• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Parameters analysis and application of the differential excitation detection technology

    2015-04-22 07:24:54YUXia于霞ZHANGWeimin張衛(wèi)民CHENGuolong陳國(guó)龍QIUZhongchao邱忠超ZENGWeiqin曾衛(wèi)琴
    關(guān)鍵詞:衛(wèi)民

    YU Xia(于霞), ZHANG Wei-min(張衛(wèi)民), CHEN Guo-long(陳國(guó)龍),QIU Zhong-chao(邱忠超), ZENG Wei-qin(曾衛(wèi)琴)

    (School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China)

    ?

    Parameters analysis and application of the differential excitation detection technology

    YU Xia(于霞), ZHANG Wei-min(張衛(wèi)民), CHEN Guo-long(陳國(guó)龍),QIU Zhong-chao(邱忠超), ZENG Wei-qin(曾衛(wèi)琴)

    (School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China)

    A differential excitation probe based on eddy current testing technology was designed. Sheet specimens of Q235 steel with prefabricated micro-cracks of different widths and of aluminum with prefabricated micro-cracks of different depths were detected through the designed detection system. The characteristics of micro-cracks can be clearly showed after signals processing through the short-time Fourier transform (STFT). By changing the parameter and its value in detecting process, the factors including the excitation frequency and amplitude, the lift-off effect and the scanning direction were discussed, respectively. The results showed that the differential excitation probe was insensitive to dimension and surface state of the tested specimen, while it had a high degree of recognition for micro-crack detection. Therefore, when the differential excitation detection technology was used for inspecting micro-crack of turbine blade in aero-engine, and smoothed pseudo Wigner-Ville distribution was used for signal processing, micro-cracks of 0.3 mm depth and 0.1 mm width could be identified. The experimental results might be useful for further research on engineering test of turbine blades of aero-engine.

    differential excitation probe; eddy current testing; micro-crack defect; influence parameters analysis

    The existing micro-defect detection methods of curved surfaces present more or less limitations. Among them, eddy current testing is one of the most important electromagnetic non-destructive testing method, which is capable of identifying surface defects of the specimen and consists of some advantages, such as low cost, contactless and achievement of rapid scale detection[1-3], compared to traditional differential measurement detection[4-5]. Traditional differential probe is composed by the excitation coil in the middle and the detection coils on both sides, while the differential excitation probe consists of the receiving coil in the middle and the excitation coils on both sides.

    The eddy current testing based on the differential excitation probe has a higher sensitivity. Moreover, it can not only detect surface defects of ferromagnetic specimen, but also identify defects of non-ferromagnetic specimen. The method can be applied in a great range of excitation frequency and has a large range of the amplitude of the excitation signal. Similarly, the method can identify artificial micro-cracks when applied to inspect turbine blades of aero-engine. And the lift-off effect is small. Therefore, it is necessary to study on the detection system of the differential excitation probe for detecting micro-defects of curved surfaces. The eddy current testing technology based on the differential excitation probe can provide some reference for further practical applications of engineering.

    1 Principle of the differential excitation probe

    Fig.1 shows the detecting system of differential excitation probe, which is consist of two differential excitation coils and a detection coil. Coils areparallel with each other. When the sinusoidal alternating voltage is applied to the excitation coil, the specimen tested will produce eddy current through the alternating magnetic field generated by the excitation coils. The effect of the differential excitation offset each other and no signal is output in the detection coil when the probe is in equilibrium and there is no defect in the specimen. While the specimen has defects and the equilibrium state is destroyed, the magnetic signal is picked up by the detection coils and then converted to a voltage signal. The signal is processed successively through the signal conditioning circuit and the A/D data acquisition card, then collected and saved by computer.

    Fig.1 Diagram of the testing system

    The excitation and detection coils are integrated into a probe foreasy engineering applications. A ferrite sheet is chosen as a core, on which the corresponding number of coil is rounded. Three coils are placed side by side and both sides of the coil are connected. The side coils are used as excitation coils while the intermediate coil is used as a detection coil, respectively.

    2 Testing experiments

    2.1 Ferromagnetic material specimen

    Three cracks with different widths (0.10 mm, 0.15 mm and 0.22 mm) and same length and depth (10 mm×0.25 mm) were made in a rectangular specimen of Q235 steel in advance. When the specimen was excited by the alternating voltage of 15 kHz and the peak-to-peak voltage of 15 V, the probe scanned the three cracks in turn in the direction perpendicular to the cracks. Since the obtained crack signal is non-stationary,short-time Fourier transform(STFT)can be used for time-frequency analysis[6]. STFT of signalx(t) is defined as

    (1)

    whereωisangularfrequencyofthesignal, g*(t)istimewindowfunction, “*”iscomplexconjugate.Thediscretesignalx(n)iscracksignalcollectedintothecomputer,andnshortperiodofdataas

    xn(k)=x(k)ω(n-k)

    (2)

    where ω(n)iswindowfunction.ThensignaldiscreteFouriertransformofx(n)is

    S(n,ω)=∑x(k)ω(n-k)e-jkω

    (3)

    Due to the fact that STFT is more efficient than fast Fourier transformation (FFT), the signal is processed by STFT, and the results are shown in Fig.2. It can be concluded that the crack location can be identified by the changes of crack frequency.

