• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Theoretical and Numerical Research on CTOD for Ship Plate under Cyclic Loading Considering Accumulative Plastic Strain

    2015-05-02 09:29:22DONGQinYANGPingDENGJunlinWANGDn
    船舶力學(xué) 2015年12期
    關(guān)鍵詞:武漢理工大學(xué)參量船體

    DONG Qin,YANG Ping,DENG Jun-lin,WANG Dn

    (a.School of Transportation;b.Key Laboratory of High Performance Ship Technology of Ministry of Education,Wuhan University of Technology,Wuhan 430063,China)

    Theoretical and Numerical Research on CTOD for Ship Plate under Cyclic Loading Considering Accumulative Plastic Strain

    DONG Qina,YANG Pingb,DENG Jun-lina,WANG Dana

    (a.School of Transportation;b.Key Laboratory of High Performance Ship Technology of Ministry of Education,Wuhan University of Technology,Wuhan 430063,China)

    The Crack Tip Opening Displacement(CTOD)is one of the important parameters for studying the low-cycle fatigue of plate sustaining large scale yielding.The CTOD value can reflect the ability of material resistance to crack initiation and propagation,and it is an important parameter to evaluate material toughness as well as the main controlling parameter to analyze the crack propagation due to low-cycle fatigue damage.In this paper,based on the theory of elastic-plastic fracture mechanics,the cyclic J integration is explored as breakthrough point and accumulative plastic strain at crack tip as the significant parameter,an analytical model is presented to determine the CTOD for the central-through cracked plates subjected to cyclic axial in-plane loading.Also,the finite element analysis is conducted to investigate the influence of stress ratio and stress amplitude.The new accumulative plastic strain-based CTOD estimation formulations presented in this paper provides a new way for low-cycle fatigue analysis considering accumulative plastic damage for central-through cracked plates under high cyclic loadings.

    central-through cracked plate;cyclic loading;accumulative plastic strain;

    0 Introduction

    Along with the increasing in ship dimensions and more use of high-strength steel in recent years,the stress and deformation of ship structures are so high and large,which result in prominent problem demanding prompt solution in the development of large-scale ships.For cracked plate of ship and marine structures,plastic strain would generate in the region near crack tip when the local stress reaches the yield strength.When a ship subjects to cyclic loading,plastic strain would accumulate in local region of the crack tip,and this accumulative incremental plastic strain would speed up the fracture failure of the structure when it accumulates to a certain degree along with the increasing of the cyclic loading.Crack tip opening displacement(CTOD)and J integration are the major parameters to describe crack propagation ofductile structural materials(Hutchinson,1982)[1].However,J integration is rarely used to assess the structure fracture under cyclic loading because it cannot be applied to unloading state.Therefore,studying and establishing assessment methods of CTOD based on accumulative plastic strain under cyclic loading are of great practical significance.

    CTOD reflects the plastic deformation performance in the region near crack tip and the resistance of material fracture toughness at crack tip.It is a measurement of plastic deformation at crack tip,so it is widely used as a criterion of the fracture failure.Previously,CTOD calculation models based on stress intensity factor had been proposed for applying only to linear elastic state(Dugdale,1960;Cottrell,1975;Yaowu Shi,1998)[2-4].Dugdale(1960)model has been widely studied and used for establishing the corresponding relationship between external load and crack parameters.Jiang(2005)[5]analyzed CTOD of ship stiffened plate based on Dugdale model and found out the influence rule caused by external load,stiffness ratio and other factors.Finite element method(Potirniche et al,2003;Wu,2009;Chen,2011,2015)[6-9]is one of the efficient ways in studying elastic-plastic fracture problems,thus it is widely used in various kinds of fracture assessments.It is used to study CTOD and other relative parameters through calculation of crack tip stress-field and displacement-field.Potirniche et al (2003)[6]calculated the size of crack tip plastic zone and CTOD of the steady microscopic structural small crack,and high precision CTOD is obtained through bringing two-dimensional small strain constitution relation of the single crystal plasticity theory into finite element software ANSYS.Wu(2009)[7]proposed an effective method to estimate fracture toughness of the test specimen based on the numerical results of CTOD.In their study,elastic-plastic finite element method is used to calculate the CTOD,taking tensile specimen with axial notch as research object.Chen(2011,2015)[8-9]has carried out numerical analysis of CTOD based on the crack maximum opening displacement(CMOD),and simplified the finite element calculation model by eliminating the effects of external load,model dimensions,material properties and crack length.Besides,some researchers have studied CTOD based on the local strain of the crack tip and proposed the CTOD calculation model that can only be applied to low strain and static loading(Schwalbe,1994;Linkens et al,2000;Jayadevan et al,2004)[10-12].Hiroshi (2007)[13]presented a new method to assess local stress based on the relationship between local stress and linear elastic fracture mechanics.He discussed corresponding relationship between local strain and CTOD,and realized the idea to determine CTOD based on local strain by twodimensional finite element method.There are a lot of discussions about using these calculation models for cracked structures under complex load.At present,many researchers have studied CTOD under complex load and obtained their corresponding conclusions.Alike putting forward CTOD calculation models(Bjerke et al,2011;Yi et al,2014)[14-15],Ostby(2005)[16]calculated large plastic strain of cracked pipeline structure and proposed a simple CTOD evaluation method based on the plastic strain.Zhang(2014)[17]discussed the CTOD evaluation model for marine pipeline structure under large plastic strain,considering the influence of crack size,material hardening exponent and external load.

    Among the above mentioned analyses,the studies on CTOD are either confined to linear elastic state or only about finite element analysis of plastic strain under static load.There is few fracture assessment about cracked plate under LCF load.Taking central-through cracked plate as the study object,the paper establishes a CTOD calculation model based on accumulative plastic strain at crack tip,meanwhile,the influence of stress ratio and stress amplitude are analyzed through numerical simulation.The analysis provides a feasible way for fracture failure assessment for ship and marine structural component under actual cyclic loading.

