• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Extended trajectory shaping guidance law considering a first-order autopilot lag

    2015-04-22 07:48:14WANGHui王輝WANGJiang王江CHENGZhenxuan程振軒
    關(guān)鍵詞:王江王輝

    WANG Hui (王輝), WANG Jiang (王江), CHENG Zhen-xuan (程振軒)

    (1.School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China;2.China North Industries Group Corporation, Beijing 100821, China)

    ?

    Extended trajectory shaping guidance law considering a first-order autopilot lag

    WANG Hui (王輝)1, WANG Jiang (王江)1, CHENG Zhen-xuan (程振軒)2

    (1.School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China;2.China North Industries Group Corporation, Beijing 100821, China)

    To satisfy the terminal position and impact angel constraints, an optimal guidance problem was discussed for homing missiles. For a stationary or a slowly moving target on the ground, an extended trajectory shaping guidance law considering a first-order autopilot lag (ETSGL-CFAL) was proposed. To derive the ETSGL-CFAL, a time-to-go -nth power weighted objection function was adopted and three different derivation methods were demonstrated while the Schwartz inequality method was mainly demonstrated. The performance of the ETSGL-CFAL and the ETSGL guidance laws was compared through simulation. Simulation results show that although a first-order autopilot is introduced into the ETSGL-CFAL guidance system, the position miss distance and terminal impact angle error induced by the impact angle is zero for different guidance time.

    extended trajectory shaping guidance law; time-to-go; first-order autopilot; guidance performance

    Linear optimal guidance problems have been studied since the 1960s in the last century. During this period, based on different terminal constraints, several different linear optimal guidance laws have been proposed[1-12]. In these guidance laws, the optimal guidance law with impact angle constraint (OGLIAC) attracted more attentions. As mentioned in Refs.[4-8], to enhance the missile’s warhead effectiveness, many attacking missions have additional requirements on the terminal impact angle. For example, for antitank missiles, a near-vertical attacking direction is often designed to enhance the attacking effect on the armored vehicles; and for some anti-ship missiles, a side-plane attacking technology is often used to make the missile attack the side part of the ship in a lateral-vertical direction.

    Terminal impact angle control problem has been an important area of research in the homing missile guidance in recent years. In Ref.[4], Zarchan proposed an optimal guidance law called trajectory shaping guidance law (TSGL), which can also control the terminal impact angle. With the assumption of small angle for the line of sight (LOS) angle and the flight path angle, the TSGL is equivalent to the OGLIAC[4, 6-8]. In 1998, the TSGL was defined in the desired terminal line of sight frame and the guidance performance of which was also demonstrated by Ben-Asher and Yaesh[5]. During 2003-2005, the guidance performance of TSGL with a first-order autopilot was studied by Ryoo et al[6-7]. In 2013, for a stationary or a slowly moving target on the ground, a new form of time-to-go polynomial guidance law with impact angle constraint was proposed by Kim and Lee[9-10]. The new guidance law provides a new angle of view to study the optimal guidance problem with impact angle constraint.

    As mentioned above, the TSGL or OGLIAC was usually derived using the linear quadratic optimal control theory with some given terminal constraints, where the weighting functionR(t) in the object function was defined as the traditional form, i.e.,R(t) was set as a constant value one[4-8]. Correspondingly, the guidance law can be called as the conventional TSGL (CTSGL). However, in 2006, a more generalized form of the CTSGL, namely, the extended TSGL (ETSGL), was proposed by Ohlmeyer, Ryoo, et al., where the weighting function was extended to a new form of time-to-go -nth power[11-12]. This promotes the corresponding research work of the optimal guidance laws to a more widely research area[9-13].

    In this paper, considering a first-order autopilot lag, the extended weighting function found in Refs.[11-12] is adopted to derive the ETSGL using three different methods and the method of the Schwartz inequality is mainly demonstrated. The proposed guidance law is called extended trajectory guidance law considering a first-order autopilot lag (ETSGL-CFAL). Finally, the guidance performance of the ETSGL-CFAL is analyzed.