    Fig.2 STFT of Q235 specimen for cracks with different widths

    The peak-peak value of the detected signal increases dramatically as the crack width becomes larger for the same material and in the same test condition, so it can be concluded that the differential excitation probe designed is sensitive to cracks of ferromagnetic material of Q235 steel. Therefore, the defect size can be identified qualitatively in terms of the peak-peak value of the defect signal. Of course, further research is needed for providing reference for qualitative and quantitative assessment in engineering applications.

    2.2 Non-ferromagnetic material specimen

    Since the crystal particles of aluminum are much bigger than those of carbon steel, the noise interference caused by aluminum grain boundary is much larger than that of carbon steel too. Therefore, it is difficult to detect cracks of aluminum specimen.

    Owing to the fact that crack’s depth has a significant influence on eddy current effect, a few cracks with different depth (0.30 mm, 0.45 mm, 0.60 mm and 0.75 mm) and same length (10 mm) and width (0.15 mm) are machined on the surface of aluminum specimen. During the test, the probe scans along the length direction of speciment from one end to the other. The detection signal was filtered by the Barkhausen filtering, and then processed through STFT, as shown in Fig.3. It can be concluded that STFT time-frequency analysis method was also able to distinguish accurate position of micro-crack in the aluminum plate specimen.

    Fig.3 STFT of aluminum specimen for cracks with different depths

    The peak-peak value increases as the crack depth becomes larger, and the differential excitation probe can easily identify defect with width of 0.30 mm. Quantitative assessment of defect can be achieved by establishing relationship between the characteristic signal and crack size.

    3 Analysis of three impact factors

    The differential excitation probe scans the specimen of Q235 steel with a prefabricated crack with length of 12 mm, width of 0.15 mm and depth of 0.5 mm.

    3.1 Effect of excitation frequency

    When the amplitude of excitation voltage is fixed at 15 V, the coils are prone to become hot under long power, due to the coil’s small inductance if the excitation frequency is less than 5 kHz. The surface is scanned when the excitation frequency increases from 5 kHz to 50 kHz sequentially, and the results under different excitation frequencies are shown in Fig.4.

    Fig.4 Signals under different excitation frequencies

    The differential excitation probe can be applied in a wide range of excitation frequency (5-50 kHz). The inductive reactance of coil changes with the frequency of alternating current while the signal-to-noise ratio (SNR) of defect signals increases with the decreasing excitation frequency. The results show that the peak-peak value of crack signal increases with the decreasing excitation frequency when the excitation frequency is less than 10 kHz. As the excitation frequency is less than 35 kHz, the change between the detection signal and other interference signals can be distinguished easily. The defect signal is disturbed significantly if increasing the excitation frequency. When the excitation frequency is 50 kHz, the noise signal is significant compared with the signal caused by defects, thus it is feasible to identify presence of defect. As the excitation frequency increases at the same excitation voltage, the inductive reactance of coil increases linearly while the current decreases. Thus, the magnetic field disturbance caused by micro-crack is weakened due to the weakened magnetization. So it is difficult to identify defects accurately when the frequency is bigger than 50 kHz.

    3.2 Effect of excitation amplitude

    When the excitation frequency is fixed at 30 kHz, the voltage applying the excitation coils determine the current, thereby affecting the surface eddy current. As the amplitude of excitation signal increases sequentially from 2 V to 20 V, the results under different excitation amplitudes are shown in Fig.5.

    Fig.5 Results with different excitation amplitudes

    As can be seen, the differential excitation probe can be applied in a wide range of excitation amplitude. The mutation degree of cracks is more significant with increasing excitation amplitude. The method can detect surface cracks when the excitation voltage amplitude reaches 2 V. As the excitation voltage increases, the SNR increases significantly. The differential excitation probe which has low requirement for excitation signal has high sensitive to surface crack, and the detection effect is good when the excitation frequency is in the range of 5 kHz to 50 kHz and the amplitude is in the range of 2 V to 20 V.

    3.3 Effect of lift-off value

    The lift-off effect will interfere with the detection process and then affect directly precision and accuracy of detection[7]. When the lift-off value changes gradually from 0 to 2.4 mm away from the surface of specimen, the relationship between the lift-off value and the peak-peak value is shown in Fig.6.

