• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analysis of stress-magnetic coupling effect in weak magnetic environment

    2015-04-22 02:33:18QIUZhongchao邱忠超ZHANGWeimin張衛(wèi)民GUOYan果艷DUBOV
    關(guān)鍵詞:衛(wèi)民

    QIU Zhong-chao(邱忠超), ZHANG Wei-min(張衛(wèi)民) GUO Yan(果艷)DUBOV A A

    (1.School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China;2.Energodiagnostika Company, Moscow 143965, Russia)

    ?

    Analysis of stress-magnetic coupling effect in weak magnetic environment

    QIU Zhong-chao(邱忠超), ZHANG Wei-min(張衛(wèi)民)1, GUO Yan(果艷)1,DUBOV A A2

    (1.School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China;2.Energodiagnostika Company, Moscow 143965, Russia)

    Metal magnetic memory (MMM) signals are difficult to be analyzed due to noise interference, which limits its practical engineering application. A method of improving the magnetic signals is proposed in this paper by placing the excitation device which generates a weak external magnetic field about 100 A/m. The effect of the external magnetic field on the magnetic signals is studied using both finite element method (FEM) and uniaxial tensile tests. Comparison of the test data with the simulation ones of stress-magnetic coupling shows that the magnetic signals are strengthened and the measurement sensitivity of the detection system is greatly improved through the external magnetic excitation. Moreover, the FEM result has a good agreement with the testing results of No.20 steel plate. The proposed method has laid a foundation for further practical engineering application.

    stress-magnetic coupling; metal magnetic memory; stress concentration; finite element analysis; measurement sensitivity

    Ferromagnetic materials are widely used in fields like aerospace, railway, pressure vessel and petroleum for their beneficial mechanical properties. In order to control the quality of ferromagnets, it is important to timely monitor the damage state and to predict their residual life. Components can be removed from service before there is any likelihood of failure in case catastrophic accidents occur.

    Conventional nondestructive testing techniques, such as ultrasonic test, eddy current inspection and penetrate inspection, are effective in assessing existing defects, but unsuitable for potential damage and early stress concentration zone. The situation had not been changed until metal magnetic memory (MMM) testing was proposed in Russia in the late 1990s[1]. In stress concentration zone, the tangential component of magnetic field,Hp(x), has a maximum value, meanwhile, the normal component,Hp(y), changes positive-negative and has a zero value.

    The physical mechanism of the MMM effect, however, is still unclear due to lack of deeper theoretical support. Furthermore, the magnetic signals measured usually contain some interfering factors, for instance, the difference of demagnetizing field, microstructure distribution and heat treatment condition, leading to a serious distortion of test results and hence invalid conclusions[2-3].

    MMM signals are susceptible to the environmental factors and difficult to truly reflect the variation of stress. To solve the problem, we propose that MMM signals can be strengthened by the external magnetic excitation, reducing the interference of the environmental factors and improving the sensitivity of the detection system. The basic principle of this method is discussed and the concept of the measurement sensitivity of the MMM detection system is proposed. Stress-magnetic coupling simulation of No.20 steel specimens in static tensile testing is analyzed and the surface magnetic signals distribution is obtained. The static tensile tests in an external magnetic environment are conducted. The results show that the external magnetic excitation can suppress noise interference validly and improve the sensitivity of detection system significantly.

    1 Sensitivity analysis of detection system

    MMM effect is a magneto-mechanical effect under geomagnetic field. Generally, magneto-mechanical effect refers to a series of changes of magnetic properties of ferromagnetic materials, resulting from the variation of applied stress at a constant magnetic field.

    Based on the concepts of “effective field theory” and “l(fā)aw of approach”, the Jiles-Atherton-Sablik model for magneto-mechanical effect was presented by Jiles et al[4-5]. The magnetization caused by applied stressσis equivalent to a magnetic fieldHσfor a macroscopic polycrystalline multi-domain system:

    (1)

    whereλ,μ0andMare the bulk magnetostriction constant, vacuum permeability and the magnetization, respectively.

    It is implicit that the magnetization under applied fieldHand stressσis identical to an equivalent effective magnetic fieldHeσ, that is

    Heσ=H+αM+Hσ

    (2)

    whereαis the strength of the coupling of the individual magnetic moment to the magnetizationM.

    Thus, we can propose the sensitivityKof detection system,

    (3)

    whereHe0is the initial magnetic field before testing,σ0is the initial residual stress before the tests.

    The sensitivity of the stress measurement system refers to the variation of surface magnetic field intensity caused by unit stress. Comparing the sensitivity of different testing conditions, the best testing parameters can be obtained.

    2 Simulation of stress-magnetic coupling

    2.1 Stress-magnetic coupling based on stress-permeability model

    MMM effect refers to the abnormal changes of the surface magnetic field due to uneven stress distribution within ferromagnetic material in geomagnetic environment. Indeed, MMM effect, which has not reached conclusion uniformly, is stress-magnetic coupling effect[6-7].

