• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Extended trajectory shaping guidance law considering a first-order autopilot lag

    2015-04-22 07:48:14WANGHui王輝WANGJiang王江CHENGZhenxuan程振軒
    關(guān)鍵詞:王江王輝

    WANG Hui (王輝), WANG Jiang (王江), CHENG Zhen-xuan (程振軒)

    (1.School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China;2.China North Industries Group Corporation, Beijing 100821, China)

    ?

    Extended trajectory shaping guidance law considering a first-order autopilot lag

    WANG Hui (王輝)1, WANG Jiang (王江)1, CHENG Zhen-xuan (程振軒)2

    (1.School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China;2.China North Industries Group Corporation, Beijing 100821, China)

    To satisfy the terminal position and impact angel constraints, an optimal guidance problem was discussed for homing missiles. For a stationary or a slowly moving target on the ground, an extended trajectory shaping guidance law considering a first-order autopilot lag (ETSGL-CFAL) was proposed. To derive the ETSGL-CFAL, a time-to-go -nth power weighted objection function was adopted and three different derivation methods were demonstrated while the Schwartz inequality method was mainly demonstrated. The performance of the ETSGL-CFAL and the ETSGL guidance laws was compared through simulation. Simulation results show that although a first-order autopilot is introduced into the ETSGL-CFAL guidance system, the position miss distance and terminal impact angle error induced by the impact angle is zero for different guidance time.

    extended trajectory shaping guidance law; time-to-go; first-order autopilot; guidance performance

    Linear optimal guidance problems have been studied since the 1960s in the last century. During this period, based on different terminal constraints, several different linear optimal guidance laws have been proposed[1-12]. In these guidance laws, the optimal guidance law with impact angle constraint (OGLIAC) attracted more attentions. As mentioned in Refs.[4-8], to enhance the missile’s warhead effectiveness, many attacking missions have additional requirements on the terminal impact angle. For example, for antitank missiles, a near-vertical attacking direction is often designed to enhance the attacking effect on the armored vehicles; and for some anti-ship missiles, a side-plane attacking technology is often used to make the missile attack the side part of the ship in a lateral-vertical direction.

    Terminal impact angle control problem has been an important area of research in the homing missile guidance in recent years. In Ref.[4], Zarchan proposed an optimal guidance law called trajectory shaping guidance law (TSGL), which can also control the terminal impact angle. With the assumption of small angle for the line of sight (LOS) angle and the flight path angle, the TSGL is equivalent to the OGLIAC[4, 6-8]. In 1998, the TSGL was defined in the desired terminal line of sight frame and the guidance performance of which was also demonstrated by Ben-Asher and Yaesh[5]. During 2003-2005, the guidance performance of TSGL with a first-order autopilot was studied by Ryoo et al[6-7]. In 2013, for a stationary or a slowly moving target on the ground, a new form of time-to-go polynomial guidance law with impact angle constraint was proposed by Kim and Lee[9-10]. The new guidance law provides a new angle of view to study the optimal guidance problem with impact angle constraint.

    As mentioned above, the TSGL or OGLIAC was usually derived using the linear quadratic optimal control theory with some given terminal constraints, where the weighting functionR(t) in the object function was defined as the traditional form, i.e.,R(t) was set as a constant value one[4-8]. Correspondingly, the guidance law can be called as the conventional TSGL (CTSGL). However, in 2006, a more generalized form of the CTSGL, namely, the extended TSGL (ETSGL), was proposed by Ohlmeyer, Ryoo, et al., where the weighting function was extended to a new form of time-to-go -nth power[11-12]. This promotes the corresponding research work of the optimal guidance laws to a more widely research area[9-13].

    In this paper, considering a first-order autopilot lag, the extended weighting function found in Refs.[11-12] is adopted to derive the ETSGL using three different methods and the method of the Schwartz inequality is mainly demonstrated. The proposed guidance law is called extended trajectory guidance law considering a first-order autopilot lag (ETSGL-CFAL). Finally, the guidance performance of the ETSGL-CFAL is analyzed.

    1 Missile’s longitudinal motion equations considering a first-order autopilot lag

    According to Ref.[14], for a stationary or a slowly moving target, the longitudinal equations of missile’s motion can be expressed as

    (1)

    wherey,V,θandamdenotes the missile position, velocity, flight path angle and acceleration response, respectively. Under the assumption thatVis constant andθis small angle, Eq.(1) can be linearized as

    (2)

    Thetransferfunctionofafirst-orderaccelerationautopilotcanbeexpressedas

    am(s)/ac(s)=1/(Tgs+1)

    (3)

    whereacmeans the missile acceleration command andTgdenotes the time constant of the autopilot. Rewrite Eq.(3) as the form of differential equation, one obtains

    (4)

    CombiningEqs.(2) (4),themissile’slongitudinalmotionequationsconsideringafirst-orderautopilotlagcanbewrittenas

    (5)

    where

    (6)

    (7)

    In Eq.(7),y(tf) is the missile position at the terminal timetf,θ(tf) is the terminal flight path angle andam(tf) is the missile terminal acceleration response. The desired values ofy(tf),θ(tf) andam(tf) areyf,θf(wàn)andaf, respectively.

