• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Flows Around a Circular Cylinder Controlled by Electromagnetic Force at Subcritical Reynolds Numbers

    2015-05-02 09:29:08YINJifuYOUYunxiangLIWeiHUTianqun
    船舶力學(xué) 2015年12期
    關(guān)鍵詞:李巍胡天電磁力

    YIN Ji-fu,YOU Yun-xiang,LI Wei,HU Tian-qun

    (State Key Laboratory of Ocean Engineering,Shanghai Jiao Tong University,Shanghai 200240,China)

    Flows Around a Circular Cylinder Controlled by Electromagnetic Force at Subcritical Reynolds Numbers

    YIN Ji-fu,YOU Yun-xiang,LI Wei,HU Tian-qun

    (State Key Laboratory of Ocean Engineering,Shanghai Jiao Tong University,Shanghai 200240,China)

    This paper numerically researches the flow structures around a circular cylinder and the lift/drag characteristics influenced by the electromagnetic force in a weakly conductive fluid at subcritical Reynolds numbers with the method of Detached Eddy Simulation(DES).The results show that the electromagnetic force can increase the kinetic energy near the boundary layer of the circular cylinder,delay the flow separation near the cylinder wall,weaken the intensity of the streamwise and spanwise vortexes and decrease the drag force and the fluctuation amplitudes of the lift.Moreover,as the electromagnetic force parameter N exceeds a certain critical value,at which the separation point disappears,the flow behind the circular cylinder behaves like a jet,which generates a net thrust effect and implies the existence of negative drag phenomenon,while the fluctuation amplitudes of the lift are significantly reduced and close to zero.

    subcritical Reynolds numbers;flow around a cylinder;electromagnetic force; flow control;Detached Eddy Simulation(DES)

    0 Introduction

    Cylindrical structures,such as marine platform risers and oil pipelines,are widely used in offshore engineering.Ocean currents flowing through these cylindrical structures will lead to separated flows and vortex shedding,which will in turn lead to periodic forces acting on structures that may result in horizontal and vertical vibrations.The vortex-induced vibrations may cause fatigue damage and rupture accidents of the cylindrical structures.Due to the de structive effect of the vortex-induced vibration on the offshore structures,separated flow control around cylindrical structures is of great importance in offshore engineering[1].

    There have been lots of flow control methods and the related general overview can be found in Refs.[2-3].Traditionally,separation control methods have been classified as active and passive ones,depending on whether control involves energy expenditure or not.The passivecontrol techniques,including shaping,splitter plates and changing the surface,etc.,are used to control vortex shedding downstream of the cylinder[4].The primary advantage of the passive control approaches is their simplicity.In contrast to passive means,active flow control can be performed by blowing,suction,acoustic actuation,synthetic jet and in some cases by exerting electromagnetic forces[5-6].The electromagnetic force acts as a momentum source for the near wall flow and the main advantages of this strategy is that it can put energy into flow directly, has no mechanically moving parts and also acts only in specific regions[7-8].

    The first stage of studying the electromagnetic control of electrolyte flows could date back to the 1960’s.The experimental researches gave an evidence of successful reduction for drag and the boundary layer thickness of the plate flow[9].But this approach did not attract much attention at that time.A renewed interest in electromagnetic flow control arose in the 1990’s.The majority of publications concentrated on the topics of turbulent drag reduction and flow separation of plate boundary layer[10-11].And on this basis,further experimental researches turned to control the flow around a cylinder covered with electrodes as well as permanent magnets generating a wall parallel force in the streamwise direction[12].The results of the flow control around a cylinder showed that the electromagnetic force can delay the flow separation and change the flow structure,as well as reduce the drag acting on a circular cylinder at low Reynolds number[13-16].Compared to the low Reynolds number flow,the flow influenced by electromagnetic force around a cylinder at high Reynolds number has obvious three-dimensional characteristics and received less attention[17-19].However,the mechanism of the flow around a circular cylinder controlled by electromagnetic force at high Reynolds number is still unclear, while it may be of great practical significance in offshore engineering where the Reynolds numbers are generally at least 103.

    The experimental researches play an important role in investigating the active control, but they are always limited by the environment conditions for the high Reynolds number problems.In contrast to experimental means,the numerical simulation has become common and reliable in solving this problem with the development of the computer technology and Computational Fluid Dynamics(CFD)theory.Several well-known CFD simulation approaches have been used including the DNS(Direct Numerical Simulation),LES(Large Eddy Simulation), RANS(Reynolds Averaged Navier-Stokes),and DES(Detached Eddy Simulation)[20-24].The DNS is a simulation in computational fluid dynamics,in which the Navier-Stokes equations are numerically solved without any turbulence model and are only used to solve low Reynolds number flow problems because this method need huge amounts of computing.The LES operates on the Navier-Stokes equations by low-pass filtering to reduce the range of length scales of the solution and the computational cost.Nevertheless,it is not widely used to solve practical problem for the same reason as DNS.The RANS method using time-averaged solutions to the Navier-Stokes equations is unsatisfactory for high Reynolds numbers either,as the flow field around a circular cylinder is a typical flow phenomenon with boundary layer and a wide range of flow separation.

    The DES is a modification of the RANS model,in which the model switches to a sub-grid scale formulation in regions fine enough for LES calculations.In the regions near solid boundaries,the turbulence length scale is smaller than the maximum grid dimension assigned for the RANS mode of solution.As the turbulence length scale is larger than the grid dimension,the regions are solved using the LES mode.Therefore the grid resolution is not as demanding as pure LES,thereby considerably cutting down the cost of the computation[20-21].The DES provides a single smooth velocity field across the RANS and the LES regions of the solution which can be the best option for this study.

    The objective of the present work is to numerically research the mechanism of flow structures around a circular cylinder and the drag/lift characteristics controlled by electromagnetic force using the DES method with the SST κ-ω turbulence model at Re=3.9×103and Re=5.0×104.The electromagnetic force around a cylinder covered by electromagnetic actuators is added to the momentum equation which is obtained by solving the Maxwell equations using a finite element method.The methods of numerical simulation are described in Chapter 1.The CFD simulation results are presented in Chapter 2.In particular,the flow structure around a circular cylinder,lift/drag characteristics,vortex shedding frequency and the average flow separation angle without the control by electromagnetic force are outlined,and the variation characteristics of these parameters with non-dimensional electromagnetic interaction parameters are quantitatively analyzed.Additionally,the situations for these parameters at different Reynolds numbers are compared.This paper ends with the conclusions in Chapter 3.