    1 Theoretical analysis

    According to Shih[18],a simple relationship exists between the J-integration and the crack tip opening displacement for central-through cracked plate subject to uniaxial loading:

    where σyis the yield stress and dnrelies on the hardening behavior of the material.For powerlaw hardening materials the crack-tip stress-strain fields are the Hutchinson,Rice and Rosengren(HRR)[19-20]singular fields.In this case,dnis a function of the Ramberg-Osgood hardening exponent n and was tabulated by Shih[21]for both plane strain and plane stress.The tabulated values for plane stress given by Shih[21]can be fitted with a third order polynomial function:

    If cyclic loading is considered,the cyclic J-integration△J has a solid mathematical foundation if the material shows Masing behavior.All properties in Eq.(1)have to be replaced by their cyclic counterparts.Following Kumar et al[22]and Heitmann et al[23],△J can be approximated by the sum of an elastic(small scale yielding)and a plastic contribution.For I crack with crack length a in a flat specimen under plane stress,one obtains:

    where n′is the cyclic hardening exponent,σcyis the cyclic yield stress and E is Young’s modulus.△σ and△εplare the stress and plastic strain range,respectively.Crack closure is taken into account by the use of the effective stress range△σeff=σmax-σopin the elastic part of△J.σmaxand σopare the maximum and crack opening stress,respectively.All quantities in Eq.(3)can be determined from stress-strain hysteresis loops except σop,which can either be estimated with empirical formulas or taken from numerical calculations.Here,the crack opening stress equation by Newman[24]is used,which predicts decreasing crack opening stresses with increasing maximum stresses,as is observed under LCF conditions.

    The equation between plastic strain and accumulative plastic strain in Chaboche[25]can be differentiated as:

    where△pn+1is the equivalent plastic strain increment in the n+1 cycle,which can be obtained by Newton-Raphson iteration.So the accumulative plastic strain increment△εn+1after n+1 cycles can be calculated.Plastic strain increment in each cycle can also be derived by updating the corresponding parameters.The relationship between plastic stress and strain of the central cracked plate at crack tip in n+1 cycle can be expressed as Ramberg-Osgood[26-27]:

    Substituting Eq.(6)into Newton-Raphson[25]iteration formula,thus plastic strain increment△pn+1after n+1 cycles can be calculated,and accumulative plastic strain increment△εn+1after n+1 cycles can be obtained by Eq.(5).

    The central-through cracked plate in the paper only subjects to uniaxial cyclic loading, therefore the relationship between accumulative plastic strain increment after n+1 cycles and plastic strain increment in n+1 cycle can be expressed as:

    According to Eq.(5)~Eq.(7),the accumulative plastic strain after n+1 cycles can be written as:

    Therefore,Eq.(8)is the expression for the value of the accumulative increment plastic strainaround crack tip of central-through cracked plate after n+1 cycles.

    According to Eq.(3)and Eq.(8),an analytical model is presented in this paper to determine the CTOD allowing for the influence of accumulative plastic strain for the centralthrough cracked plates subjected to cyclic axial in-plane loading.

    2 Finite element analysis and discussion

    A central-through cracked plate(length=2L,width=2W,crack length=2a)is considered to study the stress and strain behavior near the crack tip under cyclic loading.The finite element software ANSYS is used to conduct the parametric modeling and finite element analysis for ship plate with central-through crack.Plane 82 with 8 node is adopted as the element type and the material model adopted is essentially the constitutive equations by Chaboche,where both isotropic and kinematic hardening variables are considered during the cyclic response. The geometry model and finite element model of ship plate with central-through crack is shown in Fig.1.Singular element is used to deal with crack tip and refined mesh is adopted in crack tip region.Stainless steel 304 is selected in the finite element model and Tab.1 shows the material parameters.

    2.1 Near-tip stress-strain field under cyclic loading

    Fig.1 Geometry model and finite element model of ship plate with central through crack

    Tab.1 Material parameters of 304 stainless steel

    Fig.2 The stress-strain curve near the crack tip of Chaboche cyclic plastic model

    Finite element computations are carried out over 100 cycles at selected load ratios at maximum external load of 240 MPa.The hoop stress-strain loop atcrack tip for central-through cracked plate is shown in Fig.2.The stress-strain loop exhibits a progressive shift in the direction of increasing tensile strain,which means the plastic strain accumulates obviously at crack tip under constant amplitude cyclic loading.

    2.2 The relationship between accumulative plastic strain and cyclic number

    According to the calculation of the finite element model in Fig.1,the relations of accumulative plastic strain to stress ratio and stress amplitude are shown in Figs.3-4.The size of the central-through cracked plate is L=150 mm,W=130 mm,a=10 mm,change stress ratio and stress amplitude R=0.1,R=0.2,R=0.3,σa=240 MPa,σa=260 MPa,σa=280 MPa,the results are obtained through a series of numerical simulation.

    Fig.3 The curve of accumulative plastic strain vs cyclic number under different stress ratio

    Fig.4 The curve of accumulative plastic strain vs cyclic number under different stress amplitude

    These results seem to suggest that whilst the stress/strain range near the crack tip remains fairly constant during the cyclic loading and scales with the external load range,the accumulative plastic strain increases and is associated with stress ratio and stress amplitude.The continuous increase of the accumulative plastic strain may eventually lead to the material separation near the crack tip hence crack propagation.The results suggest that,in the near-tip stress-strain field,the accumulative plastic strain increases with the increase of stress ratio and stress amplitude,admittedly these results are based on a stationary crack,which reveals that the stress ratio and stress amplitude affect accumulative plastic strain significantly under cyclic loading.

