• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Active Control of Low-Frequency Sinusoidal Vibration Transmission of Ship Machinery

    2015-05-02 09:29:29LIYanHELinSHUAIChanggengMAJianguoWANGFeiLIUYong
    船舶力學(xué) 2015年12期
    關(guān)鍵詞:線譜磁懸浮被動(dòng)

    LI Yan,HE Lin,SHUAI Chang-geng,MA Jian-guo,WANG Fei,LIU Yong

    (1a.Institute of Noise&Vibration;b.National Key Laboratory on Ship Vibration&Noise,Naval University of Engineering,Wuhan 430033,China;2 China Ship Scientific Research Center,Wuxi 214082,China; 3 China Ship Development and Design Center,Wuhan 430064,China)

    Active Control of Low-Frequency Sinusoidal Vibration Transmission of Ship Machinery

    LI Yan1a,b,HE Lin1a,b,SHUAI Chang-geng1a,b,MA Jian-guo1a,b,WANG Fei1a,2,LIU Yong1a,3

    (1a.Institute of Noise&Vibration;b.National Key Laboratory on Ship Vibration&Noise,Naval University of Engineering,Wuhan 430033,China;2 China Ship Scientific Research Center,Wuxi 214082,China; 3 China Ship Development and Design Center,Wuhan 430064,China)

    Aiming at the active control of low-frequency sinusoids in ship machinery vibration,noncontact electromagnetic actuator with large output force,flat frequency response,and excellent maneuverability is developed,and the electromechanical performance of such actuator with permanent magnet bias is analyzed.A dynamic model of active-passive vibration isolation system is presented, and the factors affecting system stability are analyzed.A passive-active vibration isolator consisting of electromagnetic actuator and air spring is developed,in which a disengageable suspended structure is designed to improve its adaptability to shock and swing in the ship environment.A multi-channel narrowband Fx-Newton algorithm with rapid convergence and good robustness to frequency fluctuation is also proposed.A passive-active vibration isolation system composed of such isolators is then installed on a 200 kW ship diesel generator for testing,and the experimental results show that under complex situations such as multiple sinusoids and frequency fluctuation of the targeted sinusoids, rapid convergence of the control algorithm and stable and effective control of vibration could be realized with this isolation system.Therefore,the developed passive-active vibration isolation system can satisfactorily meet the engineering requirement of attenuating low-frequency sinusoidal vibration excited by ship machinery.

    low-frequency sinusoidal vibration of ship machinery;active control; electromagnetic actuator and air spring;Fx-Newton algorithm; frequency fluctuation;robustness

    0 Introduction

    In the vibration of ship machinery,energy-concentrated low-frequency sinusoids may lead to remarkable unwanted noise radiation under water and make the ship more vulnerable to sonar detection.On the other hand,these low-frequency sinusoids cannot be effectively eliminated with passive vibration isolation technology.

    Passive-active vibration isolation can attenuate both broadband vibration and low-frequency sinusoidal vibration,which has been paid more attention in recent years.Related theoretical and experimental studies have made large progress[1-8],but its engineering applicationin ship machinery has scarcely been reported.

    Active control of ship machinery vibration requires passive-active isolator with large carrying capacity,high reliability,and good adaptability to the ship environment.For such an isolator,electromagnetic actuator[9]is a good candidate with large output force,flat frequency response,and excellent maneuverability,but its poor adaptability to shock and swing is a longexisting problem awaiting solution.And further study of the control algorithm in ship engineering practice is also required to realize stable and rapid convergence in complex cases such as multiple sinusoids,MIMO coupling,and unstable magnitude and frequency fluctuation of the sinusoids.

    In this paper,the electromechanical performance of electromagnetic actuator with permanent magnet bias is analyzed;a dynamic model of active-passive vibration isolation system is presented and analyzed.A new passive-active vibration isolator consisting of electromagnetic actuator and air spring is developed for ship machinery with good adaptability to shock and swing,and a multi-channel narrowband Fx-Newton algorithm with rapid convergence and good robustness to frequency fluctuation is proposed.The active-passive isolation system is then installed on a 200 kW ship diesel generator and the effect of attenuating the sinusoidal vibration of ship machinery is tested at stable and fluctuating shaft rotating speed.

    1 An active-passive isolator for ship machinery

    1.1 Mechanism of active-passive isolation system using electromagnetic actuator

    The mechanism of the active-passive isolation mounting using electromagnetic actuator is shown in Fig.1.In the system,the passive isolators bear the machinery’s weight and isolate the transmission of vibration from machinery to the lower frame,and the non-contact actuator bearing no static load is driven by the controller and power amplifier to attenuate low-frequency sinusoidal vibration of the lower frame.

    Fig.1 Mechanism of the active-passive isolation mounting

    Fig.2 Schematic structure of electromagnetic actuator

    An electromagnetic actuator with permanent magnet bias[10]is designed with the structure shown in Fig.2,which does not require static power consumption;and is convenient for installation.Before the control current is input to the coil,the attraction force caused by permanent magnet bias[10]is:

    After the alternating control current i is input to the coil with N turns,the generated electromagnetic field is superposed on the permanent magnetic field,and the resultant force of actuator is:

    According to Eqs.(1)and(2),the electromagnetic force of actuatorFg()is:

    Then the dynamic equation of the active-passive isolation system can be derived as:

    where m is the machinery’s weight;kaand caare the stiffness and damping ratio of air spring, respectively;fdis the exciting force;and x is the relative vibration displacement of the machinery and lower frame.

    Hence the dynamic model of the active-passive isolation system can be linearized at the equilibrium point:

    Since Eq.(6)is similar to the system using electromagnetic actuator with electromagnet bias[9],the proposed system using actuator with permanent magnet bias also have the following characteristics:

    (1)Negative stiffness of actuator may reduce the whole stiffness of the hybrid isolation system,thus enhancing the broadband isolation effect even if the active controller is shut down.

    (2)When the frequency ratio γ(excitation frequency divided by the natural frequency)is smaller than 1,the required active control force is greater than the excitation force;when γ= 1,the required force will be close to the excitation force;when γ>1,the required force is smaller than the excitation force,and the greater is γ,the smaller force will be required.