    1 Missile’s longitudinal motion equations considering a first-order autopilot lag

    According to Ref.[14], for a stationary or a slowly moving target, the longitudinal equations of missile’s motion can be expressed as

    (1)

    wherey,V,θandamdenotes the missile position, velocity, flight path angle and acceleration response, respectively. Under the assumption thatVis constant andθis small angle, Eq.(1) can be linearized as

    (2)

    Thetransferfunctionofafirst-orderaccelerationautopilotcanbeexpressedas

    am(s)/ac(s)=1/(Tgs+1)

    (3)

    whereacmeans the missile acceleration command andTgdenotes the time constant of the autopilot. Rewrite Eq.(3) as the form of differential equation, one obtains

    (4)

    CombiningEqs.(2) (4),themissile’slongitudinalmotionequationsconsideringafirst-orderautopilotlagcanbewrittenas

    (5)

    where

    (6)

    (7)

    In Eq.(7),y(tf) is the missile position at the terminal timetf,θ(tf) is the terminal flight path angle andam(tf) is the missile terminal acceleration response. The desired values ofy(tf),θ(tf) andam(tf) areyf,θf(wàn)andaf, respectively.

    2 Derivation of the ETSGL-CFAL using three different methods

    2.1 Derivation of the ETSGL-CFAL using the linear quadratic optimal control theory

    2.1.1 Using the optimal method in Ref.[7]

    Let us first consider the following optimal control problem: subject to Eq.(5), findu(t) to minimize the cost functionJwhich is defined as

    (8)

    whereSf≥0,R(t)>0,t0is the initial time. The solution of the optimal control problem shown in Eq.(5) and Eq.(8) is given by Ref.[7], that is

    u(t)*=-R(t)-1BTΦT(tf,t)Sf[x(tf)-xf]

    (9)

    whereΦ(tf,t) is the state transition matrix fromttotfand the expression of x(tf)-xfis given by

    x(tf)-xf=

    [Φ(tf,t)x(t)-xf]

    (10)

    According to Eq.(6), the weighting funtionR(t) and the terminal state weighting matrix Sfare chosen as

    (11)

    wheretf-t=tgo. The estimation method of time-to-go and the influence of time-to-go estimation errors on the guidance performance have been studied by Ryoo et al[6-7, 12]. Therefore, we assume that time-to-go is exactly known in this paper.

    According to Eq.(10), we define C as

    (12)

    where the expressions ofM11,M12,M21andM22are given by

    D1=Tg(e-tgo/Tg+tgo/Tg-1),D2=1-e-tgo/Tg

    (13)

    (14)

    (15)

    (16)

    (17)

    CombiningEqs.(5)-(17)andaftercomplexcalculations,oneobtainstheoptimalguidancelaw:

    W2θ(t)+W3θf(wàn)+W4am(t)]

    (18)

    whereW1,W2,W3andW4are defined as

    W1=(1/Δ)(s1D1M22-s2D2M21)

    (19)

    W2=(1/Δ)[s1D1(M22Vtgo-M12)]+

    (1/Δ)[s2D2(M11-M21Vtgo)]

    (20)

    W3=(1/Δ)(s1D1M12-s2D2M11)

    (21)

    W4=(Tg/Δ)[s1D1(M22D1-M12D2/V)]+

    (Tg/Δ)[s2D2(-M21D1+M11D2/V)]

    (22)

    (23)

    AccordingtoEq.(18),wesets1→∞,s2→∞, the final expression of the ETSGL-CFAL can be simplified as

    W′3)Vθ(t)-W′3Vθf(wàn)+Tg(D1W′1+D2W′3)am(t)}

    (24)

    2.1.2 Using the optimal method in Ref.[12]

    Rewrite the terminal constraints Eq.(7) as the form of matrix, that is

    (25)

    Neglect the terminal state constraint in Eq.(8), then Eq.(8) can be simplified as

    R(t)=1/(tf-t)n,n≥0

    (26)

    According to Ref.[12], the optimal solution is given by

    u(t)*=-R(t)-1BTFG-1[E-FTx(t)]

    (27)

    where the matrices F and G are given by

    (28)

    Substituting Eqs.(6) (25) into Eq.(28), we have

    (29)

    (30)

    where G is a 2×2 matrix.

    Substituting Eqs.(6) (25) (29) (30) into Eq.(27), we finally have the ETSGL-CFAL, which is the same with Eq.(24).

