• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Extended trajectory shaping guidance law considering a first-order autopilot lag

    2015-04-22 07:48:14WANGHui王輝WANGJiang王江CHENGZhenxuan程振軒
    關(guān)鍵詞:王江王輝

    WANG Hui (王輝), WANG Jiang (王江), CHENG Zhen-xuan (程振軒)

    (1.School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China;2.China North Industries Group Corporation, Beijing 100821, China)

    ?

    Extended trajectory shaping guidance law considering a first-order autopilot lag

    WANG Hui (王輝)1, WANG Jiang (王江)1, CHENG Zhen-xuan (程振軒)2

    (1.School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China;2.China North Industries Group Corporation, Beijing 100821, China)

    To satisfy the terminal position and impact angel constraints, an optimal guidance problem was discussed for homing missiles. For a stationary or a slowly moving target on the ground, an extended trajectory shaping guidance law considering a first-order autopilot lag (ETSGL-CFAL) was proposed. To derive the ETSGL-CFAL, a time-to-go -nth power weighted objection function was adopted and three different derivation methods were demonstrated while the Schwartz inequality method was mainly demonstrated. The performance of the ETSGL-CFAL and the ETSGL guidance laws was compared through simulation. Simulation results show that although a first-order autopilot is introduced into the ETSGL-CFAL guidance system, the position miss distance and terminal impact angle error induced by the impact angle is zero for different guidance time.

    extended trajectory shaping guidance law; time-to-go; first-order autopilot; guidance performance

    Linear optimal guidance problems have been studied since the 1960s in the last century. During this period, based on different terminal constraints, several different linear optimal guidance laws have been proposed[1-12]. In these guidance laws, the optimal guidance law with impact angle constraint (OGLIAC) attracted more attentions. As mentioned in Refs.[4-8], to enhance the missile’s warhead effectiveness, many attacking missions have additional requirements on the terminal impact angle. For example, for antitank missiles, a near-vertical attacking direction is often designed to enhance the attacking effect on the armored vehicles; and for some anti-ship missiles, a side-plane attacking technology is often used to make the missile attack the side part of the ship in a lateral-vertical direction.

    Terminal impact angle control problem has been an important area of research in the homing missile guidance in recent years. In Ref.[4], Zarchan proposed an optimal guidance law called trajectory shaping guidance law (TSGL), which can also control the terminal impact angle. With the assumption of small angle for the line of sight (LOS) angle and the flight path angle, the TSGL is equivalent to the OGLIAC[4, 6-8]. In 1998, the TSGL was defined in the desired terminal line of sight frame and the guidance performance of which was also demonstrated by Ben-Asher and Yaesh[5]. During 2003-2005, the guidance performance of TSGL with a first-order autopilot was studied by Ryoo et al[6-7]. In 2013, for a stationary or a slowly moving target on the ground, a new form of time-to-go polynomial guidance law with impact angle constraint was proposed by Kim and Lee[9-10]. The new guidance law provides a new angle of view to study the optimal guidance problem with impact angle constraint.

    As mentioned above, the TSGL or OGLIAC was usually derived using the linear quadratic optimal control theory with some given terminal constraints, where the weighting functionR(t) in the object function was defined as the traditional form, i.e.,R(t) was set as a constant value one[4-8]. Correspondingly, the guidance law can be called as the conventional TSGL (CTSGL). However, in 2006, a more generalized form of the CTSGL, namely, the extended TSGL (ETSGL), was proposed by Ohlmeyer, Ryoo, et al., where the weighting function was extended to a new form of time-to-go -nth power[11-12]. This promotes the corresponding research work of the optimal guidance laws to a more widely research area[9-13].

    In this paper, considering a first-order autopilot lag, the extended weighting function found in Refs.[11-12] is adopted to derive the ETSGL using three different methods and the method of the Schwartz inequality is mainly demonstrated. The proposed guidance law is called extended trajectory guidance law considering a first-order autopilot lag (ETSGL-CFAL). Finally, the guidance performance of the ETSGL-CFAL is analyzed.

    1 Missile’s longitudinal motion equations considering a first-order autopilot lag

    According to Ref.[14], for a stationary or a slowly moving target, the longitudinal equations of missile’s motion can be expressed as

    (1)

    wherey,V,θandamdenotes the missile position, velocity, flight path angle and acceleration response, respectively. Under the assumption thatVis constant andθis small angle, Eq.(1) can be linearized as

    (2)

    Thetransferfunctionofafirst-orderaccelerationautopilotcanbeexpressedas

    am(s)/ac(s)=1/(Tgs+1)

    (3)

    whereacmeans the missile acceleration command andTgdenotes the time constant of the autopilot. Rewrite Eq.(3) as the form of differential equation, one obtains

    (4)

    CombiningEqs.(2) (4),themissile’slongitudinalmotionequationsconsideringafirst-orderautopilotlagcanbewrittenas

    (5)

    where

    (6)

    (7)

    In Eq.(7),y(tf) is the missile position at the terminal timetf,θ(tf) is the terminal flight path angle andam(tf) is the missile terminal acceleration response. The desired values ofy(tf),θ(tf) andam(tf) areyf,θf(wàn)andaf, respectively.