    1 Numerical simulation method

    1.1 Governing equations

    In the weakly conductive fluid,the cylinder is covered with a special array of electrodes and permanent magnets on the surface as shown in Fig.1.In this way,when the weakly conductive fluid flows around the cylinder,the Lorentz force around the surface of this cylinder is directed tangential to the cylinder surface.The Lorentz force is distributed around the entire surface of the cylinder and keeps the same direction on both half sides of the cylinder surface.

    Fig.1 The model and coordinate system of the cylinder covered electromagnetic actuators

    The governing equations describing the incompressible flow with the electromagnetic force Fiare given by

    where t is time,p is the pressure,ρ is the density,ν is the dynamic viscosity of the fluid,ui(i=1,2,3)are the instantaneous velocity components,and xiand xjare the spatial vectors, respectively.As can be seen from Eq.(1),the electromagnetic forces act as a momentum source for the flow.

    The electromagnetic force itself is the vector product of the current density J and the magnetic induction B:

    The current density vector is given by Ohm’s law:

    where E denotes the electric field,u the velocity and σ the electrical conductivity.This paper focuses on the electromagnetic force effects in weakly conductive fluids like seawater or electrolytes.In that case,the electrical currents originating from σu×B are usually much too low to produce any noticeable effect on the flow even for magnetic fields of several Tesla.The Lorentz force is thus changed into

    The DES method is often based on various turbulence models,such as the one-equation Spalart-Allmaras model,realizable k-ε model and SST k-ω model.Among them,the SST k-ω turbulence model is a two-equation eddy-viscosity model,which gives good behavior in adverse pressure gradients and separating flow by the inclusion of transport effects into the formulation of the eddy-viscosity.To obtain the DES-SST k-ω formulation,the turbulent length scale lk-ωin the dissipation term of k equation is defined as

    in which the model constant βkhas a value of 0.09.

    In the DES method,the RANS and LES grid scale lDESis modified by

    where CDESis the calibration constant,and△is the maximum local grid spacing.If the subscale stress model was prematurely initiated,it would result in the sharp decline of the Reynolds stress in the boundary layer which leads to the grid-induced separation phenomenon,so CDEShas a value of 0.61.In the cases that lk-ω≤CDES△,lDES=lk-ω,the model will operate in the SST mode in the boundary layer.In the other case of lk-ω>CDES△and lDES=CDES△,the model will operate in the LES mode and develop a flow instability past the step with the correct balance of the stresses.

    Fig.2 Numerical results for the distributions of the electromagnetic force around the circular cylinder surface

    1.2 Computational domain and boundary conditions

    Fig.3 shows the schematic of the computational domain.The origin of the coordinate system is located at cylindrical centerline.x,y,()zdenote the coordinates along the streamwise, transverse and spanwise directions,respectively.The computational domain in the x and y directions are set at 60D and 30D.The upstream boundary is set at 15D away from the origin. The computational domain in the z direction is set to 10D.As is shown in Fig.3,a uniform velocity profile is adopted to the velocity inlet boundary and the surface along the spanwise direction while the outlet boundary condition is set to a pressure outlet.A symmetric boundary condition is employed to lateral surface and no slip wall to the cylinder surface.

    Fig.3 Schematic of computational domain

    Fig.4 The grid for the computational domain

    The computational domain is divided into H and O structural grids as shown in Fig.4. The grid is non-uniform in the x-y plane but uniform in the z direction.The distance from thecylinder surface to the nearest grid points△y is computed by the formula y+=0.172△yRe0.9/D in order to fix y*close to 1,where Re=u∞D(zhuǎn)/ν is the Reynolds number.In the present simulation,the Finite Volume Method(FVM)is employed to calculate the 3-D unsteady incompressible Navier-Stokers equation.A central differencing scheme is used for momentum discretization and a second order implicit scheme is employed to advance the equations in time.The well-known semi-implicit pressure linked equation algorithm is used to deal with the pressure-velocity coupling between the momentum and continuity equations.

    2 Results and discussion

    The electromagnetic interaction parameter and lift/drag coefficients used in the following are defined as

    where u∞is the velocity,B0the main magnetic field intensity,E0the main electric field intensity,and j0=σE0.The interaction parameter N is the ratio of the Lorentz force to the inertial force in the fluid flow.Fland Fddenote the total lift and drag forces,respectively.S is the projected area of the cylinder perpendicular to the direction of the free-stream,S=D×H,where H is the spanwise length of the cylinder.

    In the present investigation,the Reynolds numbers 3.9×103and 5.0×104belong to the subcritical flow regime.The DES method is utilized to simulate the flow around the circular cylinder without electromagnetic force.The grid number are 1.6×106and 2.1×106,respectively.The computational time steps are△t=0.05 s and△t=0.005 s at different Reynolds numbers. Firstly,use the DES model to simulate the flow characteristics in the absence of the Lorentz force.If the non-dimensional time is defined as tˉ=tU/D,the flow around the circular cylinder which is unsteady at the beginning becomes absolutely stable at tˉ=315.Turn on the electromagnetic force at this instant and the flow becomes stable again at tˉ=375.

    The boundary layer separation of the flow field around the cylinder is laminar.However, the wake flow field has significant three-dimensional characteristics and is absolutely turbulent at subcritical Reynolds numbers Re=3.9×103and Re=5.0×104.The vorticity distribution of the flow around cylinder at the non-dimensional time tˉ=315 is shown in Fig.5.Results show that vortex shedding is clear as demonstrated by the developing vortices in the wake and a large-scale pulse along the spanwise direction of the cylinder at the two subcritical Reynolds numbers.In the process of the vortex moving downstream,the vortices experience obvious distortions.There are obvious three-dimensional flow characteristics in the flow and the phases, shapes and intensities of vortex shedding are different in the spanwise sections.The largescale vortex structure in the central region is enlarged and the small turbulent vortices in theperipheral region become more observable with the increase of the Reynolds number.In addition,the range of the vortex shedding in the vertical and downstream directions is also increased.