    2.2 Derivation of the ETSGL-CFAL using the Schwartz inequality

    The general solution of the state space

    Eq.(5) at the final time is given by[4]

    (31)

    whereΦ(t) is the fundamental matrix related to the matrix A according to

    Φ(t)=L-1[(sI-A)-1]

    (32)

    From Eqs.(6) (32),Φ(tf-t) is found to be

    (33)

    SubstitutingEqs.(6) (7) (33)intoEq.(31),weget

    (34)

    Multiplyingouttheprecedingtwomatrixequationsyields

    (35)

    WestillwanttominimizetheextendedcostfunctiondefinedinEq.(26)subjecttothespecifiedterminalpositionandterminalimpactangle,thatis

    y(tf)=yf,θ(tf)=θf(wàn)

    (36)

    For convenience, let us first define

    f1=y(tf)-y(t)-Vtgoθ(t)-

    (37)

    (38)

    Thus,Eq.(35)canbewrittenas

    (39)

    InordertocombineEq.(39)intooneequation,wefirstdefineanewvariableσand then we have

    (40)

    IfweapplytheSchwartzinequalitytoEq.(40),weget

    (41)

    TheleftpartofinequalityEq.(40)isequivalenttotheextendedcostfunctionEq.(26)andwillbeminimizedwhentheequalitysignholds.UsingtheSchwartzinequality,theequalitysignholdsas

    a′c(t)=C(h1-σh2)

    (42)

    whereCis a constant. Therefore, when the equality sign holds, we have

    (43)

    Forconvenience,wedefinethefollowingnewvariables

    (44)

    Thus,Eq.(43)canberewriteas

    (45)

    Defineσ′=σ/Vand then Eq.(45) can be expressed as

    (46)

    BytakingthederivativeofEq.(46)withrespecttoσand setting the result to zero, we get the optimalσ′ that minimizes Eq.(46), that is

    σ′=(f2g11-f1g12)/(f2g12-f1g22)

    (47)

    Substituting Eq.(42) intof1in Eq.(39) and solving for the constantC, one obtains

    C=f1/(g11-σ′g12)

    (48)

    And then, Eq.(42) can be expressed as

    a′c(t)=f1(h1-σh2)/(g11-σ′g12)

    (49)

    Substituting Eq.(47) into Eq.(49) and after some algebra yields

    (50)

    SubstitutingEqs.(37) (44)intoEq.(50),weobtainthefinalexpressionoftheETSGL-CFAL,whichisalsothesamewithEq.(24).

    Asshownintheabovetwosubsections,thethreedifferentderivationmethodsresulttothesameETSGL-CFAL.

    ComparedwithCTSGLandETSGL,ETSGL-CFALisamoregeneralizedform.IfweneglectthetimeconstantTg, i.e., the autopilot is lag-free, ETSGL-CFAL will reduce to ETSGL and if we setTg=0 andn=0 simultaneously, ETSGL-CFAL will directly reduce to CTSGL.

    2.3 Expression of the ETSGL-CFAL in engineering application

    (51)

    (52)

    DefinesomenewgainsoftheETSGL-CFALas

    (53)

    Combining Eqs.(24) (51) (52) yields

    (54)

    Eq.(54)istheexpressionoftheETSGL-CFALforengineeringapplicationinmissileguidance.FortheETSGL,Eq.(53)reducesto

    N′p=2(n+2),N′θ=(n+1)(n+2),N′a=0

    (55)

    and then the ETSGL can be written as

    (56)

    3 Analysis of the normalized acceleration and normalized miss induced by the impact angle

    For comparison, we consider both the ETSGL-CFAL and ETSGL guidance laws. Fig.1 gives the block diagram of the ETSGL-CFAL guidance system. As the gains of Eq.(55) are chosen, the ETSGL-CFAL guidance system can be simplified to the ETSGL guidance system with a first-order autopilot. In Fig.1, two constraints are considered, i.e., the desired missile positionyfand the desired impact angleθf(wàn). Simulation parameters of Fig.1 are given in Tab.1.