    2 Derivation of the ETSGL-CFAL using three different methods

    2.1 Derivation of the ETSGL-CFAL using the linear quadratic optimal control theory

    2.1.1 Using the optimal method in Ref.[7]

    Let us first consider the following optimal control problem: subject to Eq.(5), findu(t) to minimize the cost functionJwhich is defined as

    (8)

    whereSf≥0,R(t)>0,t0is the initial time. The solution of the optimal control problem shown in Eq.(5) and Eq.(8) is given by Ref.[7], that is

    u(t)*=-R(t)-1BTΦT(tf,t)Sf[x(tf)-xf]

    (9)

    whereΦ(tf,t) is the state transition matrix fromttotfand the expression of x(tf)-xfis given by

    x(tf)-xf=

    [Φ(tf,t)x(t)-xf]

    (10)

    According to Eq.(6), the weighting funtionR(t) and the terminal state weighting matrix Sfare chosen as

    (11)

    wheretf-t=tgo. The estimation method of time-to-go and the influence of time-to-go estimation errors on the guidance performance have been studied by Ryoo et al[6-7, 12]. Therefore, we assume that time-to-go is exactly known in this paper.

    According to Eq.(10), we define C as

    (12)

    where the expressions ofM11,M12,M21andM22are given by

    D1=Tg(e-tgo/Tg+tgo/Tg-1),D2=1-e-tgo/Tg

    (13)

    (14)

    (15)

    (16)

    (17)

    CombiningEqs.(5)-(17)andaftercomplexcalculations,oneobtainstheoptimalguidancelaw:

    W2θ(t)+W3θf(wàn)+W4am(t)]

    (18)

    whereW1,W2,W3andW4are defined as

    W1=(1/Δ)(s1D1M22-s2D2M21)

    (19)

    W2=(1/Δ)[s1D1(M22Vtgo-M12)]+

    (1/Δ)[s2D2(M11-M21Vtgo)]

    (20)

    W3=(1/Δ)(s1D1M12-s2D2M11)

    (21)

    W4=(Tg/Δ)[s1D1(M22D1-M12D2/V)]+

    (Tg/Δ)[s2D2(-M21D1+M11D2/V)]

    (22)

    (23)

    AccordingtoEq.(18),wesets1→∞,s2→∞, the final expression of the ETSGL-CFAL can be simplified as

    W′3)Vθ(t)-W′3Vθf(wàn)+Tg(D1W′1+D2W′3)am(t)}

    (24)

    2.1.2 Using the optimal method in Ref.[12]

    Rewrite the terminal constraints Eq.(7) as the form of matrix, that is

    (25)

    Neglect the terminal state constraint in Eq.(8), then Eq.(8) can be simplified as

    R(t)=1/(tf-t)n,n≥0

    (26)

    According to Ref.[12], the optimal solution is given by

    u(t)*=-R(t)-1BTFG-1[E-FTx(t)]

    (27)

    where the matrices F and G are given by

    (28)

    Substituting Eqs.(6) (25) into Eq.(28), we have

    (29)

    (30)

    where G is a 2×2 matrix.

    Substituting Eqs.(6) (25) (29) (30) into Eq.(27), we finally have the ETSGL-CFAL, which is the same with Eq.(24).

    2.2 Derivation of the ETSGL-CFAL using the Schwartz inequality

    The general solution of the state space

    Eq.(5) at the final time is given by[4]

    (31)

    whereΦ(t) is the fundamental matrix related to the matrix A according to

    Φ(t)=L-1[(sI-A)-1]

    (32)

    From Eqs.(6) (32),Φ(tf-t) is found to be

    (33)

    SubstitutingEqs.(6) (7) (33)intoEq.(31),weget

    (34)

    Multiplyingouttheprecedingtwomatrixequationsyields

    (35)

    WestillwanttominimizetheextendedcostfunctiondefinedinEq.(26)subjecttothespecifiedterminalpositionandterminalimpactangle,thatis

    y(tf)=yf,θ(tf)=θf(wàn)

    (36)

    For convenience, let us first define

    f1=y(tf)-y(t)-Vtgoθ(t)-

    (37)

    (38)

    Thus,Eq.(35)canbewrittenas

    (39)

    InordertocombineEq.(39)intooneequation,wefirstdefineanewvariableσand then we have

    (40)

    IfweapplytheSchwartzinequalitytoEq.(40),weget

    (41)

    TheleftpartofinequalityEq.(40)isequivalenttotheextendedcostfunctionEq.(26)andwillbeminimizedwhentheequalitysignholds.UsingtheSchwartzinequality,theequalitysignholdsas

    a′c(t)=C(h1-σh2)