    Fig.5 Numerical results for the vorticity distribution in the flow around a circular cylinder at t=315

    Fig.6 shows the numerical results for total drag/lift coefficients of the circular cylinder at the two Reynolds numbers.The results show that the variation of drag/lift coefficients has quasi-periodic characteristics in spite of some random fluctuation,which implies that the vortex shedding is quasi-periodic but with fluctuations.Moreover,the fluctuation amplitude of the total drag/lift coefficients increases with the increasing Reynolds number.

    Fig.6 Numerical results for total drag/lift coefficients

    Tab.1 Comparisons of the present results with the reference ones

    2.1 Control of the flow structure

    Fig.7 illustrates the numerical results for the effect of the electromagnetic force on the vorticity distribution of the flow around the circular cylinder at tˉ=375.Obviously,the vorticity distribution characteristics in the near-wall region are changed and the vorticity fluctuations along the spanwise direction are weakened with the increasing electromagnetic force parameter.Once the interaction parameter reaches a certain critical value,the jet flow phenomenon behind the circular cylinder happens.

    Fig.7 Numerical results for the effect of the electromagnetic force on the vorticity distribution of the flow around a circular cylinder at

    The effect of the electromagnetic force on the vorticity distribution of the flow around a circular cylinder is not obvious at the interaction parameter value of N=0.5 for Re=3.9×103,while in the case where Re=5.0×104,the large scale eddies are induced in the central vortex area and their vertical ranges are smaller than those with no electromagnetic force,and the small scale eddies in the peripheral region shrink remarkably.When N=1.0,the large scale fluctuations along the spanwise direction of the cylinder are weakened and the vortex shedding becomes periodic at Re=3.9×103.In the case of Re=5.0×104,the large scale eddies appear in the central vortex area and their vertical range is further smaller while the small scale eddies in the peripheral region are weaker,and the large scale fluctuation is inhibited.When N= 2.0,the flow separation of the cylinder is inhibited and the vortex changes to be smaller ones and no periodic vortex shedding is detected in the wake at Re=3.9×103while for Re=5.0×104the flow separation is also inhibited with no large scale eddies and a jet flow is excited.When N=4.0 and N=6.0,the fluids get more and more accelerated by the Lorentz force and the jet action is induced for Re=3.9×103,while for Re=5.0×104,the jet wake grows to a laminar-like pattern.

    The tangential velocity amplitude near the circular cylinder wall represents the fluid kinetic energy of the fluid inside and outside of the boundary layer.Fig.9 shows the effect of electromagnetic force on the tangential velocity near the circular cylinder wall at tˉ=375 at two subcritical Reynolds numbers.Set u as the tangential velocity with the normal vector n.The results in the Fig.9 show that the electromagnetic force increases the tangential velocity and the fluid kinetic energy of the fluid inside and outside the boundary layers.Through the results,a reasonable conclusion is reached that an increase of the tangential velocity gradient near the wall helps to maintain the favorable pressure gradient along the circumference of the cylinder while varied regularities can be found with two different subcritical Reynolds numbers.

    Fig.8 Variation of the separation angles with the electromagnetic interaction parameters at different spanwise cross-sections

    In the absence of the electromagnetic force,the variation characteristics,and the position and maximum value of the tangential velocity are not the same.There are obvious three-di-mensional characteristic in the flow.When N=0.5,no obvious effect of electromagnetic force on the tangential velocity is found for Re=3.9×103,while for Re=5.0×104,such effect apparently influences the flow,though the maximum value and the position of the velocity have the same trend of variation.When N=1.0,the maximum value and the position of the maximum of the tangential velocity are the same for two subcritical Reynolds numbers and the maximum value of the tangential velocity is obvious increased for Re=5.0×104.

    Fig.9 Effect of the electromagnetic force on the tangential velocity near the circular cylinder wall at t=375(a),(b),(c)are for Re=3.9×103and(d),(e),(f)for Re=5.0×104

    2.2 Control of the drag/lift characteristics

    Fig.10 shows the effect of the electromagnetic force on the temporal evolution of the total drag coefficient for the circular cylinder,which implies that the electromagnetic force can significantly reduce the mean and impulse values of the total drag coefficient at the two different Reynolds numbers.When N=6,the average drag coefficient is reduced more than 70%at Re= 3.9×103.For Re=5.0×104,at the value of N=2,the average drag coefficient decreases about100%,while in the case of N>2,the total drag becomes negative,leading to the net thrust phenomena.

    Fig.10 Effect of electromagnetic force on temporal evolution of total drag coefficient

    The variation characteristics for the total average drag coefficient of the circular cylinder with the electromagnetic force interaction parameters for the two different subcritical Reynolds numbers are shown in Fig.11.The total average drag coefficient decreases with increasing interaction parameter at different Reynolds numbers.For an equivalent value of electromagnetic force parameter,the reduction of the total average drag coefficient at Re= 5.0×104is higher than that at Re=3.9×103.The total average drag coefficient exponentially decreases with the increase of interaction parameter for both Reynolds numbers.The fitting equation is y=e0.1855-0.4409x+0.0097x2for Re=3.9×103and y=1.440 7e0.6928x-0.291 9 for Re=5.0×104.

    Fig.11 Variation of total average drag coefficient with electromagnetic force interaction parameters

    Fig.12 Variation of total average pressure and friction coefficients with electromagnetic force interaction parameters

    The effect of the electromagnetic force on the temporal evolution of the total lift coefficient for the circular cylinder is illustrated in Fig.13.The results imply that the electromagnetic force can significantly decrease the lift fluctuations amplitudes of the circular cylinder. When the interaction parameter N reaches a certain value,the fluctuations amplitudes are close to zero.When N=0.5,the reduction of lift fluctuations amplitudes is not obvious because the electromagnetic force has little effect to the vortexes for Re=3.9×103,while for Re=5.0×104, the lift is seriously decreased.When N=1.0,the value of lift falls rapidly and exhibits periodic variation at Re=3.9×103while the lift has little fluctuations and is close to zero at Re=5.0× 104.At N=2.0,the lift fluctuations amplitudes are greatly reduced and the vortexes become small ones at Re=3.9×103,and a slight fluctuation and the jet flow phenomenon can be detected at Re=5.0×104.