    (3)When γ>1,the amplitude of machinery vibration will not be increased after active control.

    1.2 Development of active-passive vibration isolator

    Fig.3 The mechanics of the active-passive isolation mounting

    Fig.4 Structure of active-passive isolator composed of electromagnetic actuator and air spring (a)Active-passive isolator;(b)Disengageable suspended structure

    In this hybrid isolator,the actuator iron core is mounted on the lower plate of air spring, and the actuator armature is mounted on the upper plate of air spring through a disengageable suspended structure.Magnetic conductive rubber is filled into the air gap between the actuator armature and permanent magnet on top of iron core,serving the function of reducing the air-gap reluctance and improving the electro-mechanical efficiency of actuator.The structure of this hybrid isolator has the merits of small size and ease of installation,and it is convenient for application in ship air spring vibration isolation devices[11].

    1.2.1 Stiffness matching and stability design for hybrid isolator

    In section 1.1,it is indicated that the actuator demonstrates negative stiffness.To ensure the stability of mounting under disturbances,such as those caused by ship motion(shock and swing),stiffness matching is considered in the design of active-passive isolator.

    where ARis a function of the lower flange deflection angle β and upper flange deflection angle α;pais the atmosphere pressure;p is the air spring pressure;Se,V and Reare the effective area,internal volume and effective radius of air spring,respectively.The initial values of these parameters are given at the rated height and they all vary with x.

    According to the stiffness criterion of stability,if the isolator stiffness is always positive within the air gap working range:

    then the mounting will not be unstable in case of large ship motion.

    Since the electromagnetic field of electromagnetic actuator is located in multiple media and has complicated shape;has nonlinear properties;and may be affected by magnetic leakage and the edge effect,the theoretical‘-kp’derived in Eq.(7)is not very accurate.The finite element method is therefore used to predict the total stiffness“k”.The input parameters of the finite element model are the structural and electromagnetic parameter of actuator and the structural and air pressure parameters of air spring;these parameters are adjusted for stiffness matching so that the isolator stiffness is always positive within the air gap working range and the stability condition is satisfied.

    1.2.2 Shock and swing adaptability design for hybrid isolator

    Complex ship operation conditions(such as shock,swing,and tilt)may cause large displacement of the isolator,resulting in the collision of iron core with armature.This problem has

    The stiffness[11]of air spring can be calculated as:not been well solved yet;the‘smart spring’[3]improved the environmental adaptability of hybrid isolator by leaving a large air gap(about 9mm high)in the electromagnetic actuator, which,however,also increased the power consumption.

    A disengageable suspended structure is proposed to improve the shock and swing adaptability of hybrid isolator.It connects the armature of actuator and the upper cover plate of air spring,as shown in Fig.4.In normal working state,this structure rigidly connects the actuator armature with the upper plate of air spring,the actuator force can be directly output,thus behaves small phase shift and flat amplitude-frequency characteristics.

    In the state of shock or swing,the actuator armature will contact with the magnetic conductive rubber,and when the force between them exceeds a threshold,the upper and lower seats of the suspended structure will be swiftly disengaged.The mechanics of the active-passive isolation system at this state is shown in Fig.5,where kris the stiffness of magnetic conductive rubber; ksis the stiffness of spiral spring;and ks<

    Fig.5 Mechanics of the mounting after the structure is disengaged

    Compared with the normal working state in Fig.3,the total stiffness of the isolator is just increased by a small amount‘ks’.Thus,after the suspended structure is disengaged,the lowstiffness deformation allowance is increased by 5-7 mm,so rigid contact is prevented.Furthermore,the magnetic conductive rubber can also prevent the collision of actuator armature with permanent magnet.When large displacement has diminished,the suspended structure is automatically restored to the original position.

    The above-mentioned designs help to improve the stability and adaptability of the proposed active-passive vibration isolator to the ship environment.

    1.3 Performance testing of the active-passive vibration isolator

    A variety of electromagnetic actuators with rated output force in the range of 20-300 N have been developed,and the test results of 300 N-actuator are shown in Fig.6.The magnitudes of fundamental force at different frequencies are shown in Fig.6(a),which keep almost the same for a given input current.Fig.6(b)shows that the nonlinearity of force increases with current,but even at the allowed maximum current of 7 A,it is still lower than-23 dB.

    The static stiffness of this active-passive vibration isolator is measured on an MTS-landmark370.50 testing machine when the isolator is inflated and loaded up to about 8.6 kN, and the measured displacement is plotted vs the applied vertical static load in Fig.7.Since the rated air gap between the magnetic conductive rubber and the armature is 2 mm wide,when the displacement under compression is less than 2 mm,the static stiffness of the isolator is about 282.0 N/mm;when the displacement reaches about 2 mm under compression,the arma-ture contacts with the magnetic conductive rubber and the static stiffness is increased to 2 939 N/mm;however,when the displacement under compression is larger than 2.2 mm, the static stiffness swiftly decreases to 653 N/mm,suggesting that in case of large displacement caused by shock or swing, the suspended structure in the isolator has automatically disengaged and rigid contact is prevented.

    The dynamic stiffness and natural frequency of this active-passive isolator are also measured and the results are shown in Tab.1.The dynamic stiffness and natural frequency under the rated conditions(with 0 mm static displacement)are listed in Tab.1(a).In this state,the natural frequency of the isolator is very low,about 3.59-3.84 Hz.When the isolator is pressed 4 mm down(in simulating the condition of tilted hull),the measured dynamic stiffness and natural frequency are listed in Tab.1(b).The natural frequency is about 4.27-4.48Hz,only slightly higher than the natural frequency of the isolator working at the rated height.This result suggests that large deformation caused by shock,swing or tilt would not lead to short-cut transmission of vibration,and the isolator could still maintain highly effective broadband vibration isolation.