    2 Derivation of the ETSGL-CFAL using three different methods

    2.1 Derivation of the ETSGL-CFAL using the linear quadratic optimal control theory

    2.1.1 Using the optimal method in Ref.[7]

    Let us first consider the following optimal control problem: subject to Eq.(5), findu(t) to minimize the cost functionJwhich is defined as

    (8)

    whereSf≥0,R(t)>0,t0is the initial time. The solution of the optimal control problem shown in Eq.(5) and Eq.(8) is given by Ref.[7], that is

    u(t)*=-R(t)-1BTΦT(tf,t)Sf[x(tf)-xf]

    (9)

    whereΦ(tf,t) is the state transition matrix fromttotfand the expression of x(tf)-xfis given by

    x(tf)-xf=

    [Φ(tf,t)x(t)-xf]

    (10)

    According to Eq.(6), the weighting funtionR(t) and the terminal state weighting matrix Sfare chosen as

    (11)

    wheretf-t=tgo. The estimation method of time-to-go and the influence of time-to-go estimation errors on the guidance performance have been studied by Ryoo et al[6-7, 12]. Therefore, we assume that time-to-go is exactly known in this paper.

    According to Eq.(10), we define C as

    (12)

    where the expressions ofM11,M12,M21andM22are given by

    D1=Tg(e-tgo/Tg+tgo/Tg-1),D2=1-e-tgo/Tg

    (13)

    (14)

    (15)

    (16)

    (17)

    CombiningEqs.(5)-(17)andaftercomplexcalculations,oneobtainstheoptimalguidancelaw:

    W2θ(t)+W3θf(wàn)+W4am(t)]

    (18)

    whereW1,W2,W3andW4are defined as

    W1=(1/Δ)(s1D1M22-s2D2M21)

    (19)

    W2=(1/Δ)[s1D1(M22Vtgo-M12)]+

    (1/Δ)[s2D2(M11-M21Vtgo)]

    (20)

    W3=(1/Δ)(s1D1M12-s2D2M11)

    (21)

    W4=(Tg/Δ)[s1D1(M22D1-M12D2/V)]+

    (Tg/Δ)[s2D2(-M21D1+M11D2/V)]

    (22)

    (23)

    AccordingtoEq.(18),wesets1→∞,s2→∞, the final expression of the ETSGL-CFAL can be simplified as

    W′3)Vθ(t)-W′3Vθf(wàn)+Tg(D1W′1+D2W′3)am(t)}

    (24)

    2.1.2 Using the optimal method in Ref.[12]

    Rewrite the terminal constraints Eq.(7) as the form of matrix, that is

    (25)

    Neglect the terminal state constraint in Eq.(8), then Eq.(8) can be simplified as

    R(t)=1/(tf-t)n,n≥0

    (26)

    According to Ref.[12], the optimal solution is given by

    u(t)*=-R(t)-1BTFG-1[E-FTx(t)]

    (27)

    where the matrices F and G are given by

    (28)

    Substituting Eqs.(6) (25) into Eq.(28), we have

    (29)

    (30)

    where G is a 2×2 matrix.

    Substituting Eqs.(6) (25) (29) (30) into Eq.(27), we finally have the ETSGL-CFAL, which is the same with Eq.(24).

    2.2 Derivation of the ETSGL-CFAL using the Schwartz inequality

    The general solution of the state space

    Eq.(5) at the final time is given by[4]

    (31)

    whereΦ(t) is the fundamental matrix related to the matrix A according to

    Φ(t)=L-1[(sI-A)-1]

    (32)

    From Eqs.(6) (32),Φ(tf-t) is found to be

    (33)

    SubstitutingEqs.(6) (7) (33)intoEq.(31),weget

    (34)

    Multiplyingouttheprecedingtwomatrixequationsyields

    (35)

    WestillwanttominimizetheextendedcostfunctiondefinedinEq.(26)subjecttothespecifiedterminalpositionandterminalimpactangle,thatis

    y(tf)=yf,θ(tf)=θf(wàn)

    (36)

    For convenience, let us first define

    f1=y(tf)-y(t)-Vtgoθ(t)-

    (37)

    (38)

    Thus,Eq.(35)canbewrittenas

    (39)

    InordertocombineEq.(39)intooneequation,wefirstdefineanewvariableσand then we have

    (40)

    IfweapplytheSchwartzinequalitytoEq.(40),weget

    (41)

    TheleftpartofinequalityEq.(40)isequivalenttotheextendedcostfunctionEq.(26)andwillbeminimizedwhentheequalitysignholds.UsingtheSchwartzinequality,theequalitysignholdsas

    a′c(t)=C(h1-σh2)