    Fig.13 Effect of the electromagnetic force on temporal evolution of total lift coefficient

    Fig.14 shows the variation characteristics for the root mean square value of the total lift coefficient Clrmsof the circular cylinder with the electromagnetic force interaction parameters.The results show that the electromagnetic force can significantly decrease the Clrms.When N reaches a certain value,the value of Clrmsis close to zero.At Re=3.9×103,as N≤1.0,Clrmsdecreases linearly and at value of N>1.0,Clrmsis greatly decreased and close to zero.At Re=5.0×104, such value of N is estimated to 0.75.

    3 Conclusions

    The flow structures around a circular cylinder and the drag/lift characteristic controlled by electromagnetic force have been simulated by using the DES method with the SST k-ω turbulence model at Re=3.9×103and Re=5.0×104.The CFD simulation results show that thevariation characteristics of flow structures and drag/lift around a circular cylinder change with the non-dimensional electromagnetic interaction parameter.

    Fig.14 Variation of root mean square value of total lift coefficient with electromagnetic force interaction parameters

    There is a critical electromagnetic interaction parameter value Nc1,and when N

    The total average pressure coefficient decreases and the friction coefficient increases with increasing interaction parameter N.At higher Reynolds numbers,the reduction of total average pressure coefficient is larger and the raise of friction coefficient is smaller than that at lower Reynolds number.When the jet flow phenomenon occurs,the drag of a circular cylinder becomes negative and the net thrust force is generated.There is also a critical value Nc3which decreases with increasing Reynolds number.When N

    [1]Williamson C H K.Vortex dynamics in the cylinder wake[J].Annual Review of Fluid Mechanics,1996,28(1):477-539.

    [2]Zdravkovich M M.Review and classification of various aerodynamic and hydrodynamic means for suppressing vortex shedding[J].Journal of Wind Engineering and Industrial Aerodynamics,1981,7(2):145-189.

    [3]Gad-el Hak M.Flow control:Passive,active,and reactive flow managements[M].Cambridge:Cambridge University Press, 2000.

    [4]Kwon K,Choi H.Control of laminar vortex shedding behind a circular cylinder using splitter plates[J].Physics of Fluids, 1996,8(2):479.

    [5]Li Z,Navon I M,Hussaini M Y,et al.Optimal control of cylinder wakes via suction and blowing[J].Computers&Fluids, 2003,32(2):149-171.

    [6]Atktin C J,Mughal M S.Parametric studies on the application of distributed roughness elements for laminar flow control [C]//35th AIAA Fluid Dynamics Conference Exhibit,6-9 June,2005.Toronto,Ontario Canada,2005.

    [7]Rudibert K.Active flow control[J].In“Notes on Numerical Fluid Mechanics and Multidisciplinary Design”.Berlin,Germany,2006(95):8-10.

    [8]Chen Hong.Active control for separation flow by electromagnetic force[D].Wuhan:Ph.D.thesis,Huazhong University of Science and Technology,2011.(in Chinese)

    [9]Gailitis A,Lielausis O.On a possibility to reduce the hydrodynamic resistance of a plate in an electrolyte[J].Applied Magnetohydrodynamics,Rep.Phys.Inst.,1961,12:143-146.(in Russian)

    [10]Henoch C,Stace J.Experimental investigation of a salt water turbulent boundary layer modified by an applied streamwise magnetohydrodynamic body force[J].Physics of Fluids,1995,7(6):1371-1383.

    [11]Mei Dongjie,Fan Baochun,Chen Yaohui,et al.Experimental investigation on turbulent channel flow utilizing spanwise oscillating Lorentz force[J].Acta Physica Sinica,2010,59(12):8335-8342.(in Chinese)

    [12]Weier T,Gerbeth G,Mutschke G,et al.Experiments on cylinder wake stabilization in an electrolyte solution by means of electromagnetic forces localized on the cylinder surface[J].Experimental Thermal and Fluid Science,1998,16(1-2):84-91.

    [13]Oliver P,Roger G.Electromagnetic control of sea-water flow around circular cylinder[J].European Journal of Mechanics-B/Fluids,2001,20(2):255-274.

    [14]Zhou Benmou,Fan Baochun,Chen Zhihua,et al.Experiments on vortex suppression and vortex acceleration by means of electromagnetic field localized on the cylinder surface[J].Journal of Experimental Mechanics,2004,19(2):242-247.(in Chinese)

    [15]Zhang Hui,Fan Baochun,Chen Zhihua.Cylinder wake flow affected by width of electromagnetic actuator[J].Engineering Mechanics,2007,24(12):164-168.(in Chinese)

    [16]Zhang Hui,Fan Baochun,Chen Zhihua,et al.Effect of the Lorentz force on cylinder drag reduction and its optimal location[J].Fluid Dynamics Research,2011,43(1):1-18.

    [17]Kim S J,Lee C M.Investigation of the flow around a circular cylinder under the influence of an electromagnetic force[J]. Experiments in Fluids,2000,28(3):252-260.

    [18]Kim S J,Lee C M.Control of flows around a circular cylinder:Suppression of oscillatory lift force[J].Fluid Dynamics Research,2001,29(1):47-63.

    [19]Yin Jifu,Li Wei,You Yunxian,et al.The DES simulation for flow control around a circular cylinder using the electromagnetic force at a subcritical Reynolds number[J].Chinese Journal of Hydrodynamics,2013,28(4):495-506.(in Chinese)

    [20]Travin A,Shur M,Strelets M,et al.Detached-eddy simulations past a circular cylinder[J].Flow,Turbulence and Combustion,2000,63(1-4):293-313.

    [21]Squires K D.Detached-eddy simulation:current status and perspectives[M].In“Direct and large-eddy simulation”,Verlag Springer,Netherlands,2004:465-480.

    [22]Elmiligui A,Abdol-Hamid K S,Massey S J,et al.Numerical study of flow past a circular cylinder using RANS,hybrid RANS/LES and PANS formulations[J].AIAA Paper,2004:49-59.