    Stress-magnetic coupling effect, as a fundamental characteristic of ferromagnetic materials, refers to stress-induced permeability variation, thereby leads to the variation of the surface magnetic intensity of the ferromagnetic materials[8-10]. From the perspective of micro-mechanism, ferromagnetic materials are composed of numerous magnetic domains. Every domain is of the order of 10-8-10-12m3in volume and consists of 1012-1015atoms. The magnetic moments distribute randomly in initial state and no magnetization appears. When a ferromagnetic specimen is loaded in external magnetic field, a tension causes the domains in the direction of the applied load for the positive magnetorestrictive materials, whereas a compression orients the domains to be perpendicular to the loading direction due to the piezomagnetic effect. The macroscopic parameters of ferromagnetic specimen, such as permeabilityμ, would change along with the magnetic moment rotation and the magnetic domain-wall displacement[11-13].

    The permeability of ferromagnetic materials is not constant, but shows complex variation when they are placed in different external magnetic fields and loadings. According to the relevant reference, whenHis less than 640 A/m, it is far from saturation magnetization and belongs to a range of weak magnetic excitation. The permeability decreases sharply whileHincreases from 640 A/m to 8 000 A/m, but it is approximately unchanged for being close to saturated magnetization whenHis more than 8 000 A/m[14].

    According to previous research[15], when ferromagnetic component is affected by a weak magnetic field and uniaxial stress as

    μ=μTf(H)g(σ)=μT(1+bH/μT)[a0+a1|σ|mexp(n|σ|)]

    (4)

    whereμTis the initial magnetic permeability relating to temperatureT,bis a constant relating to material properties;a0,a1,m,nare the coefficients depending on the direction and value of the applied stress.

    In the geomagnetic field environment withμT=285,b=2.5 andH=40 A/m, according to the relationship between tensile permeability and stress of No.20 steel under stress coaxial in geomagnetic field, the corresponding parameters can be obtained by the least squares fitting firstly and then quadratic optimization :a0=0.071 3;a1=0.041 5;m=1.542 5;n=-0.031 5.

    μ=27.412+15.977 5σ1.542 5e-0.031 5σ

    (5)

    In the same way, when specimen is placed under external magnetic field about 100 A/m, we can obtain

    μ=42.78+24.9σ1.542 5e-0.031 5σ

    (6)

    Eq.(5) and Eq.(6) are the dependence of permeability on stress in different magnetic environment, and laid a foundation for stress-magnetic coupling effect quantitatively.

    2.2 Simulation of stress-magnetic coupling

    Magnetic finite element method (FEM) is a powerful tool for the investigation of the magnetic signals due to its flexibility for simulating irregular structures. The FEM of stress-magnetic coupling effect refers to the surface magnetic field distribution in different magnetic environments and the loads in the region of No.20 steel and the air layer around the specimen. The dependence of stress on the magnetic signals is the predominant role in stress-magnetic coupling while the dependence of magnetic field on stress is negligible, so the FEM is conducted by using the indirect method, which is more rational and efficient. The simulation procedure is shown in Fig.1.

    Fig.1 Simulation procedure of stress-magnetic coupling effect

    Simulation has mainly two steps: static analysis and static magnetic analysis. Static analysis can acquire stress distribution results of the loading model. In the static magnetic analysis, magnetic properties of ferromagnetic specimen element are assigned firstly by the static analysis results, and then the static magnetic analysis is done and the surface magnetic field distribution can be obtained subsequently.

    Taking No.20 steel plate as the research object, the sizes and main technical parameters are shown in Fig.2 and Tab.1. The thickness of the specimen is 4 mm.

    Fig.2 Geometry of specimen

    Tab.1 Main parameters of 20#steel

    Elasticmodulus/GPaPoisson’sratioYieldstress/MPa2030 28240

    The finite element model is established firstly. Due to the fact there is magnetic flux leakage in the air around the specimen, the air model around the specimen should be established. Accordingly, the 3D model of the specimen and the air around it is established with the help of the ANSYS software, as shown in Fig.3. The inner is the specimen model while the outer is air model. Hard points are established in advance for extracting the surface magnetic field in the process of the general postproc of ANSYS.

    Fig.3 Whole 3D model of stress-magnetic coupling

    The model is meshed by the combination of automatic and manual methods. The middle region of the specimen model and the air layer around the specimen need to be subdivided to ensure the accuracy, while the region far from the specimen can be divided relatively rough, as shown in Fig.4. In static analysis, the model of symmetry side is applied with displacement constraints and two sides are loaded, with the displacement constraints and loads automatically translated to the corresponding nodes. The stress distribution under 8 kN loading is shown in Fig.5.

    Fig.4 Finite element mode of specimen

    Fig.5 Stress distribution under 8 kN loading

    Stress distribution is exported after static analysis and magnetic properties are assigned subsequently. In static magnetic analysis, solid236 element is used, which is a 3D-20node element capable of modeling electromagnetic fields. The static magnetic analysis is conducted in different magnetic environments (40 A/m and 100 A/m). At last, the entire model is solved and post-processed.