    Fig.1 Guidance system of the ETSGL-CFAL/ETSGL

    Tab.1 Simulation parameters

    Parameteryf/mθf(wàn)/(°)V/(m/s)Tg/stf/sValue0-30,-603000.510

    Simulation results of the trajectories and LOS angles forθf(wàn)=-30° andθf(wàn)=-60°, respectively, are shown in Fig.2 and Fig.3. It can be seen that for the ETSGL-CFAL/ETSGL, both the curves of the trajectories and LOS angles are similar if a small indexnis chosen, for example,n=0; however, a large indexn, for example,n=1, will result in a higher trajectory for the ETSGL. Correspondingly, for the ETSGL-CFAL, a lower trajectory will be got whennis chosen as a large value.

    Fig.4 gives the normalized acceleration commands of the ETSGL-CFAL/ETSGL induced by the impact angleθf(wàn). Fig.4 shows that it will result in an abrupt increase in the acceleration command at the final time if we introduce an autopilot lag into the ETSGL guidance system and this will lead to undesired position miss distance and impact angle error (as shown in Fig.5 and Fig.6), especially when the system total guidance timetfis not enough. The reason is that the ETSGL is only optimal for the lag-free autopilot and if we introduce into a first-order autopilot, the ETSGL is not optimal. However, the ETSGL-CFAL is also optimal at the existence of the first-order autopilot, and the acceleration command of which will approach to zero at the final guidance time (Fig.4). Thus, although a first-order autopilot was introduced into the ETSGL-CFAL system, there is no miss distance and terminal impact angle error as shown in Fig.5 and Fig.6.

    Fig.2 Trajectories for different θf(wàn)

    Fig.3 LOS angle q for different θf(wàn)

    Fig.4 Normalized acceleration commands induced by θf(wàn)

    Fig.5 Normalized position miss distance induced by θf(wàn)

    Fig.6 Normalized terminal impact angle error induced by θf(wàn)

    4 Conclusions

    ① Using a time-to-go weighted object function and considering a first-order autopilot lag, for a stationary or slowly moving target, an extended trajectory shaping guidance law, called ETSGL-CFAL in this paper, is proposed.

    ② Three different methods are adopted to derive the ETSGL-CFAL: two based on the linear optimal control theory and one based on the Schwartz inequality.

    ③ Performance of the ETSGL-CFAL and the ETSGL guidance laws are compared through simulation. Simulation results show that for different guidance times, although a first-order autopilot is introduced into the ETSGL-CFAL guidance system, there is no miss distance and terminal impact angle error induced by the impact angle.

    [1] Kim B S, Lee J G, Han H S. Biased PNG law for impact with angular constraint [J]. IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(1): 277-288.

    [2] Ratnoo A, Ghose D. Impact angle constrained interception of stationary targets [J]. Journal of Guidance, Control, and Dynamics, 2008, 31(6): 1816-1821.

    [3] Ratnoo A, Ghose D. State dependent Riccati equation based guidance law for impact angle constrained trajectories [J]. Journal of Guidance, Control, and Dynamics, 2009, 32(1): 320-325.

    [4] Zarchan P. Tactical and strategic missile guidance[M]. 5th ed. Progress in Astronautics and Aeronautics, 2007: 541-569.

    [5] Ben-Asher J Z, Yaesh I. Advances in missile guidance theory[M]. [S.l.]: American Institute of Aeronautics and Astronautics, Inc., 1998:25-88.

    [6] Ryoo C K, Cho H, Tahk M J. Close-form solutions of optimal guidance with terminal impact angle constraint [C]∥Proceedings of IEEE International Conference on Control Application, Istanbul, Turkey, 2003: 504-509.

    [7] Ryoo C K, Cho H, Tahk M J. Optimal guidance laws with terminal impact angle constraint [J]. Journal of Guidance, Control and Dynamics, 2005, 28(4): 724-732.

    [8] Ryoo C K, Cho H, Tahk M J. Energy optimal waypoint guidance synthesis for antiship missiles [J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(1):80-95.

    [9] Kim T H, Lee C H, Tahk M J, et al. Time-to-go polynomial guidance with trajectory modulation for observability enhancement [J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(1): 55-73.

    [10] Lee C H, Kim T H, Tahk M J, et al. Polynomial guidance laws considering terminal impact angle and acceleration constraints [J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(1): 74-92.

    [11] Ohlmeyer E J, Phillips C A. Generalized vector explicit guidance [J]. Journal of Guidance, Control and Dynamics, 2006, 29(2): 261-268.