    (42)

    whereCis a constant. Therefore, when the equality sign holds, we have

    (43)

    Forconvenience,wedefinethefollowingnewvariables

    (44)

    Thus,Eq.(43)canberewriteas

    (45)

    Defineσ′=σ/Vand then Eq.(45) can be expressed as

    (46)

    BytakingthederivativeofEq.(46)withrespecttoσand setting the result to zero, we get the optimalσ′ that minimizes Eq.(46), that is

    σ′=(f2g11-f1g12)/(f2g12-f1g22)

    (47)

    Substituting Eq.(42) intof1in Eq.(39) and solving for the constantC, one obtains

    C=f1/(g11-σ′g12)

    (48)

    And then, Eq.(42) can be expressed as

    a′c(t)=f1(h1-σh2)/(g11-σ′g12)

    (49)

    Substituting Eq.(47) into Eq.(49) and after some algebra yields

    (50)

    SubstitutingEqs.(37) (44)intoEq.(50),weobtainthefinalexpressionoftheETSGL-CFAL,whichisalsothesamewithEq.(24).

    Asshownintheabovetwosubsections,thethreedifferentderivationmethodsresulttothesameETSGL-CFAL.

    ComparedwithCTSGLandETSGL,ETSGL-CFALisamoregeneralizedform.IfweneglectthetimeconstantTg, i.e., the autopilot is lag-free, ETSGL-CFAL will reduce to ETSGL and if we setTg=0 andn=0 simultaneously, ETSGL-CFAL will directly reduce to CTSGL.

    2.3 Expression of the ETSGL-CFAL in engineering application

    (51)

    (52)

    DefinesomenewgainsoftheETSGL-CFALas

    (53)

    Combining Eqs.(24) (51) (52) yields

    (54)

    Eq.(54)istheexpressionoftheETSGL-CFALforengineeringapplicationinmissileguidance.FortheETSGL,Eq.(53)reducesto

    N′p=2(n+2),N′θ=(n+1)(n+2),N′a=0

    (55)

    and then the ETSGL can be written as

    (56)

    3 Analysis of the normalized acceleration and normalized miss induced by the impact angle

    For comparison, we consider both the ETSGL-CFAL and ETSGL guidance laws. Fig.1 gives the block diagram of the ETSGL-CFAL guidance system. As the gains of Eq.(55) are chosen, the ETSGL-CFAL guidance system can be simplified to the ETSGL guidance system with a first-order autopilot. In Fig.1, two constraints are considered, i.e., the desired missile positionyfand the desired impact angleθf(wàn). Simulation parameters of Fig.1 are given in Tab.1.

    Fig.1 Guidance system of the ETSGL-CFAL/ETSGL

    Tab.1 Simulation parameters

    Parameteryf/mθf(wàn)/(°)V/(m/s)Tg/stf/sValue0-30,-603000.510

    Simulation results of the trajectories and LOS angles forθf(wàn)=-30° andθf(wàn)=-60°, respectively, are shown in Fig.2 and Fig.3. It can be seen that for the ETSGL-CFAL/ETSGL, both the curves of the trajectories and LOS angles are similar if a small indexnis chosen, for example,n=0; however, a large indexn, for example,n=1, will result in a higher trajectory for the ETSGL. Correspondingly, for the ETSGL-CFAL, a lower trajectory will be got whennis chosen as a large value.

    Fig.4 gives the normalized acceleration commands of the ETSGL-CFAL/ETSGL induced by the impact angleθf(wàn). Fig.4 shows that it will result in an abrupt increase in the acceleration command at the final time if we introduce an autopilot lag into the ETSGL guidance system and this will lead to undesired position miss distance and impact angle error (as shown in Fig.5 and Fig.6), especially when the system total guidance timetfis not enough. The reason is that the ETSGL is only optimal for the lag-free autopilot and if we introduce into a first-order autopilot, the ETSGL is not optimal. However, the ETSGL-CFAL is also optimal at the existence of the first-order autopilot, and the acceleration command of which will approach to zero at the final guidance time (Fig.4). Thus, although a first-order autopilot was introduced into the ETSGL-CFAL system, there is no miss distance and terminal impact angle error as shown in Fig.5 and Fig.6.

    Fig.2 Trajectories for different θf(wàn)

    Fig.3 LOS angle q for different θf(wàn)

    Fig.4 Normalized acceleration commands induced by θf(wàn)

    Fig.5 Normalized position miss distance induced by θf(wàn)

    Fig.6 Normalized terminal impact angle error induced by θf(wàn)

    4 Conclusions

    ① Using a time-to-go weighted object function and considering a first-order autopilot lag, for a stationary or slowly moving target, an extended trajectory shaping guidance law, called ETSGL-CFAL in this paper, is proposed.

    ② Three different methods are adopted to derive the ETSGL-CFAL: two based on the linear optimal control theory and one based on the Schwartz inequality.