    2.3 The relationship between Crack Tip Opening Displacement(CTOD)and cyclic number

    According to the calculation of the finite element model in Fig.1,the relations of crack tip opening displacement to stress ratio and stress amplitude are shown in Figs.5-6.The size of the central-through cracked plate is L=150 mm,W=130 mm,a=10 mm,change stress ratio and stress amplitude R=0.1,R=0.2,R=0.3,σa=240 MPa,σa=260 MPa,σa=280 MPa,the results are obtained through a series of numerical simulation.

    Figs.5-6 show that for constant stress ratio and stress amplitude,the crack tip opening displacement increases with the cyclic number under constant cyclic loading.It can be seen that in the near-tip stress-strain field,the CTOD increases with the increase of stress ratio andstress amplitude,which reveals that the stress ratio and stress amplitude affect CTOD significantly under cyclic loading.

    Fig.5 The curve of CTOD vs cyclic number under different stress ratio

    Fig.6 The curve of CTOD vs cyclic number under different stress amplitude

    3 The relationship between CTOD and accumulative plastic strain at crack tip under cyclic loading

    According to Eq.(3),an analytical model is presented in this paper to determine the CTOD based on accumulative plastic strain for the central-through cracked plates subjected to cyclic axial in-plane loading.To keep the integrity of this work,some influence factors are taken into account.For the finite element model shown in Fig.1,the relation of△CTOD and△εpof the central-through cracked plate under cyclic loading allowing for the influence of stress ratio and stress amplitude have been calculated and compared with analytical results.

    3.1 The effect of stress ratio

    To investigate the influence of stress ratio on the functional relationship between△CTOD and△εp,keep stress amplitude σa=240 MPa unchanged and different stress ratio R=0.1,R=0.2,R=0.3.The△CTOD and△εpcan be calculated with the same material parameters shown in Tab.1.To compare with analytical results Eq.(3),the results are shown in Fig.7.

    It is seen from Fig.7 that,the crack tip opening displacement of central-through cracked plate monotonically increases with accumulative plastic strain for the increasing of stress ratio.It is obvious that the stress ratio apparently influence the relationship between CTOD and accumulative plastic strain,i.e.,the CTOD rapidly increases with stress ratio at a constant stress amplitude.It can be found from Fig.7,the finite element results are consistent with prediction results,and show smaller dispersion.It indicates the prediction model can well reflect the behavior of CTOD under cyclic loading and shows certain feasibility and good precision.

    Fig.7 The curve of CTOD vs accumulative plastic strain under different stress ratio

    3.2 The effect of stress amplitude

    To investigate the influence of stress amplitude on the functional relationship between△CTOD and△εp,keep stress ratio R=0.1 unchanged and different stress amplitude σa=240 MPa,σa=260 MPa,σa=280 MPa.The△CTOD and△εpcan be calculated with the same material parameters shown in Tab.1.To compare with analytical results Eq.(3),the results are shown in Fig.8.

    It is seen from Fig.8 that,the crack tip opening displacement of central-through cracked plate monotonically increases with accumulative plastic strain for the increasing of stress amplitude and the effect of stress amplitude is more significant than that of stress ratio.It is obvious that the stress amplitude apparently influences the relationship between CTOD and accumulative plastic strain,i.e.,the CTOD rapidly increases with stress amplitude at a constant stress ratio.It can be found from Fig.8,the finite element results are consistent with prediction results,and show smaller dispersion.It indicates the prediction model can well reflect the behavior of CTOD under cyclic loading and shows certain feasibility and good precision.

    Fig.8 The curve of CTOD vs accumulative plastic strain under different stress amplitude

    4 Conclusions

    Based on the theory of elastic-plastic fracture mechanics,we explore the cyclic J integration as breakthrough point and accumulative plastic strain at crack tip as the significant parameter,an analytical model is presented in this paper to determine the CTOD for the centralthrough cracked plates subjected to cyclic axial in-plane loading.Also in the present work,the finite element analysis is conducted to investigate the influence of stress ratio and stress amplitude.The conclusions can be drawn as follows:

    (1)The results suggest that the accumulative plastic strain increases during the cyclic loading and is associated with stress ratio and stress amplitude.

    (2)The study reveals that stress ratio and stress amplitude have obvious influence on the relationship of CTOD vs.accumulative plastic strain.The finite element results are consistent with prediction results and show smaller dispersion.It indicates the prediction model can well reflect the behavior of CTOD under cyclic loading and shows certain feasibility and good precision.

    [1]Hutchinson J W.Fundamentals of the phenomenological theory of nonlinear fracture mechanics[J].J Appl.Mech.,1982, 49:103-197.

    [2]Dugdale D S.Yielding of steel sheets containing slits[J].J Meeh.Phys.Solids,1960,8:100-108.

    [3]Cottrell A H.Mechanisms of fracture,the 1963 Tewksbury lecture[R].Tewksbury 146 SymPo.On Fracture,1963:1-27.

    [4]Yaowu S,Siying S,Hidekazu M,et al.Finite element analysis on relationships between the J-integral and CTOD for stationary cracks in welded tensile specimens[J].Pres.Ves.PIP.,1998,75:197-202.

    [5]Jiang Cuixiang.Research on fracture and crack arrest in ship structures[D].Wuhan:Ph.D.Dissertation of Huazhong University of Science and Technology,2005.

    [6]Potirniehe G P,Daniewiez S R.Analysis of crack tip plasticity for microstructuralIy small cracks using crystal plasticity theory[J].Eng.Fraet.Meeh.,2003,70:1623-1643.

    [7]Wu F W,Ibrahim R N,Das R,et al.Fracture toughness for CNT specimens from numerieally obtained critical CTOD values[J].Theor.Appl.Fract.Meeh.,2009,52:50-54.