    Fig.6 Relationship between the lift-off value and the peak-peak value of signal

    When the lift-off value is less than 0.4 mm, the effect of the external interference is negligible. However, while the lift-off value increases gradually to 2.0 mm, the detection result reduced significantly. However, when the lift-off value exceeds 2.4 mm, the addition of the lift-off value reduces the magnetic flux into the specimen tested. The effect isn’t satisfactory, but crack can still be identified. Therefore, the lift-off effect is more obvious as the probe is closer to the specimen. On the contrary, the effect of the lift-off effect is weak.

    3.4 Effect of scanning direction

    The scanning direction of the probe changes at intervals 15° counter-clockwise with the direction normal to the cracks is deed as 0°. The scanning directions and corresponding results are shown in Fig.7 and Fig.8.

    Fig.7 Probe and sketch of scanning directions

    Fig.8 Curves under different scanning directions

    When the probe scans the crack in the direction of 0°, the excitation coils and the detection coil go through the crack in sequence. The detection signal is perfect and a peak and a trough appears clearly. As the angle of scanning direction increases, the probe whose sensitivity is high at the moment can reflect completely the process of probe through the defects when the angle is less than 60°. However, while the angle is more than 60°, the distribution of magnetic field distorts significantly and the signal is asymmetry on the surface cracks. As the angle increases to 75°or 90°, the signals measured become messy and the characteristics of crack signal weaken rapidly. The test results aren’t identical with the information of cracks, but still show position of the cracks.

    4 Application of the differential excitation probe in turbine blade of aero-engine

    Cracks in turbine blades of an aero-engine are currently detected by nondestructive methods, such as ultrasonic testing, eddy current testing, X-ray testing and infrared thermography. The differential excitation probe can better detect cracks in different locations on turbine blades. Comparing to other nondestructive testing methods, it has advantages such as low cost, high sensitivity, small lift-off effect, and high SNR. Cracks with different sizes are designed for simulating the actual situation in terms of corresponding standards. The dimension and position of the prefabricated micro-crack in a turbine blade of an aero-engine is shown in Fig.9.

    Fig.9 Size and position of a turbine blade with prefabricated crack

    According to the results above, it can be concluded that the sensitivity of the probe can meet the requirement when used for micro-crack detection in curved blade[8]. When the probe is used for inspecting the position of micro-crack in the turbine blade, the micro-crack with depth of 0.30 mm, width of 0.10 mm and different lengths can be identified at the sampling frequency of 1 600 Hz and the sampling time of 2 s, as shown in Fig.10.

    The time-frequency analytic method is applied to analyze the micro-crack signal with distortion signals and identify accurately the position of micro-crack. It is found that STFT and Wigner-Ville distribution(WVD)cannot distinguish the time-frequency characteristics of the micro-crack position. But smoothed pseudo Wigner-Ville distribution(SPWVD)can be expressed as

    (4)

    withW(t,ω)canbeexpressedas

    (5)

    whereφ(u,v)isatwo-dimensionallow-passfilter.

    SPWVDhastheadaptivefunctionofwindowlengthadjustment[9],andthesignalisprocessedbywaveletde-noiseandthenWignerVilletime-frequencyanalysis.Thepositionofmicro-crackcanbeidentifiedintermsofthefrequencyandenergy,asshowninFig.11.Therefore,thedifferentialexcitationprobeiseffectiveondetectingartificialmicro-crack,andithaslaidafoundationforthearraydifferentialexcitationprobewhichiscapableofachievingquantitativetestinginturbinebladesofanaero-engine.

    Fig.10 Testing curved turbine blades with cracks of different sizes

    Fig.11 Results of SPWVD after wavelet denoising

    5 Conclusions

    Thedifferentialexcitationprobeisusedtoidentifymicro-defectsonsurfaceofferromagneticandnon-ferromagneticspecimens.Itcanbeconcludedthattheprobeiseffectivethroughstudyingthreeimpactfactors.Theprobecandetectamicro-crackwithwidthof0.1mmanddepthof0.3mm.Thefollowingconclusionscanbeobtainedasfollows.

    ①Comparedwiththeconventionaleddycurrentprobe,thedifferentialexcitationprobedevelopedhasahighersensitivityandresolution,andislessaffectedbyexternalinterference.

    ②Thedifferentialexcitationprobecannotonlydetectmicro-crackofplatespecimensofferromagneticandnon-ferromagneticmaterials,butalsoidentifymicro-crackincurvedsurfacespecimen,suchastheturbinebladesofanaero-engine.

    ③Theprobehavelaidfoundationforachievinganarraydifferentialexcitationprobewhichcandetectmicro-crackrapidlyandaccurately.

    ④Thedifferentialexcitationprobedevelopedisinsensitivetocrackwidthlessthan0.5mm,whilesensitivetocrackdepth.

