| 久久精品亚洲熟妇少妇任你| 国产蜜桃级精品一区二区三区| 制服诱惑二区| 9热在线视频观看99| 91精品三级在线观看| 午夜久久久久精精品| 精品人妻在线不人妻| 亚洲国产中文字幕在线视频| 国产又爽黄色视频| 色av中文字幕| 欧美在线黄色| 亚洲第一欧美日韩一区二区三区| 亚洲欧美日韩无卡精品| 中文字幕色久视频| 欧美av亚洲av综合av国产av| 国产欧美日韩综合在线一区二区| 亚洲熟女毛片儿| 69av精品久久久久久| 国产精品乱码一区二三区的特点 | 黄色丝袜av网址大全| 国产精品综合久久久久久久免费 | 国内精品久久久久久久电影| 一级a爱视频在线免费观看| 亚洲中文av在线| 国内久久婷婷六月综合欲色啪| 亚洲专区中文字幕在线| 亚洲aⅴ乱码一区二区在线播放 | 成人亚洲精品一区在线观看| 成人18禁在线播放| 一a级毛片在线观看| 久久久国产成人免费| 每晚都被弄得嗷嗷叫到高潮| 午夜精品久久久久久毛片777| 每晚都被弄得嗷嗷叫到高潮| 99精品久久久久人妻精品| 丝袜在线中文字幕| 99精品久久久久人妻精品| 国产欧美日韩一区二区三区在线| 亚洲精品久久国产高清桃花| 国产精品98久久久久久宅男小说| 久久人妻福利社区极品人妻图片| 精品久久久久久久久久免费视频| 啦啦啦免费观看视频1| 操出白浆在线播放| 变态另类成人亚洲欧美熟女 | 欧美一级a爱片免费观看看 | 两人在一起打扑克的视频| 国产午夜福利久久久久久| 欧美在线一区亚洲| 好看av亚洲va欧美ⅴa在| 天堂√8在线中文| 亚洲精品国产色婷婷电影| 午夜福利一区二区在线看| 久久久精品国产亚洲av高清涩受| 999久久久精品免费观看国产| 午夜精品在线福利| 动漫黄色视频在线观看| 99精品久久久久人妻精品| 91字幕亚洲| e午夜精品久久久久久久| 一级a爱片免费观看的视频| 免费在线观看亚洲国产| 精品人妻1区二区| 人人妻人人澡人人看| 欧美日本亚洲视频在线播放| 免费在线观看亚洲国产| 天天躁夜夜躁狠狠躁躁| 真人一进一出gif抽搐免费| 精品不卡国产一区二区三区| 亚洲狠狠婷婷综合久久图片| 久久热在线av| 男人舔女人下体高潮全视频| 国产精品秋霞免费鲁丝片| 妹子高潮喷水视频| 亚洲国产欧美一区二区综合| 亚洲av成人一区二区三| 99国产精品免费福利视频| 在线播放国产精品三级| 美女免费视频网站| 日本撒尿小便嘘嘘汇集6| 自线自在国产av| 国产熟女午夜一区二区三区| 国产99白浆流出| 丝袜人妻中文字幕| 免费无遮挡裸体视频| 中国美女看黄片| 国产精品99久久99久久久不卡| 亚洲av第一区精品v没综合| 久久 成人 亚洲| 老汉色av国产亚洲站长工具| xxx96com| 亚洲,欧美精品.| 久久午夜综合久久蜜桃| 日本欧美视频一区| 大码成人一级视频| 丁香欧美五月| 日本vs欧美在线观看视频| 亚洲av成人不卡在线观看播放网| 69精品国产乱码久久久| 亚洲一区二区三区色噜噜| 香蕉国产在线看| 国产午夜福利久久久久久| 亚洲色图 男人天堂 中文字幕| 女同久久另类99精品国产91| 精品欧美国产一区二区三| 亚洲全国av大片| 久久久久国产一级毛片高清牌| 国产高清激情床上av| 国内精品久久久久精免费| 国产精品日韩av在线免费观看 | 美女高潮到喷水免费观看| 亚洲一区二区三区不卡视频| av网站免费在线观看视频| 亚洲电影在线观看av| 精品国产一区二区久久| 99久久久亚洲精品蜜臀av| 一级作爱视频免费观看| 欧美+亚洲+日韩+国产| 日本撒尿小便嘘嘘汇集6| 国产三级在线视频| 国产单亲对白刺激| 美女免费视频网站| 国产男靠女视频免费网站| av片东京热男人的天堂| 精品国产一区二区三区四区第35| 校园春色视频在线观看|