    (42)

    whereCis a constant. Therefore, when the equality sign holds, we have

    (43)

    Forconvenience,wedefinethefollowingnewvariables

    (44)

    Thus,Eq.(43)canberewriteas

    (45)

    Defineσ′=σ/Vand then Eq.(45) can be expressed as

    (46)

    BytakingthederivativeofEq.(46)withrespecttoσand setting the result to zero, we get the optimalσ′ that minimizes Eq.(46), that is

    σ′=(f2g11-f1g12)/(f2g12-f1g22)

    (47)

    Substituting Eq.(42) intof1in Eq.(39) and solving for the constantC, one obtains

    C=f1/(g11-σ′g12)

    (48)

    And then, Eq.(42) can be expressed as

    a′c(t)=f1(h1-σh2)/(g11-σ′g12)

    (49)

    Substituting Eq.(47) into Eq.(49) and after some algebra yields

    (50)

    SubstitutingEqs.(37) (44)intoEq.(50),weobtainthefinalexpressionoftheETSGL-CFAL,whichisalsothesamewithEq.(24).

    Asshownintheabovetwosubsections,thethreedifferentderivationmethodsresulttothesameETSGL-CFAL.

    ComparedwithCTSGLandETSGL,ETSGL-CFALisamoregeneralizedform.IfweneglectthetimeconstantTg, i.e., the autopilot is lag-free, ETSGL-CFAL will reduce to ETSGL and if we setTg=0 andn=0 simultaneously, ETSGL-CFAL will directly reduce to CTSGL.

    2.3 Expression of the ETSGL-CFAL in engineering application

    (51)

    (52)

    DefinesomenewgainsoftheETSGL-CFALas

    (53)

    Combining Eqs.(24) (51) (52) yields

    (54)

    Eq.(54)istheexpressionoftheETSGL-CFALforengineeringapplicationinmissileguidance.FortheETSGL,Eq.(53)reducesto

    N′p=2(n+2),N′θ=(n+1)(n+2),N′a=0

    (55)

    and then the ETSGL can be written as

    (56)

    3 Analysis of the normalized acceleration and normalized miss induced by the impact angle

    For comparison, we consider both the ETSGL-CFAL and ETSGL guidance laws. Fig.1 gives the block diagram of the ETSGL-CFAL guidance system. As the gains of Eq.(55) are chosen, the ETSGL-CFAL guidance system can be simplified to the ETSGL guidance system with a first-order autopilot. In Fig.1, two constraints are considered, i.e., the desired missile positionyfand the desired impact angleθf(wàn). Simulation parameters of Fig.1 are given in Tab.1.

    Fig.1 Guidance system of the ETSGL-CFAL/ETSGL

    Tab.1 Simulation parameters

    Parameteryf/mθf(wàn)/(°)V/(m/s)Tg/stf/sValue0-30,-603000.510

    Simulation results of the trajectories and LOS angles forθf(wàn)=-30° andθf(wàn)=-60°, respectively, are shown in Fig.2 and Fig.3. It can be seen that for the ETSGL-CFAL/ETSGL, both the curves of the trajectories and LOS angles are similar if a small indexnis chosen, for example,n=0; however, a large indexn, for example,n=1, will result in a higher trajectory for the ETSGL. Correspondingly, for the ETSGL-CFAL, a lower trajectory will be got whennis chosen as a large value.

    Fig.4 gives the normalized acceleration commands of the ETSGL-CFAL/ETSGL induced by the impact angleθf(wàn). Fig.4 shows that it will result in an abrupt increase in the acceleration command at the final time if we introduce an autopilot lag into the ETSGL guidance system and this will lead to undesired position miss distance and impact angle error (as shown in Fig.5 and Fig.6), especially when the system total guidance timetfis not enough. The reason is that the ETSGL is only optimal for the lag-free autopilot and if we introduce into a first-order autopilot, the ETSGL is not optimal. However, the ETSGL-CFAL is also optimal at the existence of the first-order autopilot, and the acceleration command of which will approach to zero at the final guidance time (Fig.4). Thus, although a first-order autopilot was introduced into the ETSGL-CFAL system, there is no miss distance and terminal impact angle error as shown in Fig.5 and Fig.6.

    Fig.2 Trajectories for different θf(wàn)

    Fig.3 LOS angle q for different θf(wàn)

    Fig.4 Normalized acceleration commands induced by θf(wàn)

    Fig.5 Normalized position miss distance induced by θf(wàn)

    Fig.6 Normalized terminal impact angle error induced by θf(wàn)

    4 Conclusions

    ① Using a time-to-go weighted object function and considering a first-order autopilot lag, for a stationary or slowly moving target, an extended trajectory shaping guidance law, called ETSGL-CFAL in this paper, is proposed.

    ② Three different methods are adopted to derive the ETSGL-CFAL: two based on the linear optimal control theory and one based on the Schwartz inequality.