    ③ Performance of the ETSGL-CFAL and the ETSGL guidance laws are compared through simulation. Simulation results show that for different guidance times, although a first-order autopilot is introduced into the ETSGL-CFAL guidance system, there is no miss distance and terminal impact angle error induced by the impact angle.

    [1] Kim B S, Lee J G, Han H S. Biased PNG law for impact with angular constraint [J]. IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(1): 277-288.

    [2] Ratnoo A, Ghose D. Impact angle constrained interception of stationary targets [J]. Journal of Guidance, Control, and Dynamics, 2008, 31(6): 1816-1821.

    [3] Ratnoo A, Ghose D. State dependent Riccati equation based guidance law for impact angle constrained trajectories [J]. Journal of Guidance, Control, and Dynamics, 2009, 32(1): 320-325.

    [4] Zarchan P. Tactical and strategic missile guidance[M]. 5th ed. Progress in Astronautics and Aeronautics, 2007: 541-569.

    [5] Ben-Asher J Z, Yaesh I. Advances in missile guidance theory[M]. [S.l.]: American Institute of Aeronautics and Astronautics, Inc., 1998:25-88.

    [6] Ryoo C K, Cho H, Tahk M J. Close-form solutions of optimal guidance with terminal impact angle constraint [C]∥Proceedings of IEEE International Conference on Control Application, Istanbul, Turkey, 2003: 504-509.

    [7] Ryoo C K, Cho H, Tahk M J. Optimal guidance laws with terminal impact angle constraint [J]. Journal of Guidance, Control and Dynamics, 2005, 28(4): 724-732.

    [8] Ryoo C K, Cho H, Tahk M J. Energy optimal waypoint guidance synthesis for antiship missiles [J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(1):80-95.

    [9] Kim T H, Lee C H, Tahk M J, et al. Time-to-go polynomial guidance with trajectory modulation for observability enhancement [J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(1): 55-73.

    [10] Lee C H, Kim T H, Tahk M J, et al. Polynomial guidance laws considering terminal impact angle and acceleration constraints [J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(1): 74-92.

    [11] Ohlmeyer E J, Phillips C A. Generalized vector explicit guidance [J]. Journal of Guidance, Control and Dynamics, 2006, 29(2): 261-268.

    [12] Ryoo C K, Cho H, Tahk M J. Time-to-go weighted optimal guidance with impact angle constraints [J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 14(3): 483-492.

    [13] Wang H, Lin D F, Cheng Z X, et al. Optimal guidance of extended trajectory shaping [J]. Chinese Journal of Aeronautics, 2014,27(5):1259-1272.

    [14] Qian X F, Lin R X, Zhao Y N. Missile aviation mechanics [M]. Beijing: Beijing Institute of Technology Press, 2008: 28-74. (in Chinese)

    (Edited by Wang Yuxia)

    10.15918/j.jbit1004-0579.201524.0302

    TJ 765.3 Document code: A Article ID: 1004- 0579(2015)03- 0291- 07

    Received 2013- 12- 01

    Supported by the National Natural Science Foundation of China (61172182)