    [23]Benim A C,Pasqualotto E,Suh S H.Modelling turbulent flow past a circular cylinder by RANS,URANS,LES and DES [J].Progress in Computational Fluid Dynamics,2008,5(8):299-307.

    [24]Ong M C,Utnes T,Holmedal L E.Numerical simulation of flow around a smooth circular cylinder at very high Reynolds numbers[J].Marine Structures,2009,22(2):142-153.

    [25]Norberg C.Flow around a circular cylinder:Aspects of fluctuating lift[J].Journal of Fluids and Structures,2001,15(3):459-469.

    [26]Norberg C.Effects of Reynolds number and low-intensity free-stream turbulence on the flow around a circular cylinder [M].Publ.No.87/2.Department of Applied Thermoscience and Fluid Mechanics,Halmers University of Technology,Sweden,1987.

    亞臨界區(qū)雷諾數(shù)下電磁力控制圓柱繞流場(chǎng)特性研究

    尹紀(jì)富,尤云祥,李巍,胡天群
    (上海交通大學(xué)海洋工程國(guó)家重點(diǎn)實(shí)驗(yàn)室,上海200240)

    采用脫體渦模擬方法對(duì)弱電解質(zhì)中電磁力作用下圓柱繞流場(chǎng)及其升阻力特性進(jìn)行了數(shù)值模擬與分析。研究結(jié)果表明,在亞臨界區(qū)雷諾數(shù)下電磁力可以提高圓柱體邊界層內(nèi)的流體動(dòng)能,延緩圓柱體近壁面流動(dòng)分離,減弱繞流場(chǎng)中流向和展向大尺度渦的強(qiáng)度,減小圓柱體阻力及其升力脈動(dòng)幅值;當(dāng)電磁力作用參數(shù)大于某個(gè)臨界值后,流動(dòng)分離角消失,在圓柱體尾部產(chǎn)生射流現(xiàn)象,電磁力產(chǎn)生凈推力作用,出現(xiàn)負(fù)阻力現(xiàn)象,而且升力脈動(dòng)幅值顯著減小且接近于零。

    亞臨界區(qū)雷諾數(shù);圓柱繞流;電磁力;流動(dòng)控制;DES數(shù)值模擬

    O357.4

    :A

    尹紀(jì)富(1984-),男,上海交通大學(xué)博士研究生;

    1007-7294(2015)12-1431-14

    O357.4

    :A

    10.3969/j.issn.1007-7294.2015.12.001

    尤云祥(1963-),男,上海交通大學(xué)教授,博士生導(dǎo)師;

    李?。?971-),男,上海交通大學(xué)副教授;

    胡天群(1957-),男,上海交通大學(xué)研究員。

    Received date:2015-06-21

    Foundation item:Supported by the National Natural Science Foundation of China(Grant No.11272211); the Foundation of State Key Laboratory of Ocean Engineering,Shanghai Jiao Tong University(Grant No.GP010819)

    Biography:YIN Ji-fu(1984-),male,Ph.D.candidate of Shanghai Jiao Tong University;YOU Yun-xiang(1963-), male,professor/tutor,corresponding author,E-mail:youyx@sjtu.edu.cn.