    2.3 Simulation results and analysis

    Fig.6 shows the surface magnetic field distribution of the specimen under 8 kN loading in geomagnetic environment. The simulation results of stress-magnetic coupling effect based on the stress-permeability model agree well with the basic theory of MMM which indicates that this model can better explain the phenomenon of MM.

    Fig.6 Surface magnetic field distribution under 8 KN applied stress

    The dependence of the measurement sensitivity of the detection system on the magnetic environment is analyzed with ANSYS. Two weak magnetic environments, the geomagnetic filedH1=40 A/m and the external magnetic fieldH2=100 A/m, are chosen for numerical simulation. The magnetic intensity of the center of the specimen surface in different magnetic environments can be obtained and analyzed, and the sensitivityKin different magnetic environments can be analyzed in terms of the concept of sensitivity mentioned, as shown in Tab.2.

    Tab.2 Measurement sensitivity in different loads and magnetic field environment

    Tab.2 shows the measurement sensitivity in different loads and magnetic environments. The sensitivity of the detection system can be improved significantly due to the external magnetic excitation. This indicates the magnetic signals can be strengthened by applying an external magnetic excitation appropriately, improving the measurement sensitivity and the reliability of the MMM detection system in practical engineering application.

    3 Experiment

    3.1 Experimental material and method

    The test specimen is shown in Fig.2. The static tensile tests were performed with a home-made testing machine, whose load error is within ±0.5%. Twenty-one points at intervals of 5 mm were marked on the surface of the sample before testing, which were named point 1, point 2, … , and point 21 in sequence from left to right. Fig.7 shows the whole stress measurement system. In the tensile testing, the specimen was firstly loaded to a predetermined stress, and the normal components of the surface magnetic field, ΔHp(y), were immediately measured by a magnetic indicator TSC-1M-4 with a scanning sensor type 2. Subsequently, the ΔHp(y) values of the measured points were collected and analyzed offline. After that, the specimen was loaded again to a higher predetermined stress and the above procedures were repeated until the phenomenon of yielding occurred. The magnetic signal was measured from top to bottom in-situ while the specimen was under load.

    Fig.7 Stress measurement system by magnetic testing method

    3.2 Experimental results and analysis

    The characteristics of the surface magnetic signals of every specimen are not identical, while their overall trends are consistent. In this paper, one representative signal is taken for analysis. In order to eliminate the magnetic field interference produced by the two ferromagnetic clamps, the magnetic signal variation, ΔHp(y) that equals theHp(y) component under loading minus theHp(y) component after clamping but before loading, was investigated. Fig.8 shows the dependence of the magnetic signals of the 21 measurement points on the specimen surface on loads under different weak magnetic environments.

    Fig.8 ΔHp(y) components of 21 points under different loads

    In geomagnetic environment, the normal components, ΔHp(y) values, are unstable and uneven. Besides, the crossing zero position which ranges from -20 mm to 20 mm is different obviously, so it is difficult to evaluate stress concentration zone effectively. However, ΔHp(y) values increase and show a regularity obviously when the specimens are subjected to an external magnetic field. And the zero position located in -3 mm-2 mm, which agrees well with the stress concentration zone of the specimens.

    Fig.9 dΔHp(y)/dx components of 21 measurement points under different loads

    Fig.9 shows the dependence of the magnetic signals gradient dΔHp(y)/dxof the 21 measurement points on the specimen surface on loads in different magnetic environments. From the two graphs in Fig.9, the magnetic signals gradient, dΔHp(y)/dx, look like disorderly and has different variations, which is unfavorable for analyzing its characteristics and trends. When applying an external magnetic field instead of geomagnetic field as the stimulus, the magnetic signals gradients, dΔHp(y)/dx, increase significantly and show variation trend uniformly. Additionally, the maximum gradient values locate in -5 mm or 0, which shows a good agreement with the stress concentration zone of the specimens.

    For magnetic signals in geomagnetic environment, the normal component of magnetic signals are all in a mess due to the magnetic field generated by the clamps and other interference noise, which is unfavorable to analyze the signal characteristics and trend. While applying an external magnetic field, the magnetic signals can be strengthened and the trend of magnetic signals is clear, which is favorable to find stress concentration zone and improve the sensitivity of the detection system significantly.

    4 Conclusions

    ① The No.20 steel was the research object. The stress-magnetic coupling was simulated based on stress-permeability model. Through the static analysis and the static magnetic analysis, the normal component distribution of the magnetic field intensity agrees well with the basic theory of MMM, which further validates that this model can explain the MMM phenomenon well.

    ② The measurement sensitivity of the detection system in different weak magnetic environments is analyzed with ANSYS, and the results show that the sensitivity can be improved significantly in an external magnetic environment.

    ③ The static tensile test is conducted on the No.20 steel in different weak magnetic environments and the results have a good agreement with the FEM results, reconfirming that the magnetic signals can be strengthened and the sensitivity of the detection system can be improved by applying the external magnetic excitation. The research lays a foundation for practical engineering application of the MMM technique.