    E-mail: wh20031131@126.com

    猜你喜歡
    王江王輝
    本期面孔
    遼河(2022年12期)2023-01-29 13:24:58
    Parkinsonian oscillations and their suppression by closed-loop deep brain stimulation based on fuzzy concept
    洛書
    寶藏(2021年12期)2022-01-15 04:19:44
    劇作家王輝
    火花(2021年10期)2021-11-04 09:23:52
    Characterization of size effect of natural convection in melting process of phase change material in square cavity?
    王江薈國(guó)畫系列作品《安仁古八景》
    竹之韻
    Orientation and alignment during materials processing under high magnetic fields?
    王江作品
    The Thought on PPP in China
    亚洲精品影视一区二区三区av| 在线观看人妻少妇| 日韩免费高清中文字幕av| 日本一二三区视频观看| 成人无遮挡网站| 秋霞在线观看毛片| 国产久久久一区二区三区| 黄色欧美视频在线观看| 99久久精品一区二区三区| 欧美高清成人免费视频www| 天堂网av新在线| 丝袜喷水一区| 久久久欧美国产精品| 国产欧美亚洲国产| 欧美xxⅹ黑人| 在线看a的网站| av播播在线观看一区| 少妇人妻久久综合中文| 高清av免费在线| 嫩草影院精品99| 午夜亚洲福利在线播放| 在线观看国产h片| 亚洲天堂av无毛| 国产精品成人在线| 日韩制服骚丝袜av| 九色成人免费人妻av| 99九九线精品视频在线观看视频| 亚洲精品影视一区二区三区av| 下体分泌物呈黄色| 麻豆精品久久久久久蜜桃| 久久久久久久大尺度免费视频| eeuss影院久久| 亚洲图色成人| 成人鲁丝片一二三区免费| 99热全是精品| 免费看av在线观看网站| 国产爽快片一区二区三区| 国产又色又爽无遮挡免| 国产男女超爽视频在线观看| 亚洲真实伦在线观看| 亚洲一级一片aⅴ在线观看| 丰满乱子伦码专区| 国产精品爽爽va在线观看网站| 亚洲内射少妇av| 少妇裸体淫交视频免费看高清| 国产精品久久久久久av不卡| 高清欧美精品videossex| 一级黄片播放器| 亚洲美女搞黄在线观看| 成人综合一区亚洲| 亚洲无线观看免费| av福利片在线观看| 国产永久视频网站| 久久精品国产自在天天线| 爱豆传媒免费全集在线观看| 深爱激情五月婷婷| 国产精品熟女久久久久浪| 国产一级毛片在线| 在线免费十八禁| 成人美女网站在线观看视频| 老师上课跳d突然被开到最大视频| 欧美日韩亚洲高清精品| 国产乱人偷精品视频| 新久久久久国产一级毛片| 在线亚洲精品国产二区图片欧美 | av在线观看视频网站免费| 欧美国产精品一级二级三级 | 国语对白做爰xxxⅹ性视频网站| 伊人久久国产一区二区| 成人毛片60女人毛片免费| 亚洲自偷自拍三级| 亚洲欧美一区二区三区国产| 亚洲在久久综合| 日韩中字成人| 男男h啪啪无遮挡| 欧美高清性xxxxhd video| 国产白丝娇喘喷水9色精品| 久久精品久久久久久噜噜老黄| 亚洲aⅴ乱码一区二区在线播放| 熟妇人妻不卡中文字幕| 免费观看在线日韩| 久久精品综合一区二区三区| 好男人在线观看高清免费视频| 久久精品熟女亚洲av麻豆精品| av网站免费在线观看视频| 日本猛色少妇xxxxx猛交久久| 国产人妻一区二区三区在| 可以在线观看毛片的网站| 成人毛片a级毛片在线播放| 高清av免费在线| 狂野欧美白嫩少妇大欣赏| 欧美变态另类bdsm刘玥| 婷婷色综合大香蕉| 午夜福利视频1000在线观看| 久久久精品免费免费高清| 天天躁夜夜躁狠狠久久av| a级毛片免费高清观看在线播放| 亚洲精品第二区| 欧美老熟妇乱子伦牲交| 亚洲成人中文字幕在线播放| 久久久久九九精品影院| 中文字幕久久专区| 街头女战士在线观看网站| 亚洲精品久久午夜乱码| 亚洲精品一区蜜桃| 国产爱豆传媒在线观看| 日本爱情动作片www.