    ③ Performance of the ETSGL-CFAL and the ETSGL guidance laws are compared through simulation. Simulation results show that for different guidance times, although a first-order autopilot is introduced into the ETSGL-CFAL guidance system, there is no miss distance and terminal impact angle error induced by the impact angle.

    [1] Kim B S, Lee J G, Han H S. Biased PNG law for impact with angular constraint [J]. IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(1): 277-288.

    [2] Ratnoo A, Ghose D. Impact angle constrained interception of stationary targets [J]. Journal of Guidance, Control, and Dynamics, 2008, 31(6): 1816-1821.

    [3] Ratnoo A, Ghose D. State dependent Riccati equation based guidance law for impact angle constrained trajectories [J]. Journal of Guidance, Control, and Dynamics, 2009, 32(1): 320-325.

    [4] Zarchan P. Tactical and strategic missile guidance[M]. 5th ed. Progress in Astronautics and Aeronautics, 2007: 541-569.

    [5] Ben-Asher J Z, Yaesh I. Advances in missile guidance theory[M]. [S.l.]: American Institute of Aeronautics and Astronautics, Inc., 1998:25-88.

    [6] Ryoo C K, Cho H, Tahk M J. Close-form solutions of optimal guidance with terminal impact angle constraint [C]∥Proceedings of IEEE International Conference on Control Application, Istanbul, Turkey, 2003: 504-509.

    [7] Ryoo C K, Cho H, Tahk M J. Optimal guidance laws with terminal impact angle constraint [J]. Journal of Guidance, Control and Dynamics, 2005, 28(4): 724-732.

    [8] Ryoo C K, Cho H, Tahk M J. Energy optimal waypoint guidance synthesis for antiship missiles [J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(1):80-95.

    [9] Kim T H, Lee C H, Tahk M J, et al. Time-to-go polynomial guidance with trajectory modulation for observability enhancement [J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(1): 55-73.

    [10] Lee C H, Kim T H, Tahk M J, et al. Polynomial guidance laws considering terminal impact angle and acceleration constraints [J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(1): 74-92.

    [11] Ohlmeyer E J, Phillips C A. Generalized vector explicit guidance [J]. Journal of Guidance, Control and Dynamics, 2006, 29(2): 261-268.

    [12] Ryoo C K, Cho H, Tahk M J. Time-to-go weighted optimal guidance with impact angle constraints [J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 14(3): 483-492.

    [13] Wang H, Lin D F, Cheng Z X, et al. Optimal guidance of extended trajectory shaping [J]. Chinese Journal of Aeronautics, 2014,27(5):1259-1272.

    [14] Qian X F, Lin R X, Zhao Y N. Missile aviation mechanics [M]. Beijing: Beijing Institute of Technology Press, 2008: 28-74. (in Chinese)

    (Edited by Wang Yuxia)

    10.15918/j.jbit1004-0579.201524.0302

    TJ 765.3 Document code: A Article ID: 1004- 0579(2015)03- 0291- 07

    Received 2013- 12- 01

    Supported by the National Natural Science Foundation of China (61172182)