    Fig.6 Measured results of actuator’s characteristics(a)fundamental output force of actuator;(b)the nonlinearity of force,which is defined as the energy difference between the second and fundamental component of force

    Fig.7 Measured static properties of the active-passive vibration isolator

    Tab.1 The dynamic stiffness and natural frequency of the active-passive vibration isolator(pp-peak excitation magnitude,fe-excitation frequency,Kd-dynamic stiffness,fn-natural frequency) (a)The isolator is at rated height with 0 mm static displacement

    (b)The isolator is pressed down 4 mm(simulating ship tilting)

    2 The narrowband control algorithm

    In active control of machinery vibration,some major problems have been encountered.The Fx-LMS algorithm[1,6-10,12]has been widely used in active noise and vibration control.However, in active-passive machinery vibration isolation systems with strong cross-coupling,large eigenvalue dispersion results in low convergence rate and the control effect may be poor under unstable vibration excitation.Furthermore,the frequency and amplitude of machinery vibration may fluctuate,so the control algorithm requires good real-time performance,fast convergence rate and good robustness to these fluctuations.

    Fig.8 Schematic diagram of the time domain filtered-x Newton narrowband algorithm

    The proposed algorithm has been improved in the following aspects to address the problems mentioned above:

    (1)The proposed algorithm uses narrowband pass filters(NBPF)to extract target sinusoids from the broadband signal and control them in multi-controllers with different step sizes and running in parallel,thus multiple sinusoids can be effectively controlled with fast convergence rate.This method does not require frequency estimation,so frequency mismatch is avoided.

    (2)The frequency of sinusoids in machinery vibration may fluctuate within a certain range.However,the frequency-domain narrowband algorithms[15]based on FFT or demodulation,and the time-domain narrowband algorithms[16]based on internal reference signal generator,are not good for vibration with frequency and amplitude fluctuations.And for time-domain narrowband algorithms based on the NBPF,because of the steep phase-frequency characteristics of the NBPF,significant phase shift would exist between the extracted sinusoidal signal and original broadband signal,so this frequency fluctuation may lead to fluctuating optimum controller response(Wopt)in the algorithm and deteriorate the control performance.Hence an adaptive phase-shift compensator is proposed to eliminate this variation of Wopt,and improve the robustness of control system to frequency fluctuation.

    where the filter coefficients cRand cIcan be adaptively updated online,and the updating equations are:

    Fig.9 Adaptive phase-shift compensator for the NBPF

    Fig.10 The structure of the inverse secondary-path filter

    (3)In the proposed algorithm,the sinusoidal reference signal is first processed by inverse secondary path filtering based on the Newton iteration method[1,13-14],and then the output signal is used to update the controller,so the convergence rate[14]is almost unaffected by the strong cross-coupling in active-passive machinery vibration isolation systems and can be much faster than the Fx-LMS algorithm.

    According to Eq.(14)and Fig.10,for an L-channel system,the secondary-path inverse filtering can be realized in time-domain by an L×L matrix of 2nd-order filters.Such a system has small workload and does not need time-frequency transformation;both merits favor good real-time performance of the control algorithm.

    (4)Even though the actuator only has weak nonlinearity,it still needs to be compensated to avoid structural resonance of ship frame caused by nonlinear harmonics.The improved algorithm with nonlinear inverse-model compensator is proposed.

    3 Experiments and results discussion

    3.1 Experimental setup and algorithm setting

    The developed active-passive vibration isolators are installed in a single-deck vibration isolation system on which a 200 kW ship diesel generator is mounted,as shown in Fig.11.The generator weighs 3.6 t,supported by six active-passive isolators.The electromagnetic actuators(actuator 1#-6#)integrated in air spring act as the secondary vibration sources.Six accelerometers are mounted near the six isolators on the lower supporting frame and the signals recorded by them are used as error signals(these accelerometers are called error sensor e1-e6).The diesel generator can act as the primary source to excite broadband vibration with multiple harmonics,and the accelerometer mounted on the upper supporting frame records the reference signal.

    The control system works at 1 000 Hz sampling rate.The time-domain Fx-Newton algorithm with NBPF is run to investigate the performance of the isolator in controlling real machinery vibration,with the following settings:the Hilbert transformation is realized by a 21-order FIR filter and the corresponding time-delayer is 10 points;the controllers for each sinusoid are 15-order FIR filters,and the inverse secondary-path filtering is implemented witha 6×6 matrix of 2nd-order filters in the time domain;the controller coefficients are updated and the control signals are also generated in the time domain;the phase-shift compensator is realized by a 2nd-order filter.

    3.2 Passive isolation effect of broadband vibration

    The effect of broadband vibration isolation is evaluated at shaft rotating speeds of 1 000-1 500 r/min without active control.Signals recorded by six accelerators mounted on the upper frame and the other six accelerators near the isolators on the lower frame are used to calculate the vibration level difference,in range of 20-8 000 Hz.The results indicate that the isolator has excellent passive isolation effect on broadband vibration at each rotating speed,with vibration level difference larger than 32.8 dB.The 1/3-octave test result at the shaft rotating speed of 1 300 r/min is shown in Fig.12.

    Fig.11 Experimental setup and layout of measuring points for active vibration isolation

    Fig.12 Experimental result of passive broadband isolation at 1 300 r/min

    3.3 The attenuation effect on multiple sinusoidal vibrations excited by diesel generator

    In this test,the reference signal comes from the accelerometer mounted on the upper frame.The control algorithm is designed to effectively attenuate 10-11 outstanding sinusoids of vibration on the lower frame.

    Firstly,experiments are conducted at constant shaft rotating speeds of about 1 400 r/min and 1 200 r/min.The proposed Fx-Newton algorithm with NBPF(without compensator)is tested.

    Fig.13 Power spectrum density of acceleration on lower supporting frame before and after active control (a)At rotating speed of about 1400r/min;(b)At rotating speed of about 1 200 r/min

    Fig.13(a)and(b)show the power spectra of the vibration acceleration on the lower frame, before and after active control.Before active control,despite the good passive isolation effect introduced in Section 3.2,the vibration of lower frame still contains significant harmonic sinusoids.After active control,in additional to the passive isolation effect,the most outstanding 10-11 harmonics in the range of 20-150 Hz are further effectively attenuated by 15-37 dB until being merged into the background noise.

    The evolution of normalized error power at 110 Hz and 140 Hz at stable rotating speed of 1 200 r/min is also shown in Fig.14, which further demonstrates that the algorithm can rapidly,stably and effectively attenuate harmonics with amplitude-fluctuation.These results suggest that the proposed Fx-Newton algorithm with NBPF(without compensator)have very good vibration isolation effect on a real machine with stable rotating speed.