    [1] Shi Keren, Gao Zhiyang. Nondestructive testing new technologies[M]. Beijing: Tsinghua University Press, 2008. (in Chinese)

    [2] He Min, Huang Zhifeng. Summary of eddy current testing and alternating current field measurement methods[J]. Chinese Journal of Scientific Instrument, 2011, 32(6): 109-112. (in Chinese)

    [3] Li Yong, Chen Zhenmao, Mao Ying. Quantitative evaluation of thermal barrier coating based on eddy current technique[J]. NDT&E International, 2012, 50: 29-35.

    [4] Kikuchi H, Murami H, Ara K. Feasibility study for nondestructive evaluation of magnetic properties and hardness of two-layered specimens by magnetic single-yoke probe[J]. NDT&E International, 2012, 46: 1-6.

    [5] Lebrun B, Jayet Y, Balmux J C. Pulsed eddy current signal analysis: application to the experimental detection and characterization of deep flaws in highly conductive materials[J]. NDT&E International, 1997, 30(3):163-170.

    [6] Zhou Zhenggan, Feng Zhanying, Gao Yifei, et al. Application of time-frequency analysis to ultrasonic-guided-wave signal interpretation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(7): 833-837. (in Chinese)

    [7] Zhang Yu Hua, Luo Feilu, Sun Hui Xian. Lift off interference suppression in eddy current testing[J]. Measurement Technique, 2008(6): 23-27. (in Chinese)

    [8] Qi Gongjin,Lei Hong,F(xiàn)u Gangqiang, et al. In situ eddy-current testing on low-pressure turbine blades of aircraft engine[J]. Journal of Testing and Evaluation, 2012, 40(4): 553-556.

    [9] Li Cong, Han Liguo, Li Jinquan, et al. Application of decomposition technique of smooth Wigner-Ville spectral in reservoir prediction[J]. Global Geology, 2012, 31(4): 813-818. (in Chinese)

    (Edited by Cai Jianying)

    10.15918/j.jbit1004-0579.201524.0310

    TP 374.2 Document code: A Article ID: 1004- 0579(2015)03- 0348- 07

    Received 2013- 12- 18

    Supported by the Ministerial Level Advanced Research Foundation(051317030586); Ph.D. Programs Foundation of the Ministry of Education of China(20121101110018)