    [1] Dubov A A. A study of metal properties using the method of magnetic memory [J]. Metal Science Heat Treat, 1997, 39(9/10):401-405.

    [2] Leng Jiancheng, Xu Minqiang, Zhang Jiazhong. Application of empirical mode decomposition in early diagnosis of magnetic memory signal [J]. Journal of Central South University of Technology, 2010, 17:549-553.

    [3] Leng Jiancheng, Xu Minqiang, Zhou Guoqiang, et al. Effect of initial remanent states on the variation of magnetic memory signals [J]. NDT&E International, 2012, 52:23-27.

    [4] Jelie D C. Theory of the magneto-mechanical effect [J]. Journal of Physics D: Applied Physics, 1995, 28(8):1537-1546.

    [5] Li Lu, Jiles D C. Modified law of approach for the magneto-mechanical model: application of the Rayleigh law to stress [J]. IEEE Transactions on Magnetics, 2003, 39(5):3037-3039.

    [6] Yang En, Li Luming, Chen Xing. Magnetic field aberration induced by cycle stress [J]. Journal of Magnetism and Magnetic Materials, 2007, 312(1):72-77.

    [7] Wang Zhengdao, Yao Kai, Deng Bo, et al. Quantitative study of metal magnetic memory signal versus local stress concentration [J]. NDT&E International, 2010, 43:513-518.

    [8] Dong Lihong, Xu Binshi, Dong Shiyun, et al. Metal magnetic memory testing for early damage assessment in ferromagnetic materials [J]. Journal of Central South University of Technology, 2005, 12(S2):102-106.

    [9] Ren Jilin, Lin Junming. Electromagnetic nondestructive testing [M]. Beijing: Science Press, 2008. (in Chinese)

    [10] Gatelier R C, Chicois J, Fougeres R, et al. Characterization of pure iron and (130 P.P.M.) carbon-iron binary alloy by Barkhausen noise measurements: study of the influence of stress and microstructure [J]. Acta Materialia, 1998, 46(14):4873-84.

    [11] Mccord J, Schafer R. Stress-induced remagnetization in magnetostrictive films [J]. Journal of Applied Physics, 2004, 95(11):6861-6863.

    [12] Bulte D P, Langman R A. Origins of the magnetomechanical effect [J]. Journal of Magnetism and Magnetic Materials, 2002, 251:229-243.

    [13] Lindgren M, Lepisto T. Effect of prestraining on Barkhausen noise vs. stress relation [J]. NDT&E International, 2001, 34:337-344.

    [14] The qualification examination committee of ordnance industrial nondestructive testing personnel. The quick manual of magnetic properties curve of commonly used steel [M]. Beijing: China Machine Press, 2003:41.(in Chinese)

    [15] Shi Changliang, Dong Shiyun, Xu Binshi, et al. Metal magnetic memory effect caused by static tension load in a case-hardened steel [J]. Journal of Magnetism and Magnetic Materials, 2010, 322(4):413-416.

    (Edited by Cai Jianying)

    10.15918/j.jbit1004-0579.201524.0407

    TH 140/7 Document code: A Article ID: 1004- 0579(2015)04- 0471- 07

    Received 2014- 03-28

    Supported by the National Natural Science Foundation of China (51275048)