    猜你喜歡
    李巍胡天電磁力
    對(duì)真空及電磁波傳播機(jī)理的重新認(rèn)識(shí)
    胡天妮:種小麥應(yīng)用智能噴灌設(shè)施節(jié)水50%
    某型異步感應(yīng)電機(jī)電磁力計(jì)算及分析
    Order Allocation in Industrial Internet Platform for Textile and Clothing
    老公“長(zhǎng)大”了
    老公“長(zhǎng)大”了
    愛你(2018年22期)2018-08-17 03:06:00
    同步衛(wèi)星相關(guān)問題釋疑
    “萬有引力和天體運(yùn)動(dòng)”測(cè)試題
    被動(dòng)電磁裝甲對(duì)金屬射流箍縮電磁力的計(jì)算及驗(yàn)證
    Reliability Allocation of Large Mining Excavator Electrical System Based on the Entropy Method with Failure and Maintenance Data
    视频中文字幕在线观看| 国产免费福利视频在线观看| freevideosex欧美| 精品久久国产蜜桃| 好男人在线观看高清免费视频| 成人亚洲精品av一区二区| 人妻 亚洲 视频| .国产精品久久| 亚洲真实伦在线观看| 一边亲一边摸免费视频| 日本一二三区视频观看| 亚洲国产成人一精品久久久| 成年版毛片免费区| 少妇被粗大猛烈的视频| av卡一久久| 91精品国产九色| 中国美白少妇内射xxxbb| 国产永久视频网站| 在线观看国产h片| 在现免费观看毛片| 80岁老熟妇乱子伦牲交| 日日啪夜夜撸| 成人漫画全彩无遮挡| 51国产日韩欧美| 男女无遮挡免费网站观看| 夜夜看夜夜爽夜夜摸| 亚洲国产av新网站| 最近手机中文字幕大全| 欧美97在线视频| 亚洲成色77777| 欧美bdsm另类| 午夜老司机福利剧场| 九九爱精品视频在线观看| 亚洲最大成人中文| 国产黄片美女视频| 99re6热这里在线精品视频| 激情五月婷婷亚洲| 有码 亚洲区| 精品一区在线观看国产| 最后的刺客免费高清国语| 18禁在线无遮挡免费观看视频| 狂野欧美激情性xxxx在线观看| 99热网站在线观看| 99久久中文字幕三级久久日本| 日本猛色少妇xxxxx猛交久久| 我要看日韩黄色一级片| 久久久久久久精品精品| 婷婷色综合www| 亚洲欧美日韩另类电影网站 | 中国国产av一级| 亚洲,一卡二卡三卡| 美女cb高潮喷水在线观看| 国产人妻一区二区三区在| 一级av片app| av黄色大香蕉| 小蜜桃在线观看免费完整版高清| 国产淫语在线视频| 美女xxoo啪啪120秒动态图| 一区二区三区四区激情视频| 免费观看无遮挡的男女| 丝袜脚勾引网站| 中文字幕人妻熟人妻熟丝袜美| 精品少妇黑人巨大在线播放| 美女脱内裤让男人舔精品视频| 2021天堂中文幕一二区在线观| 大片电影免费在线观看免费| 亚洲婷婷狠狠爱综合网| 成年免费大片在线观看| 日韩欧美一区视频在线观看 | 18禁裸乳无遮挡免费网站照片| 热re99久久精品国产66热6| 涩涩av久久男人的天堂| 看十八女毛片水多多多| 22中文网久久字幕| av免费在线看不卡| 亚洲内射少妇av| 毛片女人毛片| 欧美成人精品欧美一级黄| 精品久久久噜噜| 99久久九九国产精品国产免费| 国产女主播在线喷水免费视频网站| 久久久久久伊人网av| 亚洲av一区综合| 插阴视频在线观看视频| 国产视频内射| 成年av动漫网址| 国产大屁股一区二区在线视频| 欧美日本视频| 看十八女毛片水多多多| 夜夜看夜夜爽夜夜摸| 2022亚洲国产成人精品| 亚洲欧洲国产日韩| 建设人人有责人人尽责人人享有的 | a级一级毛片免费在线观看| 久久久久久久久久成人| 插逼视频在线观看| 免费观看在线日韩| 国产精品无大码| 一区二区三区四区激情视频| videos熟女内射| 免费观看在线日韩| 一级二级三级毛片免费看| 欧美3d第一页| 黄色日韩在线| 国产亚洲午夜精品一区二区久久 | 免费播放大片免费观看视频在线观看| 好男人视频免费观看在线| 国产乱人偷精品视频| 全区人妻精品视频| 噜噜噜噜噜久久久久久91| 超碰97精品在线观看| 久久久久国产网址| 99久久精品热视频| 国产成人aa在线观看| 97超碰精品成人国产| 国产午夜精品久久久久久一区二区三区| 午夜免费鲁丝| 免费黄频网站在线观看国产| 亚洲精品亚洲一区二区| 观看美女的网站| 亚洲av不卡在线观看| 亚洲欧美日韩东京热| 日韩av不卡免费在线播放| 一级毛片 在线播放| 亚洲怡红院男人天堂| 18禁裸乳无遮挡动漫免费视频 | 伊人久久国产一区二区| 国产成人午夜福利电影在线观看| av福利片在线观看| 国产黄频视频在线观看| 中文精品一卡2卡3卡4更新| 国产精品女同一区二区软件| 久久国内精品自在自线图片| 色视频www国产| 乱码一卡2卡4卡精品| 国产精品99久久久久久久久| 在线看a的网站| eeuss影院久久| 久久久久久久午夜电影| 免费黄网站久久成人精品| 大陆偷拍与自拍| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久女婷五月综合色啪小说 | 亚洲图色成人| 国产精品久久久久久久电影| 激情五月婷婷亚洲| 日本三级黄在线观看| 亚洲欧美精品自产自拍| 在线观看美女被高潮喷水网站| 蜜桃久久精品国产亚洲av| 欧美最新免费一区二区三区| 精品一区在线观看国产| 国产日韩欧美亚洲二区| 国产精品福利在线免费观看| 午夜福利视频1000在线观看| 麻豆成人av视频| 一区二区av电影网| 在线免费观看不下载黄p国产| 看免费成人av毛片| 精品久久国产蜜桃| 亚洲精品一区蜜桃| 久久久午夜欧美精品| 色哟哟·www| 婷婷色综合www| 波多野结衣巨乳人妻| 只有这里有精品99| 国语对白做爰xxxⅹ性视频网站| 天堂俺去俺来也www色官网| 欧美老熟妇乱子伦牲交| 日本午夜av视频| 国产精品三级大全| 国产91av在线免费观看| 欧美精品人与动牲交sv欧美| 久久韩国三级中文字幕| 少妇的逼水好多| 日本午夜av视频| 春色校园在线视频观看| 成人高潮视频无遮挡免费网站| 少妇人妻久久综合中文| 人妻系列 视频| 五月开心婷婷网| 亚洲国产欧美在线一区| 精品99又大又爽又粗少妇毛片| av.