    [8]Chen Jingjie.Strength analysis method research of cracked ship structure[D].Dalian:Dalian University of Technology,2011.

    [9]Chen Jingjie,Huang Yi.A study on evaluation method of crack tip reverse plastic zone size for the center cracked steel plate model under tension-compression cyclic loading[J].Engineering Fracture Mechanics,2015,133:138-151.

    [10]Schwalbe K H.The crack tip opening displacement and J integral under strain control and fully plastic conditions estimated by the engineering treatment model for planes tress tension[J].In:Fracture Mechanics:Twenty-fourth vol.ASTM,Philadelphia,1994:636-651.

    [11]Linkens D,Formby C L.Astrain-based approach to fracture assessment-example applications[C]//In:Proceedings of Fifth International Conference on Engineering Structural Integrity Assessment.Cambridge,EMAS,2000:45-52.

    [12]Jayadevan K R,?stby E,Thaulow C.Strain-based fracture mechanics analysis of pipelines[C]//In:Proceedings of International Conference on Advances in Structural Integrity.Bangalore,2004.

    [13]Shimanuki Hiroshi,INOUE,Takehiro.Study on the CTOD estimation method of the crack in stress concentrated area[J]. Japan Welding Association Conference Proceedings,2007,25(l):230-237.(in Japanese)

    [14]Bjerke S L,Scultori M.DNV’s strain-based fracture assessment approach for pipeline girth welds[C]//In:Proceedings of the International Offshore and Polar Engineering Conference,ISOPE,2011,21:690-697.

    [15]Yi D K,Xiao Z M.One lastic-plastic fracture behavior of a bi-layered composite plate with a sub-interface crack under mixed mode loading[J].Compos.PartB:Eng.,2014,60:60-73.

    [16]?stby E,Jayadevan K R,Thaulow C.Fracture response of pipelines subject to large plastic deformation under bending[J]. Int.J Press.VesselsPip,2005,82:201-215.

    [17]Zhang Y M,Xiao Z M,et al.Strain-based CTOD estimation formulations for fracture assessment of offshore pipelines subjected to large plastic deformation[J].Ocean Engineering,2014,91:64-72.

    [18]Shih C F.Relationship between the J-integral and the crack opening displacement for stationary and extending cracks[J]. Mech Phys Solids,1981,29(4):305-326.

    [19]Hutchinson J W.Singular behavior at the end of a tensile crack in a hardening material[J].Mech Phys Solids,1968,16:13-31.

    [20]Rice J R,Rosengren G F.Plane strain deformation near a crack tip in a power-law hardening material[J].Mech Phys Solids,1968,16:1-12.

    [21]Shih C F.Tables of Hutchinson-Rice-Rosengren singular field quantities[R].Tech.rep.Brown University Report MRL E-147,1983.

    [22]Kumar V,German M D,Shih C F.An engineering approach for elastic-plastic fracture analysis[R].Tech.rep.Report NP-1931 on Project 1237-1 for Electric Power Research Institute,Palo Alto,California,1983.

    [23]Heitmann H H,Vehoff H,Neumann P.Advances in fracture research 84[M].In:Valluri SR,et al.,editor.Proc of ICF6, vol.5.Oxford and New York:Pergamon Press Ltd.,1984:3599-3606.

    [24]Newman J C.A crack opening stress equation for fatigue crack growth[J].International Journal of Fatigue,1984,24:131-135.

    [25]Hu Guijuan.Plastic behavior of metals under tension-torsion loading-experimental and numerical reaserch on yield surface evolution[D].Doctor of philosophy degree thesis,Guangxi:Guangxi University,2012.

    [26]Landgraf R W,Morrow J.Determination of the cyclic stress-strain curve[J].Journal of Materials,1969,4(1):176.

    [27]Noroozi A H,Glinka G,Lambert S.A two parameter driving force for fatigue crack growth analysis[J].International Journal of Fatigue,2005,27:1277-1296.

    循環(huán)載荷下考慮累積塑性影響的船體板CTOD理論及數(shù)值模擬研究

    董琴a,楊平b,鄧軍林a,汪丹a
    (武漢理工大學(xué)a.交通學(xué)院;b.高性能艦船技術(shù)教育部重點(diǎn)實(shí)驗(yàn)室,武漢430063)

    裂紋尖端張開位移(CTOD)是研究大范圍屈服的低周疲勞破壞的重要參數(shù)之一,其值可反映結(jié)構(gòu)材料抵抗低周疲勞裂紋形成和擴(kuò)展的能力,是評估結(jié)構(gòu)材料韌性的重要參量以及分析低周疲勞破壞引起裂紋擴(kuò)展的主要控制參量。文章基于彈塑性斷裂力學(xué)理論,從循環(huán)J積分著手,以裂紋尖端累積塑性應(yīng)變?yōu)橹匾獏⒘浚⒀h(huán)載荷下船體板CTOD理論模型,并在有限元模擬中分析了應(yīng)力比、應(yīng)力幅等相關(guān)因素影響。將本模型結(jié)果與有限元計(jì)算結(jié)果進(jìn)行了比較,發(fā)現(xiàn)結(jié)果吻合良好。結(jié)果表明:在考慮累積塑性影響下,該模型能較好地反映在循環(huán)載荷下船體板CTOD的變化規(guī)律,同時(shí)也為正確評估循環(huán)載荷下船體板低周疲勞破壞與累積塑性破壞兩種破壞模式耦合作用的總體斷裂破壞提供了途徑。

    中心裂紋板;循環(huán)載荷;累積塑性破壞;CTOD

    O346.2U661.4

    :A

    董琴(1988-),女,武漢理工大學(xué)交通學(xué)院博士研究生;

    1007-7294(2015)12-1507-10

    O346.2U661.4

    :A

    10.3969/j.issn.1007-7294.2015.12.007

    楊平(1955-),男,武漢理工大學(xué)交通學(xué)院教授,博士生導(dǎo)師;

    鄧軍林(1983-),男,武漢理工大學(xué)交通學(xué)院博士研究生;

    汪丹(1990-),女,碩士生。

    Received date:2015-08-10

    Foundation item:The National Natural Science Foundation of China(Grant No.51479153)

    Biography:DONG Qin(1988-),female,Ph.D.student of Wuhan University of Technology,E-mail:dongqin19881022@163.com;YANG Ping(1955-),male,professor/tutor,E-mail:pyang@whut.edu.com.