    E-mail: zhongchaoqiu@gmail.com

    猜你喜歡
    衛(wèi)民
    春天的芭蕾
    保健與生活(2022年2期)2022-01-26 19:05:50
    美麗家園
    夢(mèng)里水鄉(xiāng)
    晨霧
    拾秋
    快樂語文(2020年32期)2021-01-15 09:25:30
    水一上路就成了河
    拾 秋
    背故鄉(xiāng)
    大山是怎樣高起來的
    Reliability Analysis for a Gear-Rack Based on Combination of Simulation and Experiment
    久久久久免费精品人妻一区二区| АⅤ资源中文在线天堂| 两个人视频免费观看高清| 一级作爱视频免费观看| 精品久久久久久久久久久久久| 免费看光身美女| 日韩人妻高清精品专区| 亚洲18禁久久av| 亚洲国产精品成人综合色| 国产精品美女特级片免费视频播放器| 日日夜夜操网爽| 亚洲av五月六月丁香网| 久久国产乱子伦精品免费另类| 国产一区二区亚洲精品在线观看| 最近在线观看免费完整版| 精品日产1卡2卡| a级一级毛片免费在线观看| 欧美最新免费一区二区三区 | 国产精品综合久久久久久久免费| 亚洲av成人av| 麻豆国产av国片精品| 天堂影院成人在线观看| 欧美不卡视频在线免费观看| 久久精品国产自在天天线| 在线观看美女被高潮喷水网站 | 色综合欧美亚洲国产小说| 9191精品国产免费久久| 免费看a级黄色片| 久久久久久国产a免费观看| 成人性生交大片免费视频hd| 人人妻人人看人人澡| 免费在线观看影片大全网站| 亚洲熟妇熟女久久| 亚洲五月婷婷丁香| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 老司机深夜福利视频在线观看| 伊人久久大香线蕉亚洲五| 国产国拍精品亚洲av在线观看 | 精品福利观看| 91麻豆精品激情在线观看国产| 亚洲精品影视一区二区三区av| 99久国产av精品| 国产免费男女视频| 国产午夜精品久久久久久一区二区三区 | 久久中文看片网| 久久精品91无色码中文字幕| 在线播放国产精品三级| av天堂中文字幕网| 男女床上黄色一级片免费看| 操出白浆在线播放| 中文资源天堂在线| 一a级毛片在线观看| 国产黄色小视频在线观看| e午夜精品久久久久久久| 人人妻人人看人人澡| 日韩欧美国产一区二区入口| 观看美女的网站| aaaaa片日本免费| 色综合婷婷激情| 久久久久亚洲av毛片大全| 亚洲无线在线观看| 免费在线观看亚洲国产| 国产色婷婷99| 好男人电影高清在线观看| 丰满乱子伦码专区| 又爽又黄无遮挡网站| 天堂网av新在线| 1000部很黄的大片| 最近视频中文字幕2019在线8| 1024手机看黄色片| 国产欧美日韩精品一区二区| 欧美日本亚洲视频在线播放| 丝袜美腿在线中文| 亚洲在线自拍视频| 神马国产精品三级电影在线观看| 18禁美女被吸乳视频| 国产v大片淫在线免费观看| 日韩精品中文字幕看吧| 97超视频在线观看视频| 国产成人aa在线观看| 麻豆一二三区av精品| 97碰自拍视频| 51午夜福利影视在线观看| 亚洲欧美精品综合久久99| 国产毛片a区久久久久| av欧美777| 精品久久久久久久末码| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 日本五十路高清| 黄色视频,在线免费观看| 色视频www国产| 成人永久免费在线观看视频| 国产一区在线观看成人免费| 国模一区二区三区四区视频| 窝窝影院91人妻| 好男人电影高清在线观看| 国产精品精品国产色婷婷| 性欧美人与动物交配| 免费看光身美女| avwww免费| 久久天躁狠狠躁夜夜2o2o| 国产综合懂色| 99国产极品粉嫩在线观看| 国产精品女同一区二区软件 | 国产欧美日韩一区二区精品| 日本在线视频免费播放| 在线观看舔阴道视频| 每晚都被弄得嗷嗷叫到高潮| 久久这里只有精品中国| 青草久久国产| 亚洲中文日韩欧美视频| 中文亚洲av片在线观看爽| 精华霜和精华液先用哪个| 亚洲黑人精品在线| 欧美一级a爱片免费观看看| 悠悠久久av| or卡值多少钱| 99久久成人亚洲精品观看| 日韩中文字幕欧美一区二区| 久久久久久大精品| 一卡2卡三卡四卡精品乱码亚洲| 婷婷精品国产亚洲av| 国产91精品成人一区二区三区| 国产精华一区二区三区| 亚洲成av人片在线播放无| 国产午夜精品久久久久久一区二区三区 | 欧美丝袜亚洲另类 | 午夜免费男女啪啪视频观看 | 久久人妻av系列| 麻豆久久精品国产亚洲av| 成人特级av手机在线观看| 