    [12] Ryoo C K, Cho H, Tahk M J. Time-to-go weighted optimal guidance with impact angle constraints [J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 14(3): 483-492.

    [13] Wang H, Lin D F, Cheng Z X, et al. Optimal guidance of extended trajectory shaping [J]. Chinese Journal of Aeronautics, 2014,27(5):1259-1272.

    [14] Qian X F, Lin R X, Zhao Y N. Missile aviation mechanics [M]. Beijing: Beijing Institute of Technology Press, 2008: 28-74. (in Chinese)

    (Edited by Wang Yuxia)

    10.15918/j.jbit1004-0579.201524.0302

    TJ 765.3 Document code: A Article ID: 1004- 0579(2015)03- 0291- 07

    Received 2013- 12- 01

    Supported by the National Natural Science Foundation of China (61172182)

    E-mail: wh20031131@126.com

    猜你喜歡
    王江王輝
    本期面孔
    遼河(2022年12期)2023-01-29 13:24:58
    Parkinsonian oscillations and their suppression by closed-loop deep brain stimulation based on fuzzy concept
    洛書
    寶藏(2021年12期)2022-01-15 04:19:44
    劇作家王輝
    火花(2021年10期)2021-11-04 09:23:52
    Characterization of size effect of natural convection in melting process of phase change material in square cavity?
    王江薈國(guó)畫系列作品《安仁古八景》
    竹之韻
    Orientation and alignment during materials processing under high magnetic fields?
    王江作品
    The Thought on PPP in China
    成人精品一区二区免费| 亚洲性夜色夜夜综合| 亚洲午夜理论影院| 国产片内射在线| 成年免费大片在线观看| 免费人成视频x8x8入口观看| 亚洲精品粉嫩美女一区| 国产三级在线视频| 一级毛片精品| 欧美性猛交黑人性爽| 国产三级在线视频| 色哟哟哟哟哟哟| 中文字幕久久专区| 无人区码免费观看不卡| 亚洲自拍偷在线| 999久久久国产精品视频| 怎么达到女性高潮| 精品久久久久久久久久免费视频| 色尼玛亚洲综合影院| 国产区一区二久久| 嫩草影院精品99| 亚洲熟妇熟女久久| 久久久久久国产a免费观看| 天天躁狠狠躁夜夜躁狠狠躁| 一级黄色大片毛片| 国产99久久九九免费精品| 最近最新中文字幕大全电影3| 成人国语在线视频| 久久久精品国产亚洲av高清涩受| 久久久久九九精品影院| 国产成人精品无人区| 久久精品91无色码中文字幕| 老汉色av国产亚洲站长工具| 国产亚洲精品久久久久久毛片| 亚洲成人免费电影在线观看| 不卡一级毛片| 黑人巨大精品欧美一区二区mp4| 国产亚洲av高清不卡| 日韩精品中文字幕看吧| 特级一级黄色大片| 久久久精品大字幕| 国内久久婷婷六月综合欲色啪| 好男人在线观看高清免费视频| 中国美女看黄片| 麻豆av在线久日| 免费看美女性在线毛片视频| 丁香欧美五月| 97人妻精品一区二区三区麻豆| 最好的美女福利视频网| 日韩免费av在线播放| 欧美成人午夜精品| 777久久人妻少妇嫩草av网站| netflix在线观看网站| 亚洲欧美日韩东京热| 国产免费男女视频| 日本一本二区三区精品| 国产又黄又爽又无遮挡在线| 精品欧美一区二区三区在线| 日本一本二区三区精品| 国内久久婷婷六月综合欲色啪| 国产精品永久免费网站| 日本撒尿小便嘘嘘汇集6| 国内精品久久久久久久电影| 国产真实乱freesex| 成年人黄色毛片网站| 一级片免费观看大全| 亚洲精品久久国产高清桃花| www.www免费av| 久久亚洲真实| 免费观看人在逋| 国产黄a三级三级三级人| 一进一出好大好爽视频| 少妇粗大呻吟视频| 黑人操中国人逼视频| 成人一区二区视频在线观看| 中文字幕av在线有码专区| 国产激情欧美一区二区| 成人18禁在线播放| 欧美成狂野欧美在线观看| 欧美在线一区亚洲| 我要