    E-mail: wh20031131@126.com

    猜你喜歡
    王江王輝
    本期面孔
    遼河(2022年12期)2023-01-29 13:24:58
    Parkinsonian oscillations and their suppression by closed-loop deep brain stimulation based on fuzzy concept
    洛書
    寶藏(2021年12期)2022-01-15 04:19:44
    劇作家王輝
    火花(2021年10期)2021-11-04 09:23:52
    Characterization of size effect of natural convection in melting process of phase change material in square cavity?
    王江薈國(guó)畫系列作品《安仁古八景》
    竹之韻
    Orientation and alignment during materials processing under high magnetic fields?
    王江作品
    The Thought on PPP in China
    久久人妻熟女aⅴ| 肉色欧美久久久久久久蜜桃| 国产成人精品一,二区| 亚洲国产成人一精品久久久| 精品人妻熟女av久视频| 免费观看无遮挡的男女| 免费久久久久久久精品成人欧美视频 | 亚洲中文av在线| 80岁老熟妇乱子伦牲交| 国产欧美日韩一区二区三区在线 | 久久久精品免费免费高清| 高清毛片免费看| 久久精品国产亚洲网站| 丰满少妇做爰视频| 在线 av 中文字幕| 亚洲av.av天堂| 日本午夜av视频| 永久免费av网站大全| 五月开心婷婷网| 亚洲精华国产精华液的使用体验| 精品亚洲成国产av| 99热全是精品| 最后的刺客免费高清国语| 国产国语露脸激情在线看| 夫妻性生交免费视频一级片| 国产精品99久久久久久久久| 成人午夜精彩视频在线观看| 丁香六月天网| 欧美成人精品欧美一级黄| 超碰97精品在线观看| 一边摸一边做爽爽视频免费| 国产成人aa在线观看| 最近中文字幕高清免费大全6| 一级a做视频免费观看| 少妇人妻久久综合中文| 国产 一区精品| 国产极品天堂在线| 亚洲av二区三区四区| 国产又色又爽无遮挡免| 国产色婷婷99| 丝袜在线中文字幕| 一本一本综合久久| 91精品国产国语对白视频| 国产成人av激情在线播放 | 少妇猛男粗大的猛烈进出视频| 精品久久国产蜜桃| 又粗又硬又长又爽又黄的视频| 色婷婷av一区二区三区视频| 日韩伦理黄色片| 一区在线观看完整版| 只有这里有精品99| 欧美三级亚洲精品| 在线天堂最新版资源| 女性生殖器流出的白浆| 国产一区二区三区综合在线观看 | 97在线人人人人妻| 亚洲国产成人一精品久久久| 久久久精品区二区三区| 午夜激情av网站| 免费日韩欧美在线观看| 精品久久久精品久久久| 欧美日韩视频高清一区二区三区二| 日韩av免费高清视频| 亚洲av中文av极速乱| 亚洲三级黄色毛片| 麻豆精品久久久久久蜜桃| 狂野欧美白嫩少妇大欣赏| 99久久精品国产国产毛片| 黑人欧美特级aaaaaa片| av又黄又爽大尺度在线免费看| 久久久久久伊人网av| 日韩人妻高清精品专区| 亚洲av欧美aⅴ国产| 天天躁夜夜躁狠狠久久av| 亚洲av日韩在线播放| 伦精品一区二区三区| 亚洲精品久久成人aⅴ小说 | 亚洲久久久国产精品| 热99久久久久精品小说推荐| 晚上一个人看的免费电影| 亚洲综合精品二区| 中文字幕av电影在线播放| 一区二区三区四区激情视频| 精品少妇久久久久久888优播| 精品久久蜜臀av无| 国产精品人妻久久久影院| 国产一区二区在线观看av| 日韩伦理黄色片| 亚洲欧洲国产日韩| 菩萨蛮人人尽说江南好唐韦庄| 亚洲av成人精品一二三区| 少妇丰满av| 26uuu在线亚洲综合色| 少妇丰满av| 99久久中文字幕三级久久日本| 制服诱惑二区| 岛国毛片在线播放| 波野结衣二区三区在线| 午夜福利在线观看免费完整高清在| 国产高清不卡午夜福利| 日本免费在线观看一区| 日本黄大片高清| 国产深夜福利视频在线观看| 久久精品夜色国产| 久久99热6这里只有精品| 欧美3d第一页| 丝袜脚勾引网站| 九色亚洲精品在线播放| 国产69精品久久久久777片| 久久久久国产精品人妻一区二区| 欧美xxxx性猛交bbbb| 午夜激情福利司机影院| 在线免费观看不下载黄p国产| 少妇 在线观看| 国产精品99久久99久久久不卡 | 黑人欧美特级aaaaaa片| 国产高清有码在线观看视频| 