欧美丝袜亚洲另类 | 欧美日韩国产亚洲二区| 香蕉av资源在线| 午夜精品久久久久久毛片777| 小蜜桃在线观看免费完整版高清| 少妇丰满av| www.www免费av| 一级毛片女人18水好多| 搡老岳熟女国产| 成人无遮挡网站| 亚洲欧美日韩高清在线视频| 国产真实伦视频高清在线观看 | 叶爱在线成人免费视频播放| 国产av一区在线观看免费| 亚洲一区二区三区色噜噜| 亚洲av日韩精品久久久久久密| 国产亚洲欧美98| 国产黄片美女视频| 国产国拍精品亚洲av在线观看 | 国内少妇人妻偷人精品xxx网站| 天天添夜夜摸| 天堂影院成人在线观看| 色在线成人网| 给我免费播放毛片高清在线观看| 久久精品亚洲精品国产色婷小说| 婷婷六月久久综合丁香| bbb黄色大片| 内射极品少妇av片p| 国产欧美日韩一区二区三| 久9热在线精品视频| 欧美日本视频| 免费电影在线观看免费观看| 久久精品国产99精品国产亚洲性色| h日本视频在线播放| 天堂√8在线中文| 国产97色在线日韩免费| 亚洲电影在线观看av| 久久久国产精品麻豆| www国产在线视频色| 婷婷精品国产亚洲av| 亚洲内射少妇av| 老司机午夜福利在线观看视频| 免费无遮挡裸体视频| 亚洲熟妇中文字幕五十中出| 亚洲久久久久久中文字幕| 国产午夜福利久久久久久| 亚洲一区二区三区色噜噜| 极品教师在线免费播放| 99久久成人亚洲精品观看| 91字幕亚洲| 两个人视频免费观看高清| 精品一区二区三区av网在线观看| 中文字幕人成人乱码亚洲影| 国产成人av教育| 日韩精品中文字幕看吧| or卡值多少钱| 国内精品久久久久精免费| 无遮挡黄片免费观看| 中亚洲国语对白在线视频| 国产精品电影一区二区三区| 搡女人真爽免费视频火全软件 | 熟女电影av网| 男女之事视频高清在线观看| 日日摸夜夜添夜夜添小说| 99国产极品粉嫩在线观看| 国产精品 国内视频| 啦啦啦韩国在线观看视频| 亚洲国产精品sss在线观看| 99riav亚洲国产免费| 在线国产一区二区在线| 欧美黄色片欧美黄色片| 色av中文字幕| 精品人妻1区二区| 久久精品91无色码中文字幕| 搞女人的毛片| 老汉色av国产亚洲站长工具| 国产高清videossex| 日韩欧美国产一区二区入口| 欧美成人一区二区免费高清观看| 国产成+人综合+亚洲专区| 亚洲,欧美精品.| 在线看三级毛片| 国产亚洲精品久久久久久毛片| 淫秽高清视频在线观看| 最新美女视频免费是黄的| 久久久久亚洲av毛片大全| 在线观看午夜福利视频| 又黄又爽又免费观看的视频| 床上黄色一级片| 精品日产1卡2卡| 老熟妇仑乱视频hdxx| 欧美zozozo另类| 免费人成在线观看视频色| 国产不卡一卡二| 欧美日韩一级在线毛片| 午夜两性在线视频| 欧美zozozo另类| 天堂av国产一区二区熟女人妻| 搡女人真爽免费视频火全软件 | 欧美日韩黄片免| 欧美日韩乱码在线| 久久久精品大字幕| 他把我摸到了高潮在线观看| 欧美极品一区二区三区四区| av天堂在线播放| 十八禁人妻一区二区| 国产熟女xx| 亚洲av免费在线观看| 蜜桃亚洲精品一区二区三区| 国产99白浆流出| av视频在线观看入口| 国产探花在线观看一区二区| 精品乱码久久久久久99久播| 内地一区二区视频在线| 欧美av亚洲av综合av国产av| 无人区码免费观看不卡| 麻豆久久精品国产亚洲av| 99久久无色码亚洲精品果冻| 一个人看视频在线观看www免费 | 欧美不卡视频在线免费观看| 亚洲av一区综合| 国产精品电影一区二区三区| 男女床上黄色一级片免费看| 午夜久久久久精精品| 欧美av亚洲av综合av国产av| 日本撒尿小便嘘嘘汇集6| 精品一区二区三区视频在线观看免费| 色精品久久人妻99蜜桃| 国产精品一区二区三区四区免费观看 | 一卡2卡三卡四卡精品乱码亚洲| 嫩草影视91久久| 高清毛片免费观看视频网站| 网址你懂的国产日韩在线| 久久久国产精品麻豆| 久久国产精品人妻蜜桃| 国产精品久久久久久精品电影| av片东京热男人的天堂| 亚洲专区中文字幕在线| 欧美色视频一区免费| 老熟妇乱子伦视频在线观看| 精品免费久久久久久久清纯| 亚洲一区二区三区不卡视频| 舔av片在线| 免费在线观看日本一区| 在线免费观看的www视频| 欧美日韩亚洲国产一区二区在线观看| 一级a爱片免费观看的视频| 国产美女午夜福利| 91久久精品电影网| 亚洲成av人片免费观看| 亚洲中文字幕日韩| 午夜福利在线观看吧| 日韩国内少妇激情av| 麻豆国产97在线/欧美| 国产综合懂色| 国产精品一及| 亚洲天堂国产精品一区在线| 九九久久精品国产亚洲av麻豆| 成人鲁丝片一二三区免费| 久久久久久九九精品二区国产| 久久久久国内视频| av天堂中文字幕网| 久久精品91无色码中文字幕| 