在线天堂| 国产精品精品国产色婷婷| 九九爱精品视频在线观看| 纵有疾风起免费观看全集完整版| 日日摸夜夜添夜夜爱| 国产 一区 欧美 日韩| 寂寞人妻少妇视频99o| 国产av不卡久久| av女优亚洲男人天堂| tube8黄色片| 国产伦在线观看视频一区| 成人亚洲精品av一区二区| 国产高清三级在线| 久久热精品热| 精品人妻一区二区三区麻豆| 欧美高清性xxxxhd video| 成人亚洲精品一区在线观看 | 国产午夜精品一二区理论片| 日韩av在线免费看完整版不卡| 欧美一区二区亚洲| 韩国av在线不卡| 亚洲av中文字字幕乱码综合| 国内揄拍国产精品人妻在线| 韩国av在线不卡| 成人亚洲欧美一区二区av| 91久久精品国产一区二区三区| 蜜桃久久精品国产亚洲av| 成人毛片a级毛片在线播放| 久久97久久精品| 大又大粗又爽又黄少妇毛片口| 亚洲熟女精品中文字幕| 最近2019中文字幕mv第一页| 免费观看在线日韩| 一个人观看的视频www高清免费观看| 秋霞伦理黄片| 99久久人妻综合| 久久热精品热| 亚洲四区av| 久久久久久久久久成人| 激情五月婷婷亚洲| 精品久久久噜噜| 日韩中字成人| 麻豆精品久久久久久蜜桃| 人体艺术视频欧美日本| 18禁在线播放成人免费| 人妻 亚洲 视频| 日本wwww免费看| 99热全是精品| 欧美精品人与动牲交sv欧美| 日本一二三区视频观看| 黄色日韩在线| 国精品久久久久久国模美| 欧美潮喷喷水| 中国三级夫妇交换| 久久精品国产亚洲av天美| 亚洲精品亚洲一区二区| 久久久久网色| 国产老妇女一区| 深爱激情五月婷婷| 亚洲人成网站在线观看播放| 啦啦啦在线观看免费高清www| 男人狂女人下面高潮的视频| 成人毛片60女人毛片免费| 国产av国产精品国产| 人妻 亚洲 视频| 美女国产视频在线观看| 中文字幕亚洲精品专区| 国产精品偷伦视频观看了| 在现免费观看毛片| 高清午夜精品一区二区三区| 一个人观看的视频www高清免费观看| 亚洲人成网站在线观看播放| 大片电影免费在线观看免费| 观看免费一级毛片| 亚洲伊人久久精品综合| 亚洲精品中文字幕在线视频 | 免费少妇av软件| 在线观看一区二区三区| 免费看av在线观看网站| 蜜臀久久99精品久久宅男| 美女cb高潮喷水在线观看| 亚洲国产日韩一区二区| 在线观看美女被高潮喷水网站| 亚洲三级黄色毛片| 丰满人妻一区二区三区视频av| 国产精品伦人一区二区| 亚洲真实伦在线观看| 亚洲精品日本国产第一区| 亚洲经典国产精华液单| 国精品久久久久久国模美| 人人妻人人看人人澡| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 99热6这里只有精品| 大码成人一级视频| 一本久久精品| 精品视频人人做人人爽| 永久免费av网站大全| a级毛片免费高清观看在线播放| 国产淫片久久久久久久久| a级一级毛片免费在线观看| 婷婷色麻豆天堂久久| 欧美一区二区亚洲| 欧美3d第一页| av福利片在线观看| 国产男人的电影天堂91| 大片免费播放器 马上看| 又爽又黄a免费视频| 天堂中文最新版在线下载 | 听说在线观看完整版免费高清| 久久99热6这里只有精品| 十八禁网站网址无遮挡 | 尾随美女入室| 少妇人妻一区二区三区视频| 亚洲欧美日韩卡通动漫| 啦啦啦啦在线视频资源| 九草在线视频观看| www.色视频.com| 亚洲av免费高清在线观看| 国产高清三级在线| 午夜福利在线在线| 91久久精品国产一区二区成人| 国产精品麻豆人妻色哟哟久久| 中文字幕av成人在线电影| 久久久精品94久久精品| 久热久热在线精品观看| 男人添女人高潮全过程视频| 国产白丝娇喘喷水9色精品| 国产成年人精品一区二区| 女人被狂操c到高潮| 亚洲精品乱码久久久久久按摩| 亚洲av免费高清在线观看| 欧美区成人在线视频| 在线观看免费高清a一片| 高清视频免费观看一区二区| 欧美性猛交╳xxx乱大交人| a级一级毛片免费在线观看| 国产男人的电影天堂91| 真实男女啪啪啪动态图| 国产成年人精品一区二区| 尤物成人国产欧美一区二区三区| 免费av毛片视频| 久久久久久久国产电影| 日韩精品有码人妻一区| 国产精品久久久久久久久免| 3wmmmm亚洲av在线观看| 如何舔出高潮| 在线观看一区二区三区| 亚洲美女搞黄在线观看| 亚洲怡红院男人天堂| 久久久久久久国产电影| 日韩不卡一区二区三区视频在线| 日本三级黄在线观看| 26uuu在线亚洲综合色| 国产一级毛片在线| 看非洲黑人一级黄片| 超碰97精品在线观看| 免费看a级黄色片| 久久精品夜色国产| 婷婷色麻豆天堂久久| 亚洲人与动物交配视频| 国产黄色免费在线视频| 免费在线观看成人毛片| 国产精品福利在线免费观看| 国产精品伦人一区二区| 看非洲黑人一级黄片| 香蕉精品网在线| 91aial.com中文字幕在线观看| 韩国av在线不卡| 日韩av在线免费看完整版不卡| 国产精品一区www在线观看| 交换朋友夫妻互换小说| 51国产日韩欧美| 久久久亚洲精品成人影院| 下体分泌物呈黄色| 国产乱人视频| 麻豆精品久久久久久蜜桃| 午夜福利在线在线| 欧美3d第一页| 欧美bdsm另类| av线在线观看网站| 国产精品福利在线免费观看| 国产亚洲精品久久久com| 青春草国产在线视频| 免费黄网站久久成人精品| 欧美三级亚洲精品| 国产成人福利小说| 女人被狂操c到高潮| 亚洲精品aⅴ在线观看| 五月天丁香电影| 1000部很黄的大片| 亚洲人与动物交配视频| 亚洲精品,欧美精品| 成年免费大片在线观看| 亚洲精品成人久久久久久| 国产一级毛片在线| 搡女人真爽免费视频火全软件| 亚洲av不卡在线观看| 99热国产这里只有精品6| 亚洲精品国产av蜜桃| 国产在线男女| 97在线视频观看| 久久久欧美国产精品| 激情 狠狠 欧美| 尾随美女入室| 亚洲aⅴ乱码一区二区在线播放| 另类亚洲欧美激情| 久久99精品国语久久久| 神马国产精品三级电影在线观看| 免费大片18禁| 伊人久久国产一区二区| 国产精品福利在线免费观看| 老司机影院成人| 成人高潮视频无遮挡免费网站| 一级a做视频免费观看| 亚洲人成网站在线播| 久久久久久伊人网av| 高清欧美精品videossex| 