    E-mail: tieyan2@163.com

    猜你喜歡
    衛(wèi)民
    春天的芭蕾
    保健與生活(2022年2期)2022-01-26 19:05:50
    夢(mèng)里水鄉(xiāng)
    晨霧
    拾秋
    水一上路就成了河
    拾 秋
    背故鄉(xiāng)
    大山是怎樣高起來(lái)的
    Analysis of stress-magnetic coupling effect in weak magnetic environment
    Reliability Analysis for a Gear-Rack Based on Combination of Simulation and Experiment
    国产毛片a区久久久久| 国产精品久久久久久精品电影小说 | 亚洲国产精品成人久久小说| 一区二区三区四区激情视频| 波多野结衣巨乳人妻| 好男人在线观看高清免费视频| 最近视频中文字幕2019在线8| 色综合亚洲欧美另类图片| 久久久亚洲精品成人影院| 国产av码专区亚洲av| 中国美白少妇内射xxxbb| 观看免费一级毛片| 极品教师在线视频| 亚洲欧美中文字幕日韩二区| 一区二区三区免费毛片| av视频在线观看入口| 国产精品人妻久久久影院| 婷婷六月久久综合丁香| 亚洲av中文av极速乱| 夜夜看夜夜爽夜夜摸| 熟妇人妻久久中文字幕3abv| 国产大屁股一区二区在线视频| 99热6这里只有精品| 简卡轻食公司| 一个人观看的视频www高清免费观看| 国产黄色小视频在线观看| 亚洲最大成人av| 国产男人的电影天堂91| 亚洲av男天堂| 中文欧美无线码| 亚洲国产高清在线一区二区三| 三级经典国产精品| 91精品一卡2卡3卡4卡| 亚洲成av人片在线播放无| 国产伦精品一区二区三区四那| 国产乱人偷精品视频| 亚洲久久久久久中文字幕| 欧美xxxx性猛交bbbb| 少妇猛男粗大的猛烈进出视频 | 中文字幕免费在线视频6| 亚洲国产精品成人久久小说| 欧美色视频一区免费| 国产成人a∨麻豆精品| 综合色av麻豆| 91久久精品国产一区二区三区| 亚洲欧洲日产国产| 激情 狠狠 欧美| 一边亲一边摸免费视频| 亚洲综合色惰| 五月伊人婷婷丁香| 黄片无遮挡物在线观看| 全区人妻精品视频| 国内精品美女久久久久久| 欧美日韩综合久久久久久| 国产av一区在线观看免费| 国产单亲对白刺激| 久久精品国产亚洲网站| 99久久精品国产国产毛片| 国产高清国产精品国产三级 | 免费看a级黄色片| 亚洲av日韩在线播放| 精品国产一区二区三区久久久樱花 | 九色成人免费人妻av| 少妇被粗大猛烈的视频| 日本与韩国留学比较| 亚洲av中文av极速乱| 中文欧美无线码| 中文欧美无线码| 精品久久久久久久久亚洲| 国产精品福利在线免费观看| 中文字幕av成人在线电影| 亚洲精品aⅴ在线观看| 人体艺术视频欧美日本| 在线观看66精品国产| 小说图片视频综合网站| 女人久久www免费人成看片 | 成年女人永久免费观看视频| 亚洲欧洲日产国产| 日本av手机在线免费观看| 美女内射精品一级片tv| 国产国拍精品亚洲av在线观看| 久久久成人免费电影| 精品久久久久久电影网 | 日韩欧美精品免费久久| 大话2 男鬼变身卡| 日本一本二区三区精品| 国产高清有码在线观看视频| 久久综合国产亚洲精品| 听说在线观看完整版免费高清| 一夜夜www| 天天躁日日操中文字幕| 69av精品久久久久久| 色播亚洲综合网| 青青草视频在线视频观看| 久久精品久久精品一区二区三区| 国产黄片视频在线免费观看| 嫩草影院入口| 好男人视频免费观看在线| 国产在视频线精品| 在线免费观看不下载黄p国产| 最近2019中文字幕mv第一页| 亚洲欧美日韩高清专用| 亚洲精品国产av成人精品| 精品人妻熟女av久视频| 久久久久性生活片| 欧美丝袜亚洲另类| a级毛色黄片| 九九爱精品视频在线观看| 一卡2卡三卡四卡精品乱码亚洲| 欧美另类亚洲清纯唯美| 免费黄网站久久成人精品| 久久人妻av系列| 国产探花在线观看一区二区| 日韩在线高清观看一区二区三区| 日韩,欧美,国产一区二区三区 | 亚洲最大成人av| 亚洲av熟女| 免费搜索国产男女视频| 一个人观看的视频www高清免费观看| 春色校园在线视频观看| 亚洲欧美中文字幕日韩二区| 久久99热6这里只有精品| 久久久久久久国产电影| 中文在线观看免费www的网站| 精品久久久久久久人妻蜜臀av| 成人高潮视频无遮挡免费网站| 内射极品少妇av片p| 一个人看的www免费观看视频| 亚洲中文字幕日韩| av在线蜜桃| 2021天堂中文幕一二区在线观| 91av网一区二区| 国内揄拍国产精品人妻在线| www.