波野结衣二区三区在线 | a级一级毛片免费在线观看| 国产精品,欧美在线| 亚洲国产中文字幕在线视频| 国产成人系列免费观看| 国产69精品久久久久777片| 欧美一区二区精品小视频在线| 嫁个100分男人电影在线观看| 欧美日韩精品网址| 欧美zozozo另类| 欧美+日韩+精品| 成人特级av手机在线观看| 国内精品久久久久精免费| 久久精品国产清高在天天线| 黄色丝袜av网址大全| 国产不卡一卡二| 成人鲁丝片一二三区免费| 大型黄色视频在线免费观看| 成人av在线播放网站| 亚洲 欧美 日韩 在线 免费| 免费观看的影片在线观看| 婷婷精品国产亚洲av| 亚洲七黄色美女视频| 在线播放无遮挡| 99在线人妻在线中文字幕| 国产aⅴ精品一区二区三区波| 一a级毛片在线观看| 国产成人欧美在线观看| 国产野战对白在线观看| 亚洲一区高清亚洲精品| 国产午夜精品久久久久久一区二区三区 | 日日摸夜夜添夜夜添小说| 深夜精品福利| 久久久精品大字幕| 99在线人妻在线中文字幕| 99热这里只有是精品50| 黄片小视频在线播放| 久久伊人香网站| 国产不卡一卡二| 中出人妻视频一区二区| 午夜福利欧美成人| 人妻久久中文字幕网| 久久国产乱子伦精品免费另类| 日本撒尿小便嘘嘘汇集6| 伊人久久大香线蕉亚洲五| 欧美日韩一级在线毛片| 好男人电影高清在线观看| 成人性生交大片免费视频hd| 久久久久性生活片| 日本五十路高清| 在线免费观看不下载黄p国产 | 精品福利观看| 欧美激情在线99| 亚洲va日本ⅴa欧美va伊人久久| 欧美性猛交╳xxx乱大交人| 中文字幕av在线有码专区| 久久久久久国产a免费观看| 啦啦啦韩国在线观看视频| 亚洲av成人av| 99久久精品一区二区三区| 国产国拍精品亚洲av在线观看 | 色噜噜av男人的天堂激情| 久久久国产成人精品二区| 国产野战对白在线观看| 久久草成人影院| 少妇人妻一区二区三区视频| 国产精品久久久久久久久免 | 美女黄网站色视频| 精品久久久久久久久久免费视频| 天堂动漫精品| 窝窝影院91人妻| 国产精品三级大全| netflix在线观看网站| 九九热线精品视视频播放| 成人精品一区二区免费| 黄色视频,在线免费观看| 亚洲国产日韩欧美精品在线观看 | 国产黄片美女视频| 在线观看午夜福利视频| 国产午夜福利久久久久久| 亚洲av免费高清在线观看| 国产一级毛片七仙女欲春2| 美女cb高潮喷水在线观看| 亚洲 欧美 日韩 在线 免费| 亚洲国产色片| 久久精品人妻少妇| 国产69精品久久久久777片| 亚洲欧美日韩无卡精品| 99热这里只有精品一区| 国产精品久久久人人做人人爽| www.熟女人妻精品国产| 美女高潮喷水抽搐中文字幕| 脱女人内裤的视频| 亚洲狠狠婷婷综合久久图片| 搞女人的毛片| 欧美成人a在线观看| 国产黄片美女视频| 午夜福利视频1000在线观看| 亚洲成人久久性| 在线观看免费午夜福利视频| 亚洲精品一区av在线观看| 日本黄色片子视频| 一a级毛片在线观看| 日本三级黄在线观看| 国产欧美日韩一区二区三| 真实男女啪啪啪动态图| 哪里可以看免费的av片| 国产亚洲精品综合一区在线观看| 制服丝袜大香蕉在线| 国产精品电影一区二区三区| 丰满人妻一区二区三区视频av | 国产野战对白在线观看| 国产精品美女特级片免费视频播放器| 亚洲一区二区三区色噜噜| 麻豆成人午夜福利视频| 亚洲真实伦在线观看| 首页视频小说图片口味搜索| 国产主播在线观看一区二区| 日本一本二区三区精品| 亚洲av日韩精品久久久久久密| 91在线观看av| 亚洲欧美一区二区三区黑人| 麻豆成人av在线观看| 十八禁人妻一区二区| 日本黄大片高清| av女优亚洲男人天堂| 日本免费一区二区三区高清不卡| 免费在线观看亚洲国产| 久久精品国产自在天天线| 国产av一区在线观看免费| 88av欧美| 一级毛片高清免费大全| 性色av乱码一区二区三区2| 亚洲av五月六月丁香网| 久久性视频一级片| 日韩精品青青久久久久久| 99久久精品国产亚洲精品| 亚洲自拍偷在线| 亚洲人成网站在线播| 国产精品一及| 国产激情偷乱视频一区二区| 免费看美女性在线毛片视频| 亚洲av五月六月丁香网| 欧美乱妇无乱码| 久久久久久九九精品二区国产| 亚洲欧美激情综合另类| 欧美在线黄色| 黑人欧美特级aaaaaa片| 一个人免费在线观看的高清视频| 精品一区二区三区人妻视频| a在线观看视频网站| 亚洲中文字幕一区二区三区有码在线看| 在线观看日韩欧美| 国产野战对白在线观看| 日韩欧美在线二视频| 91麻豆精品激情在线观看国产| 怎么达到女性高潮| av在线天堂中文字幕| 又黄又爽又免费观看的视频| 亚洲五月婷婷丁香| 日韩精品青青久久久久久| 免费看日本二区| 黄色女人牲交| 