    Then,rotating speed fluctuation of±20 r/min around 1 200 r/min is manually driven by a fuel pump suction valve,and the Fx-Newton algorithms with NBPF and phase-shift compensator are tested.

    The test results in Fig.15(a)and(b)suggest that the proposed Fx-Newton algorithm with both NBPF and compensator has good robustness to frequency fluctuations and can effectively suppress frequency-fluctuating harmonics in a real machine.Fig.15(a)shows that the frequency-fluctuating harmonics are suppressed by about 15-32 dB at the 1st,1.5th,2nd,3.5th,4th order harmonics and about 10-18 dB at the 4.5th,5.5th,6th,6.5th,7th,7.5th order harmonics.Fig.15(b)shows the evolution of the average power spectrum of errors(based on STFT), which suggests that this algorithm could accomplish rapid and effective vibration suppression,and almost no significant low-frequency harmonics would appear in the error signals under control started at the 20th second.

    Fig.14 Evolution of normalized error power when control vibration at stable rotating speed of about 1 200 r/min

    Fig.15 The acceleration on the lower supporting frame before and after control,obtained by the narrowband Fx-Newton algorithm with phase-shift compensator,at fluctuating rotating speed of about 1 200±20 r/min(a)Power spectrum density;(b)Evolution of the power spectrum,based on STFT

    4 Conclusions

    It is important to control low-frequency sinusoidal vibration transmission of ship machinery.In this paper,an active-passive vibration isolator which contains an electromagnetic actuator integrated in an air spring isolator is developed for this purpose;it has the merits of small size,large carrying capacity,good broadband vibration isolation effect,and low power consumption for active control.

    A disengageable suspended structure is designed,which can automatically separate the actuator armature from the plate of air spring when shock or swing occurs on ship,to prevent rigid contact and give the isolator good adaptability to the ship environment.

    A time-domain MIMO Fx-Newton narrowband algorithm and modified algorithm with narrowband-pass filter(NBPF)and phase-shift compensator are proposed for the isolation system.This control algorithm can realize rapid convergence,and high control effect of low-frequency sinusoids in ship machinery vibration under complex situations such as multiple sinusoids,MIMO coupling,and amplitude and frequency fluctuation.

    Experiments conducted on an 200 kW ship diesel generator mounted on this isolator system show that when active control function is turned off,passive isolation larger than 32.8 dB can be achieved;when active function is turned on,in addition to passive vibration isolation, the most outstanding 10-11 sinusoids can be further attenuated by 10-37 dB,and almost no vibration is boosted at adjacent frequencies.Furthermore,the proposed Fx-Newton algorithm with NBPF and phase-shift compensator demonstrates very good robustness and large suppression effect in active control of frequency-fluctuating harmonics generated by the diesel generator.

    [1]Elliott S J.Signal processing for active control[M].Academic Press,London,2001.

    [2]Winberg M,Hansen C,Claesson I,et al.Active control of engine vibrations in a Collins class submarine[R].Blekinge Institute of Technology,2003.

    [3]Daley S,Johnson F A,Pearson J B,et al.Active vibration control for marine applications[J].Control Engineering Practice, 2004,12:465-474.

    [4]Berkman E F,Bender E K.Perspectives on active noise and vibration control[J].Sound and Vibration Magazine,1997,1:1-23.

    [5]New Technologies-Active Isolation[EB/OL].http://www.stopchoc.co.uk

    [6]Liang Qing,Duan Xiaoshuai.Research on the control of electromagnetic suspension vibration isolator based on filtered x-LMS algorithm[J].Journal of Vibration and Shock,2010(07):201-203+246.

    [7]Wang Hongyu,Qiu Tianshuang.Adaptive noise cancellation and time delay estimation[M].Dalian:Dalian University of Technology Press,1999.

    [8]Zhao Hongliang.Theory and experiment of control algorithm of frequency-selective active noise control system[D].Graduate University of Chinese Academy of Sciences,2004.

    [9]He Lin,Li Yan,Yang Jun.Theory and experiment of passive-active hybrid vibration isolation mounts using electromagnetic actuator and air spring[J].Acta Acustica,2013,38(2):241-249.

    [10]Li Yan,He Lin,Shuai Changgeng,Lv Zhiqiang.Adaptive control and nonlinear compensation for passive-active hybrid vibration isolation mount using maglev actuator[J].Journal of Vibration and Shock,2015,34(6):89-94.

    [11]Xu Wei,He Lin,et al.Dynamic analysis of an air spring mounting system for marine main engine[J].Journal of Vibration and Shock,2007,26(7):122-124+186.

    [12]Zhang Pan.Study of active vibration control for marine reciprocating machinery[D].Harbin:Harbin Engineering University,2013.

    [13]An Fengyan,Sun Hongling,Li Xiaodong,Tian Jing.Optimization of parameters in decentralized adaptive active control algorithm[J].Journal of Vibration Engineering,2013,26(1):48-54.

    [14]Li Yan,He Lin,Shuai Changgeng.MIMO Fx-Newton narrowband algorithm and experiment of active vibration isolation on diesel generator[J].Acta Acustica,2015,40(3):391-403.

    [15]Elliott S J,Rafaely B.Frequency-domain adaptation of causal digital filters[J].IEEE Transactions on Signal Processing, 2000,48:1354-1364.

    [16]Xiao Yegui,Ma Liying,Khorasani K,et al.A new robust narrowband active noise control system in the presence of frequency mismatch[J].IEEE Transactions on Audio,Speech,and Language Processing,2006,14(6):2189-2200.