    CTOD

    猜你喜歡
    武漢理工大學(xué)參量船體
    船體行駛過程中的壓力監(jiān)測方法
    《武漢理工大學(xué)學(xué)報(bào)(交通科學(xué)與工程版)》征稿簡則
    《武漢理工大學(xué)學(xué)報(bào)(交通科學(xué)與工程版)》征稿簡則
    Lanterne-volant
    焊接殘余應(yīng)力對船體結(jié)構(gòu)疲勞強(qiáng)度的影響分析
    焊接(2015年9期)2015-07-18 11:03:51
    幾何形態(tài)和視覺感知的探討
    環(huán)形光的形成與參量的依賴關(guān)系
    赴美軍“仁慈”號醫(yī)院船駐船體會
    含雙參量的p-拉普拉斯邊值問題的多重解
    鎖定放大技術(shù)在參量接收陣中的應(yīng)用
    av网站免费在线观看视频| 一区二区三区激情视频| 丰满的人妻完整版| 久久亚洲真实| 在线播放国产精品三级| 色老头精品视频在线观看| 国产精品影院久久| 久久中文字幕一级| 桃色一区二区三区在线观看| 丁香六月欧美| 成人av一区二区三区在线看| 日韩三级视频一区二区三区| 一区在线观看完整版| 正在播放国产对白刺激| 一本大道久久a久久精品| 神马国产精品三级电影在线观看 | xxxhd国产人妻xxx| 黄色 视频免费看| 国产一卡二卡三卡精品| 嫁个100分男人电影在线观看| 法律面前人人平等表现在哪些方面| 欧美人与性动交α欧美软件| 亚洲国产精品sss在线观看 | 在线国产一区二区在线| 成人av一区二区三区在线看| 日韩三级视频一区二区三区| 一级作爱视频免费观看| 日日爽夜夜爽网站| 人人妻,人人澡人人爽秒播| 国产一区二区激情短视频| 两性夫妻黄色片| √禁漫天堂资源中文www| 无限看片的www在线观看| 久久久久亚洲av毛片大全| 亚洲精品国产精品久久久不卡| 青草久久国产| 久久青草综合色| 妹子高潮喷水视频| 国产三级黄色录像| av片东京热男人的天堂| 欧美精品啪啪一区二区三区| 日本 av在线| 亚洲国产精品一区二区三区在线| 欧美日韩亚洲国产一区二区在线观看| 九色亚洲精品在线播放| 国产高清激情床上av| 久久久久久久精品吃奶| 亚洲欧洲精品一区二区精品久久久| 国产乱人伦免费视频| 午夜福利欧美成人| 视频在线观看一区二区三区| 91大片在线观看| 欧美日韩av久久| 午夜两性在线视频| 久久天堂一区二区三区四区| 香蕉丝袜av| 久久久国产成人免费| 亚洲在线自拍视频| 亚洲成国产人片在线观看| 人人妻人人添人人爽欧美一区卜| 老熟妇仑乱视频hdxx| 亚洲精品美女久久av网站| 午夜精品久久久久久毛片777| 亚洲精品久久午夜乱码| 久久久久亚洲av毛片大全| 午夜福利在线免费观看网站| 大码成人一级视频| 在线十欧美十亚洲十日本专区| 波多野结衣av一区二区av| 香蕉丝袜av| 夜夜夜夜夜久久久久| 9191精品国产免费久久| www.自偷自拍.com| 一夜夜www| 中出人妻视频一区二区| av免费在线观看网站| 80岁老熟妇乱子伦牲交| 69av精品久久久久久| 午夜久久久在线观看| 老司机在亚洲福利影院| 男女做爰动态图高潮gif福利片 | 日本wwww免费看| 麻豆一二三区av精品| 国产精品影院久久| 大型av网站在线播放| 亚洲国产中文字幕在线视频| 激情视频va一区二区三区| 亚洲成av片中文字幕在线观看| 欧美成狂野欧美在线观看| 久久久久久久久免费视频了| 99久久人妻综合| 黄色视频,在线免费观看| av片东京热男人的天堂| 又黄又爽又免费观看的视频| 岛国视频午夜一区免费看| 男人操女人黄网站| 韩国av一区二区三区四区| 国产亚洲精品第一综合不卡| 一级片免费观看大全| 国内久久婷婷六月综合欲色啪| 午夜两性在线视频| 免费高清在线观看日韩| 国产精品久久电影中文字幕| 麻豆成人av在线观看| 18禁国产床啪视频网站| 久久久久九九精品影院| 男男h啪啪无遮挡| 久久久久亚洲av毛片大全| 免费观看人在逋| 精品久久蜜臀av无| 手机成人av网站| 免费av毛片视频| 青草久久国产| 女人爽到高潮嗷嗷叫在线视频| 天天躁狠狠躁夜夜躁狠狠躁| 色精品久久人妻99蜜桃| 日韩大尺度精品在线看网址 | 90打野战视频偷拍视频| 欧美日韩亚洲国产一区二区在线观看| 在线观看免费视频日本深夜| 五月开心婷婷网| 日本vs欧美在线观看视频| 久久精品亚洲熟妇少妇任你| 欧美老熟妇乱子伦牲交| 久久这里只有精品19| 亚洲av片天天在线观看| 久久亚洲精品不卡| 精品熟女少妇八av免费久了| 99国产精品一区二区三区| 一区福利在线观看| 久久香蕉激情| 欧美 亚洲 国产 