看免费av毛片| 免费看美女性在线毛片视频| 欧美最新免费一区二区三区 | 美女高潮的动态| 一区福利在线观看| 高潮久久久久久久久久久不卡| 成年女人永久免费观看视频| 一个人看视频在线观看www免费 | 国产三级中文精品| 亚洲av不卡在线观看| 国产蜜桃级精品一区二区三区| 午夜精品一区二区三区免费看| 国产一区二区激情短视频| 国产精品亚洲美女久久久| 国产精品 国内视频| 亚洲一区二区三区色噜噜| 老司机午夜十八禁免费视频| 久久亚洲精品不卡| 精品国内亚洲2022精品成人| 偷拍熟女少妇极品色| 国产精品99久久99久久久不卡| 亚洲成av人片免费观看| 男女午夜视频在线观看| 国产av一区在线观看免费| 九色成人免费人妻av| 欧美乱色亚洲激情| 午夜老司机福利剧场| 精品国产超薄肉色丝袜足j| 热99re8久久精品国产| 一级a爱片免费观看的视频| 亚洲天堂国产精品一区在线| 综合色av麻豆| 国产黄片美女视频| 亚洲人成电影免费在线| 91av网一区二区| 国产 一区 欧美 日韩| 国产一区二区在线av高清观看| 国产免费男女视频| 国产亚洲av嫩草精品影院| 欧美+亚洲+日韩+国产| 欧美日韩亚洲国产一区二区在线观看| 天堂动漫精品| 欧美绝顶高潮抽搐喷水| 青草久久国产| 精品久久久久久,| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 少妇裸体淫交视频免费看高清| 国产精品一区二区三区四区免费观看 | 天天一区二区日本电影三级| 久久九九热精品免费| 免费看a级黄色片| 在线播放国产精品三级| 综合色av麻豆| 变态另类成人亚洲欧美熟女| 在线免费观看不下载黄p国产 | 无遮挡黄片免费观看| 一本精品99久久精品77| 欧美性猛交╳xxx乱大交人| 在线a可以看的网站| 成人性生交大片免费视频hd| 欧美bdsm另类| 国产av麻豆久久久久久久| 久久6这里有精品| 日本黄大片高清| 久久精品国产99精品国产亚洲性色| 丰满人妻一区二区三区视频av | 有码 亚洲区| 久久久久国产精品人妻aⅴ院| 日韩亚洲欧美综合| 日韩欧美国产在线观看| 一个人免费在线观看的高清视频| 变态另类成人亚洲欧美熟女| 老司机午夜十八禁免费视频| 精品国产美女av久久久久小说| 人人妻人人看人人澡| 中亚洲国语对白在线视频| 又粗又爽又猛毛片免费看| 99热这里只有精品一区| 久久精品综合一区二区三区| 婷婷精品国产亚洲av| 无人区码免费观看不卡| www.色视频.com| 亚洲午夜理论影院| 一本久久中文字幕| 亚洲精品一区av在线观看| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 亚洲欧美一区二区三区黑人| 国内精品美女久久久久久| 99久久综合精品五月天人人| 亚洲内射少妇av| 手机成人av网站| 别揉我奶头~嗯~啊~动态视频| 午夜福利欧美成人| 麻豆一二三区av精品| 亚洲精华国产精华精| 欧美又色又爽又黄视频| 欧美大码av| 日韩欧美免费精品| 精品一区二区三区人妻视频| 色av中文字幕| 欧美一区二区国产精品久久精品| 在线观看66精品国产| 免费在线观看成人毛片| 97超视频在线观看视频| 国产探花极品一区二区| 午夜精品久久久久久毛片777| 午夜a级毛片| 中文字幕高清在线视频| 欧美xxxx黑人xx丫x性爽| 此物有八面人人有两片| 国产 一区 欧美 日韩| 午夜亚洲福利在线播放| 国产高潮美女av| 欧美另类亚洲清纯唯美| 90打野战视频偷拍视频| 熟女电影av网| 蜜桃亚洲精品一区二区三区| 有码 亚洲区| 变态另类成人亚洲欧美熟女| 日本黄色片子视频| 久久精品影院6| 国产黄片美女视频| 亚洲成a人片在线一区二区| 欧美黑人欧美精品刺激| 久久久久国产精品人妻aⅴ院| 国产精品美女特级片免费视频播放器| www.色视频.com| 欧美乱色亚洲激情| 欧美日韩一级在线毛片| 国产精品久久久久久精品电影| 香蕉久久夜色| 国产淫片久久久久久久久 | 国产欧美日韩精品亚洲av| 成年版毛片免费区| 久久久久性生活片| 波多野结衣高清作品| 国产乱人伦免费视频| av片东京热男人的天堂| 长腿黑丝高跟| 国产精品1区2区在线观看.| 美女高潮的动态| 亚洲熟妇熟女久久| 久久国产精品影院| 免费看日本二区| 国产亚洲欧美在线一区二区| 波野结衣二区三区在线 | 国产乱人视频| 制服人妻中文乱码| 51午夜福利影视在线观看| 精品人妻偷拍中文字幕| 最新美女视频免费是黄的| 成人午夜高清在线视频| 久久欧美精品欧美久久欧美| 99热这里只有是精品50| 99久久无色码亚洲精品果冻| 2021天堂中文幕一二区在线观| 精品国内亚洲2022精品成人| 久久精品91无色码中文字幕|