    船舶機(jī)械低頻線譜振動(dòng)傳遞的主動(dòng)控制

    李彥1a,b,何琳1a,b,帥長(zhǎng)庚1a,b,馬建國(guó)1a,b,王飛1a,2,柳勇1a,3
    (1海軍工程大學(xué)a.振動(dòng)與噪聲研究所;b.船舶振動(dòng)噪聲重點(diǎn)實(shí)驗(yàn)室,武漢430033;2中國(guó)船舶科學(xué)研究中心,江蘇無(wú)錫214082;3中國(guó)船舶設(shè)計(jì)研究中心,武漢430064)

    針對(duì)船舶機(jī)械振動(dòng)的低頻線譜主動(dòng)控制,文章采用輸出力大、頻響平直、無(wú)接觸式的磁懸浮作動(dòng)器,分析了永磁偏置式作動(dòng)器的電-磁-力耦合特性,推導(dǎo)了磁懸浮主被動(dòng)隔振系統(tǒng)運(yùn)動(dòng)方程和系統(tǒng)穩(wěn)定性影響因素;研制了滿足船舶應(yīng)用要求、具有沖擊搖擺適應(yīng)能力的磁懸浮-氣囊主被動(dòng)混合隔振器。采用收斂快速的窄帶多通道Fx-Newton算法,并針對(duì)線譜頻率波動(dòng)時(shí)的控制魯棒性,提出了窄帶濾波相位差的自適應(yīng)補(bǔ)償環(huán)節(jié)。在船用200 kW柴發(fā)機(jī)組上進(jìn)行了主被動(dòng)混合隔振實(shí)驗(yàn),未開啟線譜控制時(shí),可獲得>32.8 dB的寬頻隔振效果;控制開啟后,可進(jìn)一步有效衰減傳遞到基座的多根線譜振動(dòng),并且在柴發(fā)機(jī)組的轉(zhuǎn)速波動(dòng)工況下依然能實(shí)現(xiàn)快速收斂、穩(wěn)定和高效控制。該主被動(dòng)混合隔振系統(tǒng)可滿足船舶機(jī)械低頻線譜控制的工程實(shí)用要求。

    船舶機(jī)械低頻線譜振動(dòng);主動(dòng)控制;磁懸浮—?dú)饽遥籉x-Newton算法;轉(zhuǎn)速波動(dòng);魯棒性

    TB533+.1

    :A

    李彥(1984-),女,海軍工程大學(xué)振動(dòng)與噪聲研究所博士研究生;

    1007-7294(2015)12-1549-15

    TB553+.1

    :A

    10.3969/j.issn.1007-7294.2015.12.011

    何琳(1957-),男,海軍工程大學(xué)振動(dòng)與噪聲研究所教授;

    帥長(zhǎng)庚(1976-),男,海軍工程大學(xué)振動(dòng)與噪聲研究所教授;

    馬建國(guó)(1990-),男,海軍工程大學(xué)振動(dòng)與噪聲研究所碩士研究生;

    王飛(1987-),男,中國(guó)船舶科學(xué)研究中心工程師;

    柳勇(1982-),男,中國(guó)船舶設(shè)計(jì)研究中心高級(jí)工程師。

    Received date:2015-09-08

    Biography:LI Yan(1984-),female,doctoral candidate of Institute of Noise&Vibration,Naval University of Engineering;Corresponding author:HE Lin(1957-),male,professor/tutor of Institute of Noise& Vibration,Naval University of Engineering,E-mail:helin202@vip.sina.com.