一级二级三级毛片免费看| 国国产精品蜜臀av免费| 2018国产大陆天天弄谢| 大码成人一级视频| 亚洲国产av新网站| 亚洲综合色惰| 99久久中文字幕三级久久日本| 国产成人免费观看mmmm| 啦啦啦在线观看免费高清www| 国产精品人妻久久久影院| 国产日韩一区二区三区精品不卡 | 女性被躁到高潮视频| 午夜激情av网站| 简卡轻食公司| 久久99热6这里只有精品| 日韩一区二区三区影片| 九九爱精品视频在线观看| videos熟女内射| 91成人精品电影| 久久久a久久爽久久v久久| 精品一品国产午夜福利视频| 热99久久久久精品小说推荐| 免费看光身美女| 亚洲国产日韩一区二区| 免费看光身美女| 黑丝袜美女国产一区| 蜜臀久久99精品久久宅男| 国产精品无大码| 国产一区二区在线观看av| 九色成人免费人妻av| 欧美少妇被猛烈插入视频| 免费大片18禁| 大片免费播放器 马上看| 国产黄片视频在线免费观看| 毛片一级片免费看久久久久| 国产片特级美女逼逼视频| 中文字幕精品免费在线观看视频 | 日韩欧美精品免费久久| 老司机影院成人| 国产乱来视频区| 亚洲国产成人一精品久久久| 三上悠亚av全集在线观看| 一个人免费看片子| 日韩电影二区| 久久久久国产网址| 人体艺术视频欧美日本| 国产极品天堂在线| 精品国产一区二区久久| 午夜久久久在线观看| 黄色怎么调成土黄色| 嫩草影院入口| 欧美xxxx性猛交bbbb| 午夜激情福利司机影院| 自线自在国产av| 日韩一区二区视频免费看| 亚洲精华国产精华液的使用体验| 国产精品.久久久| 日本-黄色视频高清免费观看| 国产永久视频网站| 99热国产这里只有精品6| 一本色道久久久久久精品综合| 精品久久久久久久久亚洲| 如日韩欧美国产精品一区二区三区 | 国产伦理片在线播放av一区| 久久久久久久久久成人| 一级毛片aaaaaa免费看小| 青春草视频在线免费观看| 国产又色又爽无遮挡免| 国产精品国产av在线观看| 久久久欧美国产精品| a级片在线免费高清观看视频| 人人妻人人爽人人添夜夜欢视频| 亚洲av二区三区四区| 久久久亚洲精品成人影院| 国产熟女午夜一区二区三区 | av卡一久久| 精品卡一卡二卡四卡免费| 熟女人妻精品中文字幕| 欧美成人午夜免费资源| 91成人精品电影| 久久久欧美国产精品| 国产在线免费精品| 性高湖久久久久久久久免费观看| 丝袜喷水一区| 亚洲国产成人一精品久久久| 亚洲av在线观看美女高潮| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 免费观看在线日韩| 国产午夜精品久久久久久一区二区三区| 亚洲av成人精品一二三区| 亚洲内射少妇av| 国产精品久久久久久av不卡| 插阴视频在线观看视频| 天堂俺去俺来也www色官网| 国产高清三级在线| 亚洲精品美女久久av网站| 22中文网久久字幕| 精品国产一区二区久久| 天美传媒精品一区二区| 久久久久网色| 黑人巨大精品欧美一区二区蜜桃 | 麻豆精品久久久久久蜜桃| 日本91视频免费播放| www.av在线官网国产| 久久热精品热| 欧美bdsm另类| 欧美另类一区| 精品国产国语对白av| 国产精品99久久99久久久不卡 | 中文字幕亚洲精品专区| 久久国产精品男人的天堂亚洲 | 两个人免费观看高清视频| 大陆偷拍与自拍| 亚洲色图 男人天堂 中文字幕 | 欧美人与善性xxx| 美女脱内裤让男人舔精品视频| 男女啪啪激烈高潮av片| 国产熟女午夜一区二区三区 | 狠狠精品人妻久久久久久综合| 日韩欧美一区视频在线观看| 伦理电影大哥的女人| 91国产中文字幕| 国产精品免费大片| 好男人视频免费观看在线| 亚洲成人一二三区av| 少妇被粗大的猛进出69影院 | 日日摸夜夜添夜夜添av毛片| 99re6热这里在线精品视频| 寂寞人妻少妇视频99o| 国产国语露脸激情在线看| 黄片播放在线免费| 少妇 在线观看| 少妇精品久久久久久久| 久久精品人人爽人人爽视色| 日本av免费视频播放| 一级二级三级毛片免费看| 最后的刺客免费高清国语| 在线观看www视频免费| 国产精品人妻久久久久久| 91久久精品电影网| 久久久久视频综合| 91久久精品国产一区二区成人| 99热全是精品| 成人午夜精彩视频在线观看| 国产成人精品无人区| 亚洲av成人精品一二三区| 国产亚洲最大av| 日本欧美国产在线视频| 免费黄频网站在线观看国产| 国产欧美亚洲国产| 亚洲精品,欧美精品| 国产国拍精品亚洲av在线观看| 能在线免费看毛片的网站| 亚洲精品中文字幕在线视频| 久久久国产欧美日韩av| 女人久久www免费人成看片| 夜夜看夜夜爽夜夜摸| 免费播放大片免费观看视频在线观看| 国产成人av激情在线播放 | 一级爰片在线观看| 免费大片黄手机在线观看| 只有这里有精品99| 久久久精品94久久精品| 精品一区二区三区视频在线| 久久精品国产鲁丝片午夜精品| 国产欧美亚洲国产| 制服诱惑二区| av天堂久久9| 老司机影院成人| 国产日韩欧美亚洲二区| 亚洲精品美女久久av网站| 久久99一区二区三区| a级毛片在线看网站| 各种免费的搞黄视频| 一边亲一边摸免费视频| 久久国内精品自在自线图片| 97在线人人人人妻| 五月开心婷婷网| 少妇丰满av| 国精品久久久久久国模美| 国产无遮挡羞羞视频在线观看| 超碰97精品在线观看| 韩国av在线不卡| 精品亚洲成国产av| 久久国产精品大桥未久av| 欧美日韩在线观看h| 中文字幕最新亚洲高清| 久久99热6这里只有精品| 丝袜美足系列| 亚洲欧美清纯卡通| 亚洲精品一区蜜桃| 黄色一级大片看看| 美女主播在线视频| 2018国产大陆天天弄谢| 欧美精品亚洲一区二区| 天天影视国产精品| 插逼视频在线观看| 日韩制服骚丝袜av| 美女xxoo啪啪120秒动态图| 少妇熟女欧美另类| 熟女av电影| 黄片无遮挡物在线观看| 免费大片18禁| 婷婷成人精品国产| 国产成人一区二区在线| 免费人妻精品一区二区三区视频| 欧美性感艳星| 嘟嘟电影网在线观看| 日韩,欧美,国产一区二区三区| 制服诱惑二区| 亚洲色图综合在线观看| 亚洲国产精品国产精品| 国产有黄有色有爽视频| 久久久国产一区二区| 成人无遮挡网站| 精品亚洲成a人片在线观看| 国产熟女欧美一区二区| 黑人高潮一二区| 亚洲欧美一区二区三区国产| 免费看光身美女| 少妇被粗大猛烈的视频| av国产久精品久网站免费入址| 国产亚洲精品第一综合不卡 | 两个人免费观看高清视频| 精品人妻偷拍中文字幕| 精品一区在线观看国产| 性色av一级| 少妇高潮的动态图| 一级毛片 在线播放| 热99国产精品久久久久久7| 夜夜爽夜夜爽视频| 久久久亚洲精品成人影院| 国产日韩一区二区三区精品不卡 | 免费黄频网站在线观看国产| 欧美最新免费一区二区三区| 免费不卡的大黄色大毛片视频在线观看| 插阴视频在线观看视频| 久久久久久久久久久丰满| 性高湖久久久久久久久免费观看| 欧美日韩在线观看h| 毛片一级片免费看久久久久| 免费少妇av软件| 22中文网久久字幕| 激情五月婷婷亚洲| 啦啦啦啦在线视频资源| 久久精品人人爽人人爽视色| 我的女老师完整版在线观看| av女优亚洲男人天堂| 99久久精品一区二区三区| 汤姆久久久久久久影院中文字幕| 人人澡人人妻人| 高清毛片免费看| 夜夜看夜夜爽夜夜摸| xxx大片免费视频| 久久久久国产精品人妻一区二区| 考比视频在线观看| 欧美亚洲 丝袜 人妻 在线| 日日爽夜夜爽网站| 亚洲第一av免费看| 国产永久视频网站| 黄色怎么调成土黄色| 国产爽快片一区二区三区| av.在线天堂| 亚州av有码| 亚洲五月色婷婷综合| 精品少妇黑人巨大在线播放| 亚洲美女黄色视频免费看| 国产免费视频播放在线视频| 乱码一卡2卡4卡精品| 国产精品 国内视频| 人人妻人人添人人爽欧美一区卜| 国产欧美日韩一区二区三区在线 | 亚洲精品久久午夜乱码| 亚洲国产精品国产精品| 我的老师免费观看完整版| 中国国产av一级| 久久99热6这里只有精品| 大香蕉久久网| 十分钟在线观看高清视频www| av电影中文网址| 久久狼人影院| 一区在线观看完整版| 国产在视频线精品| 亚洲国产精品999| 99热网站在线观看| 午夜激情福利司机影院| 国产精品一区二区三区四区免费观看| av免费在线看不卡| 麻豆精品久久久久久蜜桃| 国产免费现黄频在线看| 国产国拍精品亚洲av在线观看| 日韩一区二区三区影片| 国产成人精品在线电影| 国产精品免费大片| 久热久热在线精品观看| 大陆偷拍与自拍| 一级毛片电影观看| 久久精品国产a三级三级三级| 成人毛片60女人毛片免费| 日本猛色少妇xxxxx猛交久久| 人妻少妇偷人精品九色| 成年人免费黄色播放视频| 亚州av有码| 丰满饥渴人妻一区二区三| av有码第一页| 国产亚洲午夜精品一区二区久久| 日韩不卡一区二区三区视频在线| 少妇猛男粗大的猛烈进出视频| 黑人欧美特级aaaaaa片| 亚洲精品国产色婷婷电影| 婷婷色av中文字幕| 国产免费福利视频在线观看| 亚洲欧美清纯卡通| 国产一区二区三区综合在线观看 | 久久影院123| 亚洲精品久久成人aⅴ小说 | 老熟女久久久| 国产极品粉嫩免费观看在线 | 91国产中文字幕| 免费黄色在线免费观看| 亚洲欧美精品自产自拍| 日韩亚洲欧美综合| 亚洲精品aⅴ在线观看| 亚洲精品日本国产第一区| 寂寞人妻少妇视频99o| 亚洲国产色片| 亚洲精品自拍成人| 超碰97精品在线观看| 欧美日韩在线观看h| 国产日韩欧美视频二区| 黄片无遮挡物在线观看| 成人二区视频| 国产极品粉嫩免费观看在线 | 制服诱惑二区| 亚洲精品456在线播放app| 少妇丰满av| 国产在线一区二区三区精| www.