亚洲在线观看片| 亚洲真实伦在线观看| 亚洲四区av| 久久鲁丝午夜福利片| 国产精品人妻久久久影院| 亚洲人成网站在线播| 国产高潮美女av| 亚洲精品久久午夜乱码| 亚洲丝袜综合中文字幕| 草草在线视频免费看| 欧美xxxx性猛交bbbb| 色网站视频免费| 色视频在线一区二区三区| 夜夜爽夜夜爽视频| 最新中文字幕久久久久| 久久久久性生活片| 我的老师免费观看完整版| 好男人视频免费观看在线| 国产探花极品一区二区| 啦啦啦在线观看免费高清www| 直男gayav资源| 91aial.com中文字幕在线观看| 下体分泌物呈黄色| 99视频精品全部免费 在线| 免费观看性生交大片5| 小蜜桃在线观看免费完整版高清| 99久久中文字幕三级久久日本| 在线亚洲精品国产二区图片欧美 | 日产精品乱码卡一卡2卡三| 干丝袜人妻中文字幕| 美女主播在线视频| 又爽又黄a免费视频| 国产男人的电影天堂91| 欧美老熟妇乱子伦牲交| 亚洲国产精品成人综合色| 人体艺术视频欧美日本| 乱系列少妇在线播放| 亚洲精品久久久久久婷婷小说| 国产精品久久久久久精品古装| 亚洲自拍偷在线| 内地一区二区视频在线| 亚洲国产欧美在线一区| 欧美老熟妇乱子伦牲交| 久久韩国三级中文字幕| 在线看a的网站| 亚洲欧美日韩另类电影网站 | 爱豆传媒免费全集在线观看| 99久久精品一区二区三区| 欧美一区二区亚洲| 免费av不卡在线播放| 高清欧美精品videossex| 国内少妇人妻偷人精品xxx网站| 99热这里只有是精品在线观看| 午夜福利在线在线| 国内精品宾馆在线| 免费少妇av软件| 亚洲,欧美,日韩| 国产黄a三级三级三级人| 成人美女网站在线观看视频| 五月玫瑰六月丁香| 又黄又爽又刺激的免费视频.| 色吧在线观看| 99热这里只有精品一区| 黄片wwwwww| 久久久久久久大尺度免费视频| 亚洲精品日韩av片在线观看| 欧美3d第一页| 自拍偷自拍亚洲精品老妇| 亚洲欧美一区二区三区国产| 天堂中文最新版在线下载 | 国产精品一区www在线观看| 我要看日韩黄色一级片| 久久亚洲国产成人精品v| 午夜福利视频精品| 永久免费av网站大全| 久久精品久久久久久久性| 精品国产三级普通话版| 国产淫语在线视频| 久久综合国产亚洲精品| 人人妻人人澡人人爽人人夜夜| 亚洲av免费高清在线观看| 日产精品乱码卡一卡2卡三| 国产91av在线免费观看| 久久久国产一区二区| 国产成人一区二区在线| 精品久久久精品久久久| 91午夜精品亚洲一区二区三区| 香蕉精品网在线| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 成人国产麻豆网| 国产免费又黄又爽又色| av在线天堂中文字幕| 一个人看的www免费观看视频| 亚洲精品日本国产第一区| 街头女战士在线观看网站| 免费黄网站久久成人精品| 国产亚洲91精品色在线| 国产成人一区二区在线| 最近手机中文字幕大全| av在线观看视频网站免费| 亚洲久久久久久中文字幕| 久久久国产一区二区| 99re6热这里在线精品视频| 国语对白做爰xxxⅹ性视频网站| 国产永久视频网站| 国产爽快片一区二区三区| 啦啦啦在线观看免费高清www| 欧美人与善性xxx| 精品久久久精品久久久| 免费高清在线观看视频在线观看| 精品亚洲乱码少妇综合久久| 久久精品综合一区二区三区| 久久久久久久久久久免费av| 简卡轻食公司| 免费播放大片免费观看视频在线观看| 久久精品熟女亚洲av麻豆精品| 色视频在线一区二区三区| 夜夜看夜夜爽夜夜摸| 国产精品一二三区在线看| 久久久久久久久大av| a级一级毛片免费在线观看| 日日摸夜夜添夜夜爱| 日本黄大片高清| 女人被狂操c到高潮| 各种免费的搞黄视频| 国产成人一区二区在线| 久久国内精品自在自线图片| 国产真实伦视频高清在线观看| av在线app专区| 在线观看国产h片| 精品国产一区二区三区久久久樱花 | 青春草亚洲视频在线观看| 日韩国内少妇激情av| 久久久色成人| 国产一区二区在线观看日韩| 夜夜爽夜夜爽视频| 免费观看性生交大片5| 亚洲av日韩在线播放| 蜜桃亚洲精品一区二区三区| 一级片'在线观看视频| 看免费成人av毛片| 在线 av 中文字幕| 日韩伦理黄色片| 亚洲精品影视一区二区三区av| 我的老师免费观看完整版| 亚洲精品456在线播放app| 97超视频在线观看视频| 真实男女啪啪啪动态图| 黄色怎么调成土黄色| 三级国产精品欧美在线观看| 欧美 日韩 精品 国产| 高清av免费在线| 不卡视频在线观看欧美| 久久久久精品性色| 视频区图区小说| 看黄色毛片网站| 国产精品久久久久久av不卡| 国产精品国产三级专区第一集| 97在线人人人人妻| 亚洲av电影在线观看一区二区三区 | 久久久久久久午夜电影| 三级男女做爰猛烈吃奶摸视频| 国产美女午夜福利| 亚洲国产精品专区欧美| 在线播放无遮挡| 亚洲精品国产av成人精品| 精品人妻视频免费看| 黄色欧美视频在线观看| 日本爱情动作片www.在线观看| 成人高潮视频无遮挡免费网站| 精品人妻熟女av久视频| 亚洲国产精品专区欧美| 高清视频免费观看一区二区| 久久久久网色| 国产精品av视频在线免费观看| 欧美一级a爱片免费观看看| 69av精品久久久久久| 22中文网久久字幕| 精品人妻一区二区三区麻豆| 色视频在线一区二区三区| 日韩欧美 国产精品| 久久精品国产a三级三级三级| 欧美性猛交╳xxx乱大交人| 免费观看av网站的网址| 超碰97精品在线观看| 又粗又硬又长又爽又黄的视频| 黄色一级大片看看| 亚洲精品第二区| 99热网站在线观看| 另类亚洲欧美激情| 美女cb高潮喷水在线观看| 中文欧美无线码| 免费少妇av软件| av卡一久久| 亚洲欧美精品专区久久| 大又大粗又爽又黄少妇毛片口| 卡戴珊不雅视频在线播放| 免费高清在线观看视频在线观看| 在线观看一区二区三区激情| 啦啦啦中文免费视频观看日本| 亚洲精品乱码久久久久久按摩| 亚洲人成网站在线播| 亚洲最大成人av| 制服丝袜香蕉在线| 高清毛片免费看| 免费大片18禁| 男的添女的下面高潮视频| 精品人妻一区二区三区麻豆| 免费观看性生交大片5| 亚洲精品乱码久久久久久按摩| 男女那种视频在线观看| 少妇猛男粗大的猛烈进出视频 | 久久精品国产鲁丝片午夜精品| 观看美女的网站| 91午夜精品亚洲一区二区三区|