    猜你喜歡
    線譜磁懸浮被動(dòng)
    UUV慣導(dǎo)系統(tǒng)多線譜振動(dòng)抑制研究
    有趣的磁懸浮陀螺
    第二章 磁懸浮裝置
    新聞?wù)Z篇中被動(dòng)化的認(rèn)知話語(yǔ)分析
    主動(dòng)句都能轉(zhuǎn)換成被動(dòng)句嗎
    第五課 拒絕被動(dòng)
    神奇的磁懸浮
    神奇的磁懸浮
    “”維譜在艦船輻射噪聲線譜提取中的應(yīng)用
    基于隱馬爾可夫模型的線譜跟蹤技術(shù)
    √禁漫天堂资源中文www| 免费在线观看视频国产中文字幕亚洲| 动漫黄色视频在线观看| 久久中文看片网| 亚洲欧美一区二区三区黑人| 亚洲成a人片在线一区二区| 精品第一国产精品| 亚洲 欧美 日韩 在线 免费| 国产精品av视频在线免费观看| 国内毛片毛片毛片毛片毛片| 国产麻豆成人av免费视频| 最近最新中文字幕大全电影3| 99国产精品一区二区三区| 午夜福利在线在线| 欧美日韩亚洲综合一区二区三区_| 久久久国产成人免费| 久久午夜综合久久蜜桃| 中文亚洲av片在线观看爽| 亚洲国产精品sss在线观看| 色综合站精品国产| 久久久久性生活片| 久久久久免费精品人妻一区二区| 亚洲国产精品999在线| 亚洲人成77777在线视频| 免费在线观看黄色视频的| 91老司机精品| 999精品在线视频| 国产主播在线观看一区二区| 又大又爽又粗| 淫妇啪啪啪对白视频| 国产精品亚洲一级av第二区| 香蕉av资源在线| 亚洲国产精品成人综合色| 久久久国产成人免费| 国产日本99.免费观看| 亚洲精品av麻豆狂野| 亚洲精品中文字幕在线视频| av有码第一页| 热99re8久久精品国产| 精品久久久久久久久久久久久| www.熟女人妻精品国产| 99国产综合亚洲精品| 一本一本综合久久| 校园春色视频在线观看| 中文字幕高清在线视频| 国产午夜福利久久久久久| 无遮挡黄片免费观看| 久久婷婷人人爽人人干人人爱| 黄片小视频在线播放| a级毛片在线看网站| 又爽又黄无遮挡网站| 窝窝影院91人妻| 欧美成人午夜精品| av国产免费在线观看| 久久精品综合一区二区三区| 岛国在线免费视频观看| 亚洲欧美日韩高清专用| 久久精品国产99精品国产亚洲性色| 久久国产精品人妻蜜桃| 一本综合久久免费| 妹子高潮喷水视频| 国产成人系列免费观看| 国产欧美日韩精品亚洲av| 亚洲国产欧美一区二区综合| 两人在一起打扑克的视频| 中出人妻视频一区二区| 正在播放国产对白刺激| 黑人欧美特级aaaaaa片| 成人精品一区二区免费| 亚洲最大成人中文| 亚洲欧美精品综合一区二区三区| 国产高清视频在线播放一区| av天堂在线播放| avwww免费| 波多野结衣高清作品| 欧美性猛交╳xxx乱大交人| 男女之事视频高清在线观看| 午夜免费观看网址| 男人的好看免费观看在线视频 | av福利片在线观看| 国内揄拍国产精品人妻在线| 久久久久国内视频| 亚洲精品av麻豆狂野| 亚洲 国产 在线| 亚洲中文av在线| 久久久精品国产亚洲av高清涩受| 搞女人的毛片| 黄色女人牲交| 久久久久九九精品影院| 国产探花在线观看一区二区| 亚洲精品一区av在线观看| 香蕉丝袜av| 99久久综合精品五月天人人| 国产精品免费视频内射| 国产午夜精品久久久久久| 别揉我奶头~嗯~啊~动态视频| 国产激情偷乱视频一区二区| 啦啦啦免费观看视频1| cao死你这个sao货| 高潮久久久久久久久久久不卡| 午夜视频精品福利| 亚洲九九香蕉| 日韩欧美国产在线观看| 嫩草影视91久久| 天天添夜夜摸| 欧美成人免费av一区二区三区| 777久久人妻少妇嫩草av网站| 国产91精品成人一区二区三区| 欧美成狂野欧美在线观看| 国产99久久九九免费精品| 日韩免费av在线播放| 国产精品自产拍在线观看55亚洲| 色av中文字幕| 老汉色∧v一级毛片| 天堂√8在线中文| 狂野欧美白嫩少妇大欣赏| 国产亚洲精品综合一区在线观看 | 精品久久久久久成人av| 麻豆成人av在线观看| 男女下面进入的视频免费午夜| 国内毛片毛片毛片毛片毛片| 男插女下体视频免费在线播放| 99久久综合精品五月天人人| 国产成人精品久久二区二区免费| 妹子高潮喷水视频| 久久中文看片网| 男女视频在线观看网站免费 | 精品电影一区二区在线| 午夜亚洲福利在线播放| 日本一本二区三区精品| 日本五十路高清| 亚洲欧美一区二区三区黑人| 精品国产乱子伦一区二区三区| 天天躁夜夜躁狠狠躁躁| 免费人成视频x8x8入口观看| 一级毛片女人18水好多| 精品人妻1区二区| а√天堂www在线а√下载| svipshipincom国产片| 日本黄色视频三级网站网址| 国产午夜精品久久久久久| 国产区一区二久久| 国产亚洲精品久久久久久毛片| 亚洲成人国产一区在线观看| 桃色一区二区三区在线观看| 日本成人三级电影网站| a级毛片a级免费在线| 国产v大片淫在线免费观看| 变态另类成人亚洲欧美熟女| 久久久精品欧美日韩精品| 99久久综合精品五月天人人| 久久香蕉精品热| 琪琪午夜伦伦电影理论片6080| 亚洲黑人精品在线| 成年人黄色毛片网站| 老司机午夜十八禁免费视频| 亚洲一区高清亚洲精品| 成人一区二区视频在线观看| 精品福利观看| 欧美日韩中文字幕国产精品一区二区三区| 精品欧美一区二区三区在线| 不卡一级毛片| 久久人妻福利社区极品人妻图片| 两个人看的免费小视频| 精品久久久久久,| 又大又爽又粗| 一区二区三区国产精品乱码| av在线播放免费不卡| 成年人黄色毛片网站| 9191精品国产免费久久| 国产精品一及| 国产精品亚洲av一区麻豆| 一二三四在线观看免费中文在| 长腿黑丝高跟| 美女扒开内裤让男人捅视频| 亚洲成人久久性| 在线观看美女被高潮喷水网站 | 亚洲精品一区av在线观看| 亚洲国产欧美一区二区综合| 一级毛片高清免费大全| 少妇被粗大的猛进出69影院| 老司机午夜十八禁免费视频| 精品福利观看| 精品乱码久久久久久99久播| 国产单亲对白刺激| 午夜视频精品福利| 色播亚洲综合网| 国产探花在线观看一区二区| 搡老岳熟女国产| 一本久久中文字幕| 