日韩一| 男人舔女人下体高潮全视频| 99在线视频只有这里精品首页| 黄色毛片三级朝国网站| 丁香欧美五月| 如日韩欧美国产精品一区二区三区| 日韩大尺度精品在线看网址 | 黑丝袜美女国产一区| 欧美中文日本在线观看视频| 天堂俺去俺来也www色官网| 亚洲精品美女久久av网站| 国产亚洲欧美98| 亚洲国产精品合色在线| 美女高潮喷水抽搐中文字幕| 欧美丝袜亚洲另类 | 国产亚洲精品一区二区www| 亚洲第一av免费看| 中文欧美无线码| 精品久久久久久久久久免费视频 | videosex国产| 欧美激情高清一区二区三区| 女性被躁到高潮视频| 不卡一级毛片| 欧美不卡视频在线免费观看 | 又紧又爽又黄一区二区| 嫩草影视91久久| 亚洲av美国av| 欧美日韩亚洲综合一区二区三区_| 在线观看免费日韩欧美大片| 国产97色在线日韩免费| 亚洲欧美日韩高清在线视频| 手机成人av网站| 波多野结衣高清无吗| 亚洲视频免费观看视频| 久久中文字幕人妻熟女| 欧美人与性动交α欧美精品济南到| 精品久久久久久成人av| 久久久久久免费高清国产稀缺| 免费高清在线观看日韩| 欧美久久黑人一区二区| 久久久国产欧美日韩av| 久9热在线精品视频| 中文字幕精品免费在线观看视频| 国产精品一区二区三区四区久久 | 亚洲精品中文字幕一二三四区| 亚洲精品国产色婷婷电影| 欧美一区二区精品小视频在线| 天堂中文最新版在线下载| 正在播放国产对白刺激| 亚洲国产毛片av蜜桃av| 一边摸一边抽搐一进一小说| 日韩免费高清中文字幕av| 少妇被粗大的猛进出69影院| 级片在线观看| 国产一区二区三区视频了| 香蕉丝袜av| 久久人妻av系列| 黑人巨大精品欧美一区二区蜜桃| 嫁个100分男人电影在线观看| 午夜日韩欧美国产| 久久天堂一区二区三区四区| 久久草成人影院| 日本黄色视频三级网站网址| 91av网站免费观看| 亚洲精品av麻豆狂野| 涩涩av久久男人的天堂| 午夜精品久久久久久毛片777| 国产成人精品久久二区二区免费| a级片在线免费高清观看视频| x7x7x7水蜜桃| 变态另类成人亚洲欧美熟女 | 国产精品美女特级片免费视频播放器 | 国产精品国产高清国产av| 国产成年人精品一区二区 | 91麻豆精品激情在线观看国产 | 久久亚洲精品不卡| 国产97色在线日韩免费| 老熟妇仑乱视频hdxx| 99国产精品一区二区蜜桃av| 亚洲av成人一区二区三| 国产成年人精品一区二区 | 在线免费观看的www视频| 老司机午夜十八禁免费视频| 欧美日韩黄片免| 精品免费久久久久久久清纯| 久久久久久久久中文| 久久亚洲精品不卡| 免费在线观看亚洲国产| 麻豆久久精品国产亚洲av | 999久久久精品免费观看国产| 国产有黄有色有爽视频| 国产激情欧美一区二区| 国产免费av片在线观看野外av| 热99re8久久精品国产| 亚洲精品一卡2卡三卡4卡5卡| 久久久国产精品麻豆| 丰满人妻熟妇乱又伦精品不卡| 日韩精品青青久久久久久| 亚洲精华国产精华精| 男男h啪啪无遮挡| 欧美午夜高清在线| av网站在线播放免费| 午夜精品国产一区二区电影| 超色免费av| 又黄又粗又硬又大视频| 淫秽高清视频在线观看| 看免费av毛片| 日韩欧美一区视频在线观看| 首页视频小说图片口味搜索| 大型黄色视频在线免费观看| 成人黄色视频免费在线看| 欧美不卡视频在线免费观看 | 黄色成人免费大全| 日本a在线网址| 免费在线观看日本一区| 亚洲成人国产一区在线观看| 欧洲精品卡2卡3卡4卡5卡区| 久久国产乱子伦精品免费另类| 欧美精品一区二区免费开放| 国产精品1区2区在线观看.| 亚洲人成77777在线视频| 久久国产精品人妻蜜桃| 精品人妻在线不人妻| 两人在一起打扑克的视频| 不卡一级毛片| 18禁裸乳无遮挡免费网站照片 | 成熟少妇高潮喷水视频| 色在线成人网| 美女 人体艺术 gogo| 国产亚洲av高清不卡| 中文字幕另类日韩欧美亚洲嫩草| 真人做人爱边吃奶动态| 亚洲久久久国产精品| 校园春色视频在线观看| 波多野结衣av一区二区av| 别揉我奶头~嗯~啊~动态视频| av免费在线观看网站| 欧美日韩亚洲综合一区二区三区_| 久久人妻av系列| 国产99白浆流出| 叶爱在线成人免费视频播放| 黑人欧美特级aaaaaa片| 伊人久久大香线蕉亚洲五| 日韩av在线大香蕉| 国产免费男女视频| 亚洲中文av在线| 亚洲精品国产色婷婷电影| 丁香欧美五月| 久久久国产成人精品二区 | 免费久久久久久久精品成人欧美视频| 天天躁狠狠躁夜夜躁狠狠躁| 97超级碰碰碰精品色视频在线观看| 亚洲精品在线美女| 18禁裸乳无遮挡免费网站照片 | 日韩欧美在线二视频| 男女午夜视频在线观看| 极品人妻少妇av视频| 欧美日韩黄片免| 中国美女看黄片| 