在线观看| 18禁动态无遮挡网站| 五月开心婷婷网| 99久久精品热视频| 久久精品夜色国产| 特级一级黄色大片| 久久久久久伊人网av| 免费观看的影片在线观看| 青春草视频在线免费观看| 亚洲av中文av极速乱| 国产男人的电影天堂91| 视频中文字幕在线观看| 精品亚洲乱码少妇综合久久| 波多野结衣巨乳人妻| 亚洲成人av在线免费| 99热网站在线观看| 美女cb高潮喷水在线观看| 亚洲图色成人| 你懂的网址亚洲精品在线观看| 久久久成人免费电影| 欧美日韩视频高清一区二区三区二| 国产精品一区www在线观看| 日韩一区二区三区影片| 午夜免费观看性视频| 在线a可以看的网站| 男女下面进入的视频免费午夜| 卡戴珊不雅视频在线播放| 午夜精品国产一区二区电影 | 中文欧美无线码| 91久久精品国产一区二区三区| 久久久久网色| 99热这里只有是精品50| .国产精品久久| 国产午夜精品久久久久久一区二区三区| 国产精品女同一区二区软件| 日韩欧美精品免费久久| 亚洲成人久久爱视频| 成年av动漫网址| 日日摸夜夜添夜夜添av毛片| 天堂中文最新版在线下载 | 亚洲高清免费不卡视频| 久热久热在线精品观看| 18+在线观看网站| 91久久精品电影网| xxx大片免费视频| 最后的刺客免费高清国语| 久热久热在线精品观看| 伦精品一区二区三区| 日韩人妻高清精品专区| 97超视频在线观看视频| 亚洲精品影视一区二区三区av| 中文字幕亚洲精品专区| 久久久久久久久久成人| 亚洲熟女精品中文字幕| 男人爽女人下面视频在线观看| kizo精华| 免费电影在线观看免费观看| 性色av一级| 久久女婷五月综合色啪小说 | av线在线观看网站| 寂寞人妻少妇视频99o| 激情五月婷婷亚洲| 日日啪夜夜爽| 久久久久久九九精品二区国产| 在线观看美女被高潮喷水网站| 高清在线视频一区二区三区| 国产一区二区三区av在线| 最后的刺客免费高清国语| 国产在线男女| 国产精品国产三级国产av玫瑰| 狂野欧美激情性bbbbbb| 九草在线视频观看| 国产视频首页在线观看| 亚洲国产精品国产精品| 国产亚洲5aaaaa淫片| 91精品伊人久久大香线蕉| 国产淫语在线视频| 欧美日韩视频精品一区| 精品久久国产蜜桃| 干丝袜人妻中文字幕| 大香蕉久久网| 亚洲av免费在线观看| 午夜爱爱视频在线播放| 美女被艹到高潮喷水动态| 永久网站在线| 中国国产av一级| 男人爽女人下面视频在线观看| 国产探花极品一区二区| 国产黄a三级三级三级人| 国产v大片淫在线免费观看| 全区人妻精品视频| 最近中文字幕高清免费大全6| 亚洲av成人精品一区久久| 男人舔奶头视频| 深爱激情五月婷婷| 成年女人在线观看亚洲视频 | 日本一本二区三区精品| 亚洲熟女精品中文字幕| 亚洲人与动物交配视频| 大陆偷拍与自拍| 激情 狠狠 欧美| 直男gayav资源| 纵有疾风起免费观看全集完整版| 亚洲婷婷狠狠爱综合网| 熟女av电影| 国产精品久久久久久精品电影| 亚洲国产精品成人久久小说| 国产精品一区二区在线观看99| 日韩av免费高清视频| 91精品国产九色| 两个人的视频大全免费| 男男h啪啪无遮挡| 看黄色毛片网站| 亚洲av成人精品一二三区| 亚洲人与动物交配视频| 国产免费福利视频在线观看| 卡戴珊不雅视频在线播放| 精品久久久久久久人妻蜜臀av| 亚洲美女视频黄频| 在线免费观看不下载黄p国产| 一个人看的www免费观看视频| a级毛片免费高清观看在线播放| 高清在线视频一区二区三区| 黄片wwwwww| 亚洲国产色片| 欧美日韩综合久久久久久| 我要看日韩黄色一级片| 国产大屁股一区二区在线视频| av播播在线观看一区| 热99国产精品久久久久久7| 十八禁网站网址无遮挡 | av免费在线看不卡| 中文字幕亚洲精品专区| 亚洲成人精品中文字幕电影| 熟女人妻精品中文字幕| 国产毛片在线视频| 久久精品综合一区二区三区| 男人添女人高潮全过程视频| 亚洲综合色惰| 高清毛片免费看| 午夜福利在线在线| 一区二区三区乱码不卡18| av在线亚洲专区| 国产成人精品婷婷| 国产大屁股一区二区在线视频| 成人黄色视频免费在线看| 下体分泌物呈黄色| 亚洲欧美一区二区三区黑人 | 最近中文字幕高清免费大全6| 免费人成在线观看视频色| 亚洲国产av新网站| 欧美成人精品欧美一级黄| 22中文网久久字幕| 一本久久精品| 久久亚洲国产成人精品v| 97超视频在线观看视频| 亚洲国产精品国产精品| 国内揄拍国产精品人妻在线| 欧美成人精品欧美一级黄| 久久精品人妻少妇| 简卡轻食公司| 我的老师免费观看完整版| 免费观看无遮挡的男女| 国产精品国产av在线观看| 日日撸夜夜添| 高清在线视频一区二区三区| 亚洲欧美成人综合另类久久久| 国产老妇伦熟女老妇高清| 日韩在线高清观看一区二区三区| 日本三级黄在线观看| 国产精品久久久久久精品电影小说 | 亚洲怡红院男人天堂| 最近手机中文字幕大全| 亚洲丝袜综合中文字幕| 一区二区三区精品91| 精品久久久精品久久久| 欧美高清性xxxxhd video| 国产毛片a区久久久久| xxx大片免费视频| 欧美日韩亚洲高清精品| 