老司机深夜福利视频在线观看| 丰满的人妻完整版| 午夜激情福利司机影院| 在线观看www视频免费| 俄罗斯特黄特色一大片| 精品久久久久久久久久久久久| 欧美+亚洲+日韩+国产| 狠狠狠狠99中文字幕| 精品久久久久久久久久免费视频| 美女午夜性视频免费| 欧美成狂野欧美在线观看| 国产免费男女视频| 国产精品,欧美在线| 亚洲人成伊人成综合网2020| 色哟哟哟哟哟哟| 一个人免费在线观看电影 | 日本黄色视频三级网站网址| 69av精品久久久久久| 国产探花在线观看一区二区| 午夜免费观看网址| 色综合欧美亚洲国产小说| 人妻夜夜爽99麻豆av| 亚洲欧美一区二区三区黑人| 在线国产一区二区在线| 五月玫瑰六月丁香| 国产精品永久免费网站| 亚洲精品在线观看二区| 国产在线观看jvid| 国产成人一区二区三区免费视频网站| 久久国产精品影院| 国产高清有码在线观看视频 | 国产精品久久久人人做人人爽| 午夜激情福利司机影院| 麻豆久久精品国产亚洲av| 精品国产乱码久久久久久男人| 成人18禁高潮啪啪吃奶动态图| 日本五十路高清| 黄片大片在线免费观看| 91九色精品人成在线观看| 久久中文看片网| 女人被狂操c到高潮| 亚洲一区二区三区色噜噜| 日日干狠狠操夜夜爽| 脱女人内裤的视频| 亚洲,欧美精品.| 亚洲第一欧美日韩一区二区三区| 日韩精品青青久久久久久| 午夜福利在线观看吧| 看黄色毛片网站| 午夜免费观看网址| 蜜桃久久精品国产亚洲av| 亚洲全国av大片| 免费看十八禁软件| 成人国产综合亚洲| 欧美日韩亚洲综合一区二区三区_| 国产在线精品亚洲第一网站| 在线永久观看黄色视频| 亚洲精品国产一区二区精华液| 国产爱豆传媒在线观看 | 欧美一区二区精品小视频在线| 夜夜爽天天搞| 搡老熟女国产l中国老女人| 88av欧美| 美女扒开内裤让男人捅视频| 搡老岳熟女国产| 国产成人aa在线观看| 亚洲专区国产一区二区| 成人午夜高清在线视频| 欧美乱色亚洲激情| 听说在线观看完整版免费高清| 91大片在线观看| 亚洲自拍偷在线| 精品欧美国产一区二区三| 精品福利观看| 欧美zozozo另类| 看黄色毛片网站| 国产成年人精品一区二区| 校园春色视频在线观看| 久久久久亚洲av毛片大全| 日本一二三区视频观看| 三级男女做爰猛烈吃奶摸视频| 欧美日韩亚洲综合一区二区三区_| 看免费av毛片| 亚洲精品色激情综合| 欧美日韩亚洲国产一区二区在线观看| 国产精品久久久久久亚洲av鲁大| 国产精品美女特级片免费视频播放器 | 精品日产1卡2卡| 亚洲全国av大片| 国产精华一区二区三区| 久久香蕉精品热| 国产成人精品久久二区二区91| 9191精品国产免费久久| 90打野战视频偷拍视频| 国产精品野战在线观看| 美女高潮喷水抽搐中文字幕| 久久午夜综合久久蜜桃| 1024香蕉在线观看| 国产精品 欧美亚洲| 亚洲自拍偷在线| 国产成人av教育| 国产一级毛片七仙女欲春2| 日本 欧美在线| 日韩国内少妇激情av| 国产精品九九99| 制服人妻中文乱码| 国内揄拍国产精品人妻在线| 校园春色视频在线观看| 日韩 欧美 亚洲 中文字幕| 99久久精品国产亚洲精品| 亚洲成人久久性| 黄片大片在线免费观看| 成人特级黄色片久久久久久久| 99久久无色码亚洲精品果冻| 婷婷亚洲欧美| 99国产精品一区二区蜜桃av| 国内精品一区二区在线观看| 日本a在线网址| 搡老熟女国产l中国老女人| 亚洲精品国产精品久久久不卡| 久久午夜综合久久蜜桃| 国产高清激情床上av| 97超级碰碰碰精品色视频在线观看| 香蕉久久夜色| 亚洲成人中文字幕在线播放| 久久久久久久精品吃奶| 欧美另类亚洲清纯唯美| 亚洲最大成人中文| 国产精品香港三级国产av潘金莲| 最近最新免费中文字幕在线| 久久精品国产99精品国产亚洲性色| 欧美精品啪啪一区二区三区| 色噜噜av男人的天堂激情| 麻豆国产av国片精品| 免费观看精品视频网站| 在线观看免费视频日本深夜| 天堂√8在线中文| 无人区码免费观看不卡| 欧美 亚洲 国产 日韩一| 在线观看一区二区三区| 丝袜人妻中文字幕| 人妻丰满熟妇av一区二区三区| 亚洲精品一区av在线观看| 中亚洲国语对白在线视频| 不卡av一区二区三区| av在线天堂中文字幕| 精品高清国产在线一区| 亚洲狠狠婷婷综合久久图片| 好看av亚洲va欧美ⅴa在| 欧美日韩中文字幕国产精品一区二区三区| 丁香六月欧美| 露出奶头的视频| 成人精品一区二区免费| 90打野战视频偷拍视频| 91九色精品人成在线观看| or卡值多少钱| 国产成+人综合+亚洲专区| 成在线人永久免费视频| 搞女人的毛片| 大型av网站在线播放| 欧美精品啪啪一区二区三区| 人成视频在线观看免费观看| 欧美不卡视频在线免费观看 | 日韩中文字幕欧美一区二区| 丝袜人妻中文字幕| 精品国产超薄肉色丝袜足j| 久久久久九九精品影院| 日本黄大片高清| 给我免费播放毛片高清在线观看| 999久久久精品免费观看国产| 男人的好看免费观看在线视频 | aaaaa片日本免费| 国产高清视频在线播放一区| 午夜激情福利司机影院| 国产野战对白在线观看| 成年女人毛片免费观看观看9| 亚洲国产精品sss在线观看| 性欧美人与动物交配| 亚洲美女黄片视频| 狂野欧美激情性xxxx| 亚洲国产精品sss在线观看| 久久精品国产99精品国产亚洲性色| 日韩欧美精品v在线| 欧美黄色淫秽网站| 99re在线观看精品视频| 日韩欧美在线二视频| 日本 av在线| 色尼玛亚洲综合影院| 国产蜜桃级精品一区二区三区| svipshipincom国产片| 国产免费av片在线观看野外av| √禁漫天堂资源中文www| 国产av一区二区精品久久| svipshipincom国产片| 日韩欧美一区二区三区在线观看| 亚洲人成网站高清观看| 亚洲精品美女久久av网站| 日韩大尺度精品在线看网址| 久久久久久国产a免费观看| 男男h啪啪无遮挡| 舔av片在线| 国产精品亚洲美女久久久| 国产精品久久久久久精品电影| www.