日韩国内少妇激情av| 欧美激情极品国产一区二区三区| 免费观看精品视频网站| 亚洲熟妇中文字幕五十中出 | 国产精品九九99| 国产aⅴ精品一区二区三区波| 成人三级黄色视频| 欧美丝袜亚洲另类 | 黄色视频,在线免费观看| 国产99久久九九免费精品| 国产免费av片在线观看野外av| 少妇的丰满在线观看| 韩国精品一区二区三区| 三级毛片av免费| 999精品在线视频| 国产黄色免费在线视频| 国产亚洲av高清不卡| 交换朋友夫妻互换小说| 成年版毛片免费区| 51午夜福利影视在线观看| 久久精品国产综合久久久| 美女高潮到喷水免费观看| 亚洲情色 制服丝袜| 久久精品国产亚洲av香蕉五月| 国产精品亚洲av一区麻豆| 黑人巨大精品欧美一区二区蜜桃| 后天国语完整版免费观看| 久热爱精品视频在线9| 久久99一区二区三区| 91九色精品人成在线观看| 欧美激情极品国产一区二区三区| 99精品在免费线老司机午夜| 亚洲熟妇熟女久久| 日韩大尺度精品在线看网址 | 中文欧美无线码| 麻豆成人av在线观看| 人成视频在线观看免费观看| 欧美日韩精品网址| av网站免费在线观看视频| 久久精品亚洲熟妇少妇任你| 午夜亚洲福利在线播放| 免费在线观看视频国产中文字幕亚洲| 叶爱在线成人免费视频播放| 无限看片的www在线观看| 国产精品自产拍在线观看55亚洲| 欧美日韩国产mv在线观看视频| 啦啦啦 在线观看视频| 50天的宝宝边吃奶边哭怎么回事| 欧美日韩中文字幕国产精品一区二区三区 | 久久久国产成人精品二区 | 黑人猛操日本美女一级片| 男女下面进入的视频免费午夜 | 国产视频一区二区在线看| 精品国产超薄肉色丝袜足j| 亚洲成人国产一区在线观看| 国产亚洲精品久久久久5区| 国产单亲对白刺激| 丰满饥渴人妻一区二区三| 国产免费现黄频在线看| 欧美日韩亚洲国产一区二区在线观看| 黄色 视频免费看| 亚洲欧美一区二区三区黑人| 9色porny在线观看| 女人高潮潮喷娇喘18禁视频| 一边摸一边抽搐一进一小说| 丝袜美足系列| 精品国产美女av久久久久小说| 久久这里只有精品19| 麻豆成人av在线观看| 亚洲av电影在线进入| 国产高清videossex| 人人妻,人人澡人人爽秒播| 99riav亚洲国产免费| 无限看片的www在线观看| 国产精品一区二区三区四区久久 | 国产精品久久视频播放| 久热爱精品视频在线9| 最近最新免费中文字幕在线| 麻豆成人av在线观看| 久久精品成人免费网站| 天堂俺去俺来也www色官网| 大香蕉久久成人网| 99久久久亚洲精品蜜臀av| 欧美日韩视频精品一区| 欧美日韩黄片免| 国产欧美日韩一区二区精品| 欧美+亚洲+日韩+国产| 久久这里只有精品19| 99久久人妻综合| 性少妇av在线| 搡老岳熟女国产| 精品久久蜜臀av无| 精品人妻在线不人妻| 在线播放国产精品三级| 精品国产美女av久久久久小说| 中文字幕最新亚洲高清| 亚洲av成人av| 黄色毛片三级朝国网站| 久久中文字幕人妻熟女| 亚洲国产精品合色在线| 视频在线观看一区二区三区| 不卡一级毛片| 精品国产一区二区久久| av中文乱码字幕在线| 在线av久久热| 日韩精品免费视频一区二区三区| 伦理电影免费视频| 男女床上黄色一级片免费看| 国产精品野战在线观看 | 国产乱人伦免费视频| 麻豆av在线久日| 亚洲中文字幕日韩| 一级作爱视频免费观看| 99国产极品粉嫩在线观看| 亚洲成a人片在线一区二区| 久久人人精品亚洲av| 99久久综合精品五月天人人| 两个人免费观看高清视频| 搡老乐熟女国产| 亚洲av美国av| 在线观看免费高清a一片| 国产精品爽爽va在线观看网站 | av网站在线播放免费| 一区二区日韩欧美中文字幕| 制服人妻中文乱码| 91精品三级在线观看| 国产1区2区3区精品| 天天添夜夜摸| 美女国产高潮福利片在线看| 一区二区三区精品91| 色哟哟哟哟哟哟| 在线观看免费午夜福利视频| 涩涩av久久男人的天堂| 午夜久久久在线观看| 亚洲成人国产一区在线观看| 香蕉久久夜色| 91av网站免费观看| 国产精品99久久99久久久不卡| www.www免费av| 身体一侧抽搐| av片东京热男人的天堂| 在线观看免费视频网站a站| 久久久久精品国产欧美久久久| a级片在线免费高清观看视频| 一级毛片女人18水好多| av在线天堂中文字幕 | 天天添夜夜摸| 美女国产高潮福利片在线看| 成人手机av| 久久人人97超碰香蕉20202| aaaaa片日本免费| 久久国产乱子伦精品免费另类| 亚洲avbb在线观看| 亚洲第一青青草原| 男男h啪啪无遮挡| 欧美激情高清一区二区三区| 一级a爱视频在线免费观看| 两性夫妻黄色片| 欧美不卡视频在线免费观看 | 每晚都被弄得嗷嗷叫到高潮| 两人在一起打扑克的视频| 久久狼人影院| 黄色a级毛片大全视频| 90打野战视频偷拍视频| 美女国产高潮福利片在线看| 欧美乱妇无乱码| 精品电影一区二区在线| 99久久综合精品五月天人人| 亚洲,欧美精品.