国产女主播在线喷水免费视频网站| 色视频在线一区二区三区| 亚洲在线观看片| 一区二区三区精品91| 久久韩国三级中文字幕| 久久精品熟女亚洲av麻豆精品| 久久精品人妻少妇| 久久99热这里只频精品6学生| 国产久久久一区二区三区| 午夜免费男女啪啪视频观看| 神马国产精品三级电影在线观看| 精品一区在线观看国产| 精品一区二区三区视频在线| 亚洲av中文字字幕乱码综合| 91aial.com中文字幕在线观看| 一个人观看的视频www高清免费观看| 中文在线观看免费www的网站| av网站免费在线观看视频| 少妇裸体淫交视频免费看高清| 亚洲美女搞黄在线观看| 亚洲欧美一区二区三区黑人 | 免费黄频网站在线观看国产| 男女边摸边吃奶| 嫩草影院新地址| 日本一本二区三区精品| av播播在线观看一区| 国语对白做爰xxxⅹ性视频网站| 18+在线观看网站| 国产 一区精品| 亚洲高清免费不卡视频| 亚洲天堂国产精品一区在线| 成人特级av手机在线观看| 免费黄色在线免费观看| 人人妻人人澡人人爽人人夜夜| 丰满乱子伦码专区| 亚洲不卡免费看| 日韩一本色道免费dvd| 国产黄片视频在线免费观看| 国产一区有黄有色的免费视频| 亚洲精品,欧美精品| 一级毛片久久久久久久久女| 欧美成人精品欧美一级黄| 精品人妻偷拍中文字幕| videossex国产| 看黄色毛片网站| 免费电影在线观看免费观看| 免费看av在线观看网站| 我的老师免费观看完整版| 久久精品久久精品一区二区三区| 精品亚洲乱码少妇综合久久| 麻豆久久精品国产亚洲av| 久久久国产一区二区| 亚洲精品中文字幕在线视频 | 国产精品偷伦视频观看了| 97热精品久久久久久| 国产精品国产av在线观看| 亚洲欧美成人综合另类久久久| 亚洲国产色片| 看十八女毛片水多多多| 高清av免费在线| 欧美 日韩 精品 国产| 日本免费在线观看一区| 91久久精品国产一区二区三区| 日日啪夜夜爽| 免费高清在线观看视频在线观看| 亚洲精品影视一区二区三区av| 亚洲人成网站在线观看播放| 99久久精品热视频| 99热6这里只有精品| 波野结衣二区三区在线| 久久影院123| 日韩视频在线欧美| 男女下面进入的视频免费午夜| 国产 精品1| 成人毛片60女人毛片免费| 好男人在线观看高清免费视频| 日本黄大片高清| 男人和女人高潮做爰伦理| 亚洲欧美一区二区三区黑人 | 插阴视频在线观看视频| 制服丝袜香蕉在线| 一二三四中文在线观看免费高清| 亚洲丝袜综合中文字幕| 美女国产视频在线观看| 亚洲精品第二区| 久久久久久久久久人人人人人人| 日韩强制内射视频| 亚洲不卡免费看| 亚洲av中文av极速乱| 最近手机中文字幕大全| 亚洲在久久综合| 精品久久久久久久久av| 欧美极品一区二区三区四区| 国产爱豆传媒在线观看| 18禁在线无遮挡免费观看视频| 国产精品国产av在线观看| 一级毛片 在线播放| 免费看日本二区| 两个人的视频大全免费| 欧美zozozo另类| 久久久精品免费免费高清| 亚洲av男天堂| 欧美日韩亚洲高清精品| 婷婷色麻豆天堂久久| 午夜福利视频1000在线观看| 黄色配什么色好看| 欧美zozozo另类| 成人亚洲精品一区在线观看 | 51国产日韩欧美| 中文字幕av成人在线电影| 在线免费观看不下载黄p国产| 国产极品天堂在线| 久热久热在线精品观看| 亚洲伊人久久精品综合| 国产成人精品一,二区| 国产av不卡久久| a级一级毛片免费在线观看| 国产亚洲午夜精品一区二区久久 | 青青草视频在线视频观看| 日日摸夜夜添夜夜添av毛片| 欧美激情在线99| 欧美激情久久久久久爽电影| 丰满少妇做爰视频| 日本-黄色视频高清免费观看| 99久久精品国产国产毛片| 亚洲第一区二区三区不卡| 午夜福利视频1000在线观看| 久久久亚洲精品成人影院| 青春草国产在线视频| 亚洲精品日韩av片在线观看| 亚洲av在线观看美女高潮| 成人国产av品久久久| 18禁裸乳无遮挡动漫免费视频 | 视频中文字幕在线观看| 国产白丝娇喘喷水9色精品| 丰满少妇做爰视频| 纵有疾风起免费观看全集完整版| 久久精品国产亚洲网站| 97人妻精品一区二区三区麻豆| 亚洲人成网站在线播| 免费av毛片视频| 老女人水多毛片| 国产男人的电影天堂91| 亚洲精品一二三| 日本爱情动作片www.