熟女人妻精品国产| 五月玫瑰六月丁香| 一区二区三区国产精品乱码| 精品国产乱码久久久久久男人| 欧美 亚洲 国产 日韩一| 性色av乱码一区二区三区2| 亚洲国产精品合色在线| 欧美成人一区二区免费高清观看 | 岛国视频午夜一区免费看| 91大片在线观看| 男女床上黄色一级片免费看| 99国产精品99久久久久| 国产伦人伦偷精品视频| 午夜激情av网站| 99riav亚洲国产免费| 亚洲 欧美 日韩 在线 免费| 在线观看免费午夜福利视频| 免费看a级黄色片| 久久草成人影院| 国内揄拍国产精品人妻在线| 男女那种视频在线观看| 琪琪午夜伦伦电影理论片6080| 亚洲av成人一区二区三| av视频在线观看入口| 久久久久国产精品人妻aⅴ院| 日日干狠狠操夜夜爽| 国产精品一区二区精品视频观看| 亚洲成av人片免费观看| 又粗又爽又猛毛片免费看| 在线看三级毛片| 国产精品久久久av美女十八| 亚洲第一电影网av| 国产精品一区二区三区四区久久| 久久久久久久久免费视频了| 婷婷六月久久综合丁香| 国产亚洲欧美98| 在线看三级毛片| 人人妻人人看人人澡| 男女下面进入的视频免费午夜| 狂野欧美激情性xxxx| 中文字幕最新亚洲高清| 神马国产精品三级电影在线观看 | xxx96com| 国产精品av视频在线免费观看| 久久精品国产99精品国产亚洲性色| ponron亚洲| 久久九九热精品免费| 韩国av一区二区三区四区| 天堂动漫精品| 级片在线观看| 一a级毛片在线观看| 欧美丝袜亚洲另类 | 中文资源天堂在线| 久久久水蜜桃国产精品网| 黄色丝袜av网址大全| 国产在线观看jvid| 亚洲一区高清亚洲精品| 此物有八面人人有两片| 男人和女人高潮做爰伦理| 美女脱内裤让男人舔精品视频 | 日韩欧美国产在线观看| 亚洲国产欧洲综合997久久,| 国产亚洲精品av在线| 欧美zozozo另类| 欧美日韩一区二区视频在线观看视频在线 | 99久久人妻综合| 亚洲国产欧洲综合997久久,| 色5月婷婷丁香| 夜夜爽天天搞| 日韩欧美 国产精品| 色视频www国产| 欧美bdsm另类| 亚洲三级黄色毛片| 观看美女的网站| 一级黄色大片毛片| 亚洲国产精品成人久久小说 | 尤物成人国产欧美一区二区三区| 精品久久国产蜜桃| 国内精品一区二区在线观看| av卡一久久| 久久久久久久久久久免费av| 亚洲国产精品成人综合色| 在线播放国产精品三级| 看免费成人av毛片| 中文字幕熟女人妻在线| 久久久精品大字幕| 亚洲av.av天堂| 国产v大片淫在线免费观看| 亚洲精品久久久久久婷婷小说 | 国产精品人妻久久久影院| 国产综合懂色| 国产高清激情床上av| 亚洲久久久久久中文字幕| 久久精品国产自在天天线| 国产一级毛片在线| 国产精品福利在线免费观看| 久久精品国产亚洲网站| 亚洲精品自拍成人| 成人av在线播放网站| 亚洲成人久久性| 久久久久网色| 亚洲欧美精品自产自拍| 一本一本综合久久| 不卡一级毛片| 日韩亚洲欧美综合| 日韩精品青青久久久久久| 校园春色视频在线观看| 九色成人免费人妻av| 国产成人freesex在线| 亚洲精品国产av成人精品| 久久欧美精品欧美久久欧美| 直男gayav资源| 亚洲欧洲日产国产| 免费无遮挡裸体视频| 国产精品久久久久久精品电影小说 | 热99在线观看视频| 国产精品野战在线观看| 久久韩国三级中文字幕| 精品人妻偷拍中文字幕| 亚洲美女搞黄在线观看| 成人特级av手机在线观看| 大香蕉久久网| 乱系列少妇在线播放| 国产不卡一卡二| 黄色欧美视频在线观看| av在线播放精品| 1000部很黄的大片| 欧美极品一区二区三区四区| 麻豆国产97在线/欧美| 国产毛片a区久久久久| 国产真实乱freesex| 亚洲精品成人久久久久久| 国产色婷婷99| 99国产精品一区二区蜜桃av| 国产精品综合久久久久久久免费| 成熟少妇高潮喷水视频| 国产精品三级大全| 人人妻人人澡人人爽人人夜夜 | 噜噜噜噜噜久久久久久91| 欧美最新免费一区二区三区| 秋霞在线观看毛片| av免费在线看不卡| 国产精品99久久久久久久久| 在现免费观看毛片| 少妇被粗大猛烈的视频| 国产伦精品一区二区三区四那| 亚洲aⅴ乱码一区二区在线播放| 成人毛片60女人毛片免费| 人妻久久中文字幕网| АⅤ资源中文在线天堂| 老熟妇乱子伦视频在线观看| 国产精品一区www在线观看| 精品国产三级普通话版| 在线国产一区二区在线| 午夜老司机福利剧场| 国产精品福利在线免费观看| 亚洲在线自拍视频| 国产黄片视频在线免费观看| 国产高潮美女av| 免费黄网站久久成人精品| 精品久久国产蜜桃| av福利片在线观看| 成年免费大片在线观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚州av有码| 国产免费男女视频| 在线免费十八禁| 久久精品夜夜夜夜夜久久蜜豆| 午夜视频国产福利| 一本久久精品| av国产免费在线观看| 99精品在免费线老司机午夜| 97人妻精品一区二区三区麻豆| 级片在线观看| 免费观看人在逋| 12—13女人毛片做爰片一| 亚洲美女搞黄在线观看| 中国国产av一级| 日本-黄色视频高清免费观看| 国产v大片淫在线免费观看| 国产一区二区在线av高清观看| 欧美不卡视频在线免费观看| 99热6这里只有精品| 美女国产视频在线观看| 国产伦一二天堂av在线观看| 国产老妇伦熟女老妇高清| 亚洲欧洲国产日韩| 欧美日本视频| 精品欧美国产一区二区三| 午夜a级毛片| 在线国产一区二区在线| 毛片女人毛片| 一区福利在线观看| 中文字幕久久专区| 18禁在线无遮挡免费观看视频| 久久久午夜欧美精品| 亚洲av成人精品一区久久| 91久久精品国产一区二区成人| 日韩一本色道免费dvd| 国产 一区 欧美 日韩| av在线播放精品| 久久欧美精品欧美久久欧美| 日本一本二区三区精品| 日日干狠狠操夜夜爽| 又粗又爽又猛毛片免费看| 丝袜喷水一区| 欧美在线一区亚洲| 亚洲精品久久久久久婷婷小说 | 久久久久久久久久成人| 简卡轻食公司| 我的女老师完整版在线观看| 看免费成人av毛片| 久久精品国产亚洲网站| 长腿黑丝高跟| 精品不卡国产一区二区三区| 国产精品伦人一区二区| 欧美一区二区国产精品久久精品| 日本黄色视频三级网站网址| 精品久久久久久成人av| 久久综合国产亚洲精品| 日本免费一区二区三区高清不卡| 老师上课跳d突然被开到最大视频|