色视频.com| 亚洲av免费在线观看| 欧美性猛交黑人性爽| 日韩强制内射视频| 综合色av麻豆| 亚洲av电影在线观看一区二区三区 | 一二三四中文在线观看免费高清| 九九热线精品视视频播放| 视频中文字幕在线观看| 国产黄a三级三级三级人| 天堂√8在线中文| 国产高清国产精品国产三级 | 国产高清有码在线观看视频| 欧美xxxx黑人xx丫x性爽| 99久国产av精品国产电影| 亚洲欧美中文字幕日韩二区| 如何舔出高潮| 国产日韩欧美在线精品| 日韩欧美在线乱码| 亚洲av二区三区四区| 久久精品91蜜桃| 亚洲自拍偷在线| 最新中文字幕久久久久| 国产精品,欧美在线| 精品久久久久久久久av| 久久99热这里只频精品6学生 | 亚洲一区高清亚洲精品| 亚洲天堂国产精品一区在线| 亚洲精品乱码久久久v下载方式| 国产乱人偷精品视频| 秋霞伦理黄片| 亚洲欧美日韩东京热| 99视频精品全部免费 在线| 91久久精品电影网| 亚洲真实伦在线观看| 深夜a级毛片| 亚洲国产精品专区欧美| 五月伊人婷婷丁香| 亚洲av免费在线观看| 日韩强制内射视频| 欧美激情在线99| 性插视频无遮挡在线免费观看| 午夜福利视频1000在线观看| 51国产日韩欧美| 中文字幕免费在线视频6| 人人妻人人看人人澡| 色5月婷婷丁香| 在线a可以看的网站| 午夜福利高清视频| 久久精品夜夜夜夜夜久久蜜豆| 亚洲欧洲国产日韩| or卡值多少钱| 丝袜美腿在线中文| 亚洲欧美中文字幕日韩二区| 日本黄色片子视频| 久久精品国产鲁丝片午夜精品| 国产精品不卡视频一区二区| 白带黄色成豆腐渣| 国产高潮美女av| 欧美又色又爽又黄视频| 黄片wwwwww| 国产一区亚洲一区在线观看| 久久精品久久精品一区二区三区| av女优亚洲男人天堂| 蜜桃亚洲精品一区二区三区| 国产一级毛片在线| 成年av动漫网址| 亚洲一区高清亚洲精品| 老司机福利观看| 国产伦精品一区二区三区四那| 亚洲最大成人中文| 纵有疾风起免费观看全集完整版 | 国产精品99久久久久久久久| av天堂中文字幕网| 97人妻精品一区二区三区麻豆| 亚洲综合色惰| 综合色丁香网| 国产片特级美女逼逼视频| 久久久国产成人精品二区| 国产综合懂色| 国产又色又爽无遮挡免| 国产精品一区二区在线观看99 | 午夜老司机福利剧场| 免费观看人在逋| 男人和女人高潮做爰伦理| 国产精品蜜桃在线观看| 久久久欧美国产精品| 国产极品精品免费视频能看的| 亚洲精品久久久久久婷婷小说 | 18禁裸乳无遮挡免费网站照片| 啦啦啦啦在线视频资源| 国产高清三级在线| 久久久久久久久久成人| 国产精品国产三级专区第一集| 波多野结衣高清无吗| 最近最新中文字幕免费大全7| 日本av手机在线免费观看| 在线免费观看不下载黄p国产| 国产又黄又爽又无遮挡在线| 少妇熟女aⅴ在线视频| 精品人妻偷拍中文字幕| 国产成人91sexporn| 亚洲av电影在线观看一区二区三区 | 国产视频内射| 午夜精品一区二区三区免费看| 日韩国内少妇激情av| 国产一级毛片七仙女欲春2| 日日撸夜夜添| 91在线精品国自产拍蜜月| 中文字幕精品亚洲无线码一区| 观看免费一级毛片| 亚洲av二区三区四区| eeuss影院久久| 青青草视频在线视频观看| 国产69精品久久久久777片| 看片在线看免费视频| 国产成人精品久久久久久| 99热网站在线观看| 免费观看人在逋| 亚洲一区高清亚洲精品| 欧美变态另类bdsm刘玥| 日韩欧美 国产精品| 日韩大片免费观看网站 | 91精品国产九色| 亚洲,欧美,日韩| 只有这里有精品99| 国国产精品蜜臀av免费| 嫩草影院入口| 国产一级毛片在线| 一个人看视频在线观看www免费| 只有这里有精品99| 欧美性感艳星| 国产成人aa在线观看| 亚洲人成网站高清观看| 国产精品一区二区在线观看99 | 国产毛片a区久久久久| 蜜臀久久99精品久久宅男| 日本猛色少妇xxxxx猛交久久| 一边摸一边抽搐一进一小说| 中文字幕免费在线视频6| 久久鲁丝午夜福利片| av在线观看视频网站免费| 91久久精品国产一区二区三区| 久久久国产成人免费| 国产 一区 欧美 日韩| 国产精品国产高清国产av| 深夜a级毛片| 少妇裸体淫交视频免费看高清| 麻豆精品久久久久久蜜桃| 国产色婷婷99| 精品一区二区三区人妻视频| 国产欧美另类精品又又久久亚洲欧美| 国产成人a∨麻豆精品| 桃色一区二区三区在线观看| 久久久精品大字幕| 熟女电影av网| 国内揄拍国产精品人妻在线| 狠狠狠狠99中文字幕| 极品教师在线视频| 