在线观看| 国产白丝娇喘喷水9色精品| 精品久久久精品久久久| 午夜福利高清视频| 亚洲精品456在线播放app| 看非洲黑人一级黄片| 亚洲久久久久久中文字幕| 99久久中文字幕三级久久日本| 中文字幕久久专区| 偷拍熟女少妇极品色| 国产一区二区三区综合在线观看 | 久久久a久久爽久久v久久| 国产av不卡久久| 精品熟女少妇av免费看| 国内精品宾馆在线| 国产精品国产三级专区第一集| 婷婷色av中文字幕| 亚洲综合色惰| a级一级毛片免费在线观看| 欧美性感艳星| 一个人看的www免费观看视频| 美女cb高潮喷水在线观看| 22中文网久久字幕| 91精品国产九色| 美女国产视频在线观看| 男女无遮挡免费网站观看| 97在线视频观看| 国产毛片在线视频| 欧美成人a在线观看| 亚洲欧美精品自产自拍| 三级国产精品片| av国产免费在线观看| 别揉我奶头 嗯啊视频| 国产男人的电影天堂91| 亚洲性久久影院| av卡一久久| 亚洲第一区二区三区不卡| 亚洲精品第二区| 日韩中字成人| 亚洲在线观看片| 激情 狠狠 欧美| 伦理电影大哥的女人| 久久久久九九精品影院| 国产黄色免费在线视频| 九九爱精品视频在线观看| 18禁裸乳无遮挡动漫免费视频 | 少妇猛男粗大的猛烈进出视频 | 热re99久久精品国产66热6| 看非洲黑人一级黄片| 久久久久久久亚洲中文字幕| 日韩强制内射视频| 亚洲经典国产精华液单| 国产精品一区www在线观看| 少妇人妻一区二区三区视频| av黄色大香蕉| 国产精品爽爽va在线观看网站| 国产成人精品福利久久| 好男人在线观看高清免费视频| 亚洲真实伦在线观看| 久久精品国产a三级三级三级| 99热网站在线观看| 国产免费又黄又爽又色| 国产精品女同一区二区软件| 99视频精品全部免费 在线| 黄色视频在线播放观看不卡| 少妇被粗大猛烈的视频| 一级爰片在线观看| 欧美日韩视频高清一区二区三区二| 久久久久久久久久人人人人人人| 51国产日韩欧美| 少妇丰满av| 精品一区二区三卡| 日本爱情动作片www.在线观看| 日本免费在线观看一区| 99热这里只有是精品在线观看| 久久久成人免费电影| 久热这里只有精品99| 国精品久久久久久国模美| 亚洲欧美精品自产自拍| 亚洲精品成人av观看孕妇| 久久久久精品久久久久真实原创| 欧美潮喷喷水| 69av精品久久久久久| 国产女主播在线喷水免费视频网站| 免费看日本二区| 国产一区亚洲一区在线观看| 在线精品无人区一区二区三 | 国产亚洲av片在线观看秒播厂| 97在线视频观看| 看十八女毛片水多多多| 熟女人妻精品中文字幕| 亚洲美女视频黄频| 波多野结衣巨乳人妻| 男男h啪啪无遮挡| 久久热精品热| av线在线观看网站| 国产视频首页在线观看| 色网站视频免费| 久久精品夜色国产| www.色视频.com| 国产在线男女| 91在线精品国自产拍蜜月| 国产免费福利视频在线观看| 嘟嘟电影网在线观看| 国产亚洲91精品色在线| 国产欧美亚洲国产| 简卡轻食公司| 亚洲美女视频黄频| 午夜免费男女啪啪视频观看| 能在线免费看毛片的网站| 国产精品国产三级专区第一集| 新久久久久国产一级毛片| 亚洲国产欧美人成| 亚洲色图av天堂| 最近的中文字幕免费完整| 日韩精品有码人妻一区| 赤兔流量卡办理| 18禁在线无遮挡免费观看视频| 亚洲av国产av综合av卡| 99久久人妻综合| 一级毛片电影观看| 亚洲成人av在线免费| 青春草国产在线视频| 亚洲精品乱久久久久久| 天天一区二区日本电影三级| 亚洲国产色片| 国产精品秋霞免费鲁丝片| 18+在线观看网站| 插阴视频在线观看视频| 国产一区二区三区av在线| 成人综合一区亚洲| 国产免费视频播放在线视频| 男人舔奶头视频| 国产综合懂色| 日本爱情动作片www.在线观看| 午夜福利网站1000一区二区三区| 99热这里只有精品一区| 综合色av麻豆| 在线天堂最新版资源| 国产精品伦人一区二区| 大片电影免费在线观看免费| 伦理电影大哥的女人| 亚洲欧美日韩另类电影网站 | 青春草亚洲视频在线观看| 夜夜看夜夜爽夜夜摸| 晚上一个人看的免费电影| 久久久国产一区二区| 国产白丝娇喘喷水9色精品| 少妇熟女欧美另类| 免费不卡的大黄色大毛片视频在线观看| 日韩国内少妇激情av| 国产 精品1| 99热网站在线观看| 久久久久久久久久成人| 在线免费十八禁| www.色视频.com| 国产精品99久久久久久久久| 国产精品久久久久久精品电影小说 | 亚洲av.av天堂| 久久久久久久久久成人| 久久久久精品性色| 少妇人妻久久综合中文| 99re6热这里在线精品视频| 国产人妻一区二区三区在| 国产成人91sexporn| 特级一级黄色大片| 水蜜桃什么品种好| 最近最新中文字幕免费大全7| 国产一区二区三区综合在线观看 | 欧美老熟妇乱子伦牲交| 一本一本综合久久| 26uuu在线亚洲综合色| 精品久久久久久久人妻蜜臀av| 久久久久九九精品影院| 国产一区二区在线观看日韩| 免费av观看视频| 好男人在线观看高清免费视频| 99久久精品热视频| 内射极品少妇av片p| av女优亚洲男人天堂| www.色视频.com| 日本熟妇午夜| 少妇人妻精品综合一区二区| 99久久中文字幕三级久久日本| 九草在线视频观看|