色视频.com| 免费少妇av软件| 日韩中文字幕视频在线看片| 大又大粗又爽又黄少妇毛片口| 多毛熟女@视频| 午夜视频国产福利| 天堂8中文在线网| 色5月婷婷丁香| 亚洲色图综合在线观看| 黄色配什么色好看| 精品少妇内射三级| 久久人人爽人人片av| 91精品一卡2卡3卡4卡| 欧美性感艳星| 黄色一级大片看看| 日韩免费高清中文字幕av| 大话2 男鬼变身卡| 少妇人妻精品综合一区二区| 如日韩欧美国产精品一区二区三区 | 国产亚洲精品久久久com| 我的老师免费观看完整版| 久久久久国产精品人妻一区二区| 日本av免费视频播放| 18禁观看日本| 国产精品人妻久久久影院| 一区二区日韩欧美中文字幕 | av卡一久久| 全区人妻精品视频| 国产成人aa在线观看| 亚洲色图 男人天堂 中文字幕 | 成人综合一区亚洲| 搡老乐熟女国产| 亚洲精品美女久久av网站| 亚洲婷婷狠狠爱综合网| 交换朋友夫妻互换小说| 性色av一级| 最新中文字幕久久久久| av在线老鸭窝| av一本久久久久| 欧美激情国产日韩精品一区| 好男人视频免费观看在线| 永久网站在线| 国产乱来视频区| 精品国产乱码久久久久久小说| 日日啪夜夜爽| 777米奇影视久久| 国产精品人妻久久久久久| 久久青草综合色| 国产在线免费精品| 国语对白做爰xxxⅹ性视频网站| 人妻夜夜爽99麻豆av| 人妻系列 视频| 99热国产这里只有精品6| 国产日韩欧美亚洲二区| 亚洲欧洲日产国产| 国产在线视频一区二区| 插阴视频在线观看视频| 91午夜精品亚洲一区二区三区| 亚洲精品中文字幕在线视频| 久久久久久久久大av| 两个人免费观看高清视频| 视频中文字幕在线观看| 国产av精品麻豆| 人妻少妇偷人精品九色| 成人黄色视频免费在线看| 十八禁高潮呻吟视频| 国产男女内射视频| 十八禁网站网址无遮挡| 亚洲欧美清纯卡通| 大香蕉久久成人网| 自线自在国产av| 又粗又硬又长又爽又黄的视频| 熟女av电影| 嫩草影院入口| 22中文网久久字幕| 亚洲av不卡在线观看| 国产精品国产三级国产av玫瑰| 午夜视频国产福利| 亚洲成人手机| 久久热精品热| 久久久久久久国产电影| 日本猛色少妇xxxxx猛交久久| 国产一区二区三区综合在线观看 | 老女人水多毛片| 男女高潮啪啪啪动态图| 国产在线免费精品| 久久久久精品性色| 精品久久久久久久久亚洲| 欧美精品高潮呻吟av久久| 男女边吃奶边做爰视频| 十八禁网站网址无遮挡| 亚洲精品日本国产第一区| av免费观看日本| 亚洲av成人精品一区久久| 蜜臀久久99精品久久宅男| 中文字幕av电影在线播放| 精品亚洲成a人片在线观看| 熟女电影av网| 成人国产av品久久久| 欧美精品高潮呻吟av久久| 国产精品国产三级专区第一集| 国产成人a∨麻豆精品| 80岁老熟妇乱子伦牲交| 国产精品一国产av| 热99国产精品久久久久久7| 一个人看视频在线观看www免费| 国产国拍精品亚洲av在线观看| 三上悠亚av全集在线观看| 天天躁夜夜躁狠狠久久av| 最后的刺客免费高清国语| h视频一区二区三区| 日本与韩国留学比较| 国内精品宾馆在线| 人妻制服诱惑在线中文字幕| 99热网站在线观看| 国产精品人妻久久久久久| 亚洲婷婷狠狠爱综合网| 国产极品天堂在线| 国产日韩欧美亚洲二区| 亚洲av电影在线观看一区二区三区| 成人亚洲欧美一区二区av| 国产视频内射| 99久久中文字幕三级久久日本| 日韩在线高清观看一区二区三区| videossex国产| 国产黄频视频在线观看| av在线老鸭窝| av国产精品久久久久影院| 亚洲av日韩在线播放| 91精品国产九色| 午夜久久久在线观看| 女性生殖器流出的白浆| 国产黄色视频一区二区在线观看| 又大又黄又爽视频免费| 80岁老熟妇乱子伦牲交| 性色avwww在线观看| 免费人妻精品一区二区三区视频| 在线观看人妻少妇| 最近中文字幕高清免费大全6| 亚洲国产精品一区二区三区在线| 香蕉精品网在线| 亚洲内射少妇av| 国产白丝娇喘喷水9色精品| 欧美xxxx性猛交bbbb| 极品人妻少妇av视频| 97超碰精品成人国产| 人妻人人澡人人爽人人| 亚洲精品日韩av片在线观看| 久久婷婷青草| 亚洲欧美日韩卡通动漫| 久久热精品热| 精品亚洲成国产av| 综合色丁香网| 国产免费一级a男人的天堂| 亚洲不卡免费看| 国产精品女同一区二区软件| 永久网站在线| 亚洲美女搞黄在线观看| 精品一区在线观看国产| 插逼视频在线观看| 特大巨黑吊av在线直播|