| 丁香六月欧美| а√天堂www在线а√下载| 少妇 在线观看| 成人黄色视频免费在线看| 日本五十路高清| 亚洲avbb在线观看| 十八禁网站免费在线| 9191精品国产免费久久| 一级片免费观看大全| 欧美日韩黄片免| 性少妇av在线| 日韩欧美一区视频在线观看| 国产激情欧美一区二区| а√天堂www在线а√下载| 欧美成人午夜精品| 久久久精品国产亚洲av高清涩受| 日韩精品免费视频一区二区三区| 黄色怎么调成土黄色| 国产精品自产拍在线观看55亚洲| 水蜜桃什么品种好| 亚洲人成电影免费在线| 国产真人三级小视频在线观看| 久久影院123| 长腿黑丝高跟| 两性午夜刺激爽爽歪歪视频在线观看 | 国产成人免费无遮挡视频| 日本免费a在线| 国产亚洲av高清不卡| 一进一出抽搐动态| 男人舔女人下体高潮全视频| 亚洲精品久久午夜乱码| 久久人妻熟女aⅴ| 国产精品亚洲一级av第二区| 三级毛片av免费| 国产精品香港三级国产av潘金莲| 夜夜躁狠狠躁天天躁| 国产精品av久久久久免费| 黄色成人免费大全| 操出白浆在线播放| 国产真人三级小视频在线观看| 9色porny在线观看| 叶爱在线成人免费视频播放| 久久香蕉精品热| 女警被强在线播放| 男女下面进入的视频免费午夜 | 视频区图区小说| 日韩 欧美 亚洲 中文字幕| 91老司机精品| 男女之事视频高清在线观看| 国产无遮挡羞羞视频在线观看| 免费不卡黄色视频| 免费av毛片视频| 亚洲中文日韩欧美视频| 亚洲黑人精品在线| 18禁观看日本| 夫妻午夜视频| 琪琪午夜伦伦电影理论片6080| 日韩精品中文字幕看吧| 别揉我奶头~嗯~啊~动态视频| 亚洲欧美精品综合一区二区三区| 在线观看日韩欧美| 国产精品香港三级国产av潘金莲| 国产激情欧美一区二区| cao死你这个sao货| 午夜精品国产一区二区电影| 欧美日韩亚洲国产一区二区在线观看| 国产黄a三级三级三级人| 亚洲国产精品合色在线| 别揉我奶头~嗯~啊~动态视频| 欧美在线黄色| 久久青草综合色| 亚洲一码二码三码区别大吗| 悠悠久久av| 欧美一级毛片孕妇| 99在线人妻在线中文字幕| 色婷婷久久久亚洲欧美| 99精品久久久久人妻精品| 国产又爽黄色视频| 亚洲色图综合在线观看| 99国产精品一区二区蜜桃av| 三上悠亚av全集在线观看| 亚洲男人的天堂狠狠| 女生性感内裤真人,穿戴方法视频| 亚洲午夜精品一区,二区,三区| 99精品久久久久人妻精品| 久久狼人影院| 一级毛片高清免费大全| 视频在线观看一区二区三区| 亚洲精品一区av在线观看| 欧美大码av| 亚洲九九香蕉| 丰满饥渴人妻一区二区三| 国产单亲对白刺激| 日本黄色日本黄色录像| 9热在线视频观看99| 无人区码免费观看不卡| 欧美午夜高清在线| 一本综合久久免费| 亚洲色图 男人天堂 中文字幕| 在线观看一区二区三区激情| 99精品在免费线老司机午夜| 久久亚洲真实| 午夜免费成人在线视频| 精品第一国产精品| 精品免费久久久久久久清纯| 欧美一区二区精品小视频在线| 欧美中文综合在线视频| 成人免费观看视频高清| 欧美成人午夜精品| 成年女人毛片免费观看观看9| 亚洲熟妇中文字幕五十中出 | 亚洲一卡2卡3卡4卡5卡精品中文| 一a级毛片在线观看| 99国产精品99久久久久| 久久精品成人免费网站| 波多野结衣高清无吗| 国产精品一区二区在线不卡| 性色av乱码一区二区三区2| 女人被躁到高潮嗷嗷叫费观| 亚洲精品国产一区二区精华液| 色综合站精品国产| 亚洲熟女毛片儿| 亚洲第一欧美日韩一区二区三区| 国产精品九九99| 黑人巨大精品欧美一区二区mp4| 亚洲免费av在线视频| 91精品三级在线观看| 欧美日韩精品网址| 亚洲成a人片在线一区二区| 男女床上黄色一级片免费看| 曰老女人黄片| 97超级碰碰碰精品色视频在线观看| 欧美黑人欧美精品刺激| 一边摸一边抽搐一进一出视频| 久久久精品国产亚洲av高清涩受| 黄片小视频在线播放| 亚洲国产精品合色在线| 久久这里只有精品19| 国产成年人精品一区二区 | 欧美日韩福利视频一区二区| 黄色女人牲交| 国产精品久久久久成人av| 欧美人与性动交α欧美精品济南到| 男女做爰动态图高潮gif福利片 | 午夜两性在线视频| 婷婷丁香在线五月| 91成年电影在线观看| 亚洲精品在线美女| 亚洲国产中文字幕在线视频| 99国产综合亚洲精品| 成人av一区二区三区在线看| 国产片内射在线| 黄频高清免费视频| 自线自在国产av| 50天的宝宝边吃奶边哭怎么回事| 老鸭窝网址在线观看|