久久久久免费精品人妻一区二区| 亚洲精品aⅴ在线观看| 国产精品,欧美在线| 最近手机中文字幕大全| 精品久久久久久久久久久久久| 三级男女做爰猛烈吃奶摸视频| 亚洲精品成人久久久久久| av在线天堂中文字幕| 非洲黑人性xxxx精品又粗又长| 美女被艹到高潮喷水动态| 寂寞人妻少妇视频99o| 国产成人精品婷婷| 免费观看的影片在线观看| 级片在线观看| 网址你懂的国产日韩在线| 婷婷六月久久综合丁香| 国产精品久久视频播放| 亚洲精品乱码久久久v下载方式| 三级男女做爰猛烈吃奶摸视频| 美女黄网站色视频| 毛片女人毛片| 亚洲在线观看片| 成人毛片a级毛片在线播放| 国产成人精品婷婷| 欧美色视频一区免费| 亚洲在线观看片| 边亲边吃奶的免费视频| 久久精品综合一区二区三区| 亚洲国产色片| 成人综合一区亚洲| ponron亚洲| 国产精品日韩av在线免费观看| 成人av在线播放网站| 国产午夜精品一二区理论片| 人人妻人人澡欧美一区二区| 欧美性猛交╳xxx乱大交人| 欧美丝袜亚洲另类| 午夜免费男女啪啪视频观看| 又粗又爽又猛毛片免费看| 久久久久久久午夜电影| 少妇人妻精品综合一区二区| 高清视频免费观看一区二区 | 亚洲精品日韩在线中文字幕| 久久久久久久午夜电影| 少妇人妻精品综合一区二区| 国产伦一二天堂av在线观看| 少妇被粗大猛烈的视频| 一二三四中文在线观看免费高清| 精品人妻一区二区三区麻豆| 插逼视频在线观看| 亚洲一级一片aⅴ在线观看| 国产亚洲av嫩草精品影院| 日本一本二区三区精品| 久久久久久九九精品二区国产| 18禁在线播放成人免费| 女的被弄到高潮叫床怎么办| 免费av不卡在线播放| 亚洲真实伦在线观看| 午夜亚洲福利在线播放| 尤物成人国产欧美一区二区三区| 最近中文字幕2019免费版| 亚洲av免费在线观看| 狂野欧美白嫩少妇大欣赏| 九草在线视频观看| 草草在线视频免费看| 久久6这里有精品| 乱码一卡2卡4卡精品| 午夜福利高清视频| 一夜夜www| 男女那种视频在线观看| 国产极品天堂在线| 欧美zozozo另类| 亚洲在线自拍视频| 在线免费十八禁| 综合色丁香网| 亚洲不卡免费看| 亚洲国产高清在线一区二区三| 亚洲国产欧美人成| 91精品国产九色| 三级男女做爰猛烈吃奶摸视频| 欧美精品国产亚洲| 欧美3d第一页| 国产白丝娇喘喷水9色精品| 最近最新中文字幕免费大全7| 成人av在线播放网站| 看黄色毛片网站| av免费观看日本| 一边摸一边抽搐一进一小说| 青春草视频在线免费观看| 汤姆久久久久久久影院中文字幕 | 国产成人freesex在线| 亚洲国产精品sss在线观看| 亚洲欧美日韩卡通动漫| 国产久久久一区二区三区| 国内精品美女久久久久久| 91久久精品国产一区二区三区| 国产久久久一区二区三区| 亚洲欧美精品自产自拍| 国国产精品蜜臀av免费| 成人二区视频| 亚洲电影在线观看av| 嫩草影院精品99| 亚洲精品乱码久久久v下载方式| 亚洲精品aⅴ在线观看| 超碰av人人做人人爽久久| 国产av一区在线观看免费| 国产精品综合久久久久久久免费| 丰满乱子伦码专区| 亚洲久久久久久中文字幕| 欧美精品一区二区大全| 一区二区三区四区激情视频| 免费观看精品视频网站| 国产三级在线视频| videossex国产| 国产探花在线观看一区二区| 久久国产乱子免费精品| 插阴视频在线观看视频| 日韩在线高清观看一区二区三区| 亚洲怡红院男人天堂| 韩国av在线不卡| 网址你懂的国产日韩在线| 成年女人永久免费观看视频| 亚洲精品456在线播放app| 精品一区二区三区人妻视频| 最近视频中文字幕2019在线8| 欧美成人精品欧美一级黄| 1000部很黄的大片| 视频中文字幕在线观看| 亚洲av成人精品一区久久| 中文欧美无线码| 亚洲最大成人手机在线| 看免费成人av毛片| www.色视频.com| 少妇熟女欧美另类| 欧美最新免费一区二区三区| 九九热线精品视视频播放| 欧美成人午夜免费资源| 久久精品人妻少妇| 国产高清有码在线观看视频| 免费观看精品视频网站| 黄片wwwwww| 午夜激情福利司机影院| 亚洲成人av在线免费| 免费观看人在逋| 一级爰片在线观看| 3wmmmm亚洲av在线观看| 国产精品嫩草影院av在线观看| 少妇熟女aⅴ在线视频| 亚洲国产欧美人成| 99久久成人亚洲精品观看| 欧美日本亚洲视频在线播放| 国产精品嫩草影院av在线观看| 看免费成人av毛片| 国产一区二区亚洲精品在线观看| 亚洲精品乱码久久久v下载方式| 91午夜精品亚洲一区二区三区| av国产久精品久网站免费入址| 亚洲aⅴ乱码一区二区在线播放| 欧美激情在线99| 国产色婷婷99| 草草在线视频免费看| 一级av片app| 两个人的视频大全免费| 毛片一级片免费看久久久久| 国产精品电影一区二区三区| 亚洲综合色惰| 91精品国产九色| 亚洲精品亚洲一区二区| 日韩高清综合在线| 国产伦在线观看视频一区| АⅤ资源中文在线天堂| 免费黄网站久久成人精品| 国产精品福利在线免费观看| 国产老妇伦熟女老妇高清| 99视频精品全部免费 在线| 国产黄片视频在线免费观看| 亚洲av中文字字幕乱码综合| 精品国产三级普通话版| 麻豆精品久久久久久蜜桃| 日韩欧美 国产精品| 毛片一级片免费看久久久久| 亚洲精华国产精华液的使用体验| 黑人高潮一二区| 亚洲av电影不卡..在线观看| 国产极品天堂在线| av女优亚洲男人天堂| 欧美区成人在线视频| 成人午夜高清在线视频| 欧美日韩国产亚洲二区| 九色成人免费人妻av| 中文在线观看免费www的网站| 少妇被粗大猛烈的视频| 国产精品国产三级国产专区5o | 嫩草影院新地址| 国产极品精品免费视频能看的| 亚洲av免费在线观看| 久久精品国产亚洲av天美| 2022亚洲国产成人精品| 国产亚洲av嫩草精品影院| 精品不卡国产一区二区三区| 岛国在线免费视频观看| 欧美激情国产日韩精品一区| 日本猛色少妇xxxxx猛交久久| 亚洲人成网站高清观看| 色噜噜av男人的天堂激情| 亚洲精品456在线播放app| 2021天堂中文幕一二区在线观| 成人av在线播放网站| 九九在线视频观看精品| 观看美女的网站| 国产在线一区二区三区精 | 九九久久精品国产亚洲av麻豆| 性色avwww在线观看| 国产午夜精品论理片| 久久久久久久午夜电影| 久久久精品大字幕| 丰满人妻一区二区三区视频av| 别揉我奶头 嗯啊视频| 午夜a级毛片| 如何舔出高潮| 免费观看a级毛片全部| 干丝袜人妻中文字幕| 国产精品国产三级专区第一集| 最近2019中文字幕mv第一页| 大话2 男鬼变身卡| 久久国内精品自在自线图片| 最近中文字幕2019免费版| 日韩av在线大香蕉| 久久鲁丝午夜福利片| 午夜亚洲福利在线播放| 国产午夜精品论理片| 国产一区二区亚洲精品在线观看| 天堂网av新在线| 亚洲av福利一区| 国产单亲对白刺激| 2022亚洲国产成人精品| 最近的中文字幕免费完整| 我的老师免费观看完整版| 日韩欧美精品免费久久| 精品不卡国产一区二区三区| 亚洲国产最新在线播放| 欧美最新免费一区二区三区| 欧美zozozo另类| 国产毛片a区久久久久| 69人妻影院| 搞女人的毛片| 精品免费久久久久久久清纯| 不卡视频在线观看欧美| 国产亚洲最大av| 亚洲成av人片在线播放无| 麻豆国产97在线/欧美| 亚洲三级黄色毛片| 国产精品人妻久久久影院| 成人美女网站在线观看视频| 亚洲国产欧美在线一区| 国产日韩欧美在线精品| 97超视频在线观看视频| 亚洲精品乱码久久久v下载方式| 亚洲成人中文字幕在线播放| 干丝袜人妻中文字幕| 美女大奶头视频| 欧美3d第一页| 精品人妻视频免费看| 女人被狂操c到高潮| 久久99蜜桃精品久久| 日本黄色片子视频| 国产三级在线视频| 一级av片app| 国产一区二区在线观看日韩| 久热久热在线精品观看| 深夜a级毛片| 18禁动态无遮挡网站| av免费观看日本| 极品教师在线视频| 精华霜和精华液先用哪个| 女的被弄到高潮叫床怎么办| 哪个播放器可以免费观看大片| 99久国产av精品| 五月伊人婷婷丁香| 国产精品蜜桃在线观看| 在线观看一区二区三区| 精品99又大又爽又粗少妇毛片| 日韩制服骚丝袜av| 久久精品国产鲁丝片午夜精品| 美女国产视频在线观看| 国产色爽女视频免费观看| 免费av毛片视频| 一卡2卡三卡四卡精品乱码亚洲| av播播在线观看一区| 亚洲av.av天堂| 亚洲人成网站在线播| 亚洲av成人精品一二三区| 亚洲天堂国产精品一区在线| 亚洲精品乱久久久久久| 国产淫语在线视频| 亚洲精品国产成人久久av| 亚洲在久久综合| 国产高清有码在线观看视频| 国产精品.久久久| 亚洲综合精品二区| 1000部很黄的大片| 精品无人区乱码1区二区| 国产一区二区三区av在线| 一卡2卡三卡四卡精品乱码亚洲| 亚洲美女视频黄频| av在线老鸭窝| 国产av不卡久久| 97超碰精品成人国产| 综合色丁香网| 三级经典国产精品| 国产在视频线精品| 欧美一区二区精品小视频在线| 久久久久性生活片| 国产一区二区在线观看日韩| 99久久成人亚洲精品观看| 爱豆传媒免费全集在线观看| 久久精品熟女亚洲av麻豆精品 | 国产女主播在线喷水免费视频网站 | 最近最新中文字幕免费大全7| 99热精品在线国产| 一级二级三级毛片免费看| 欧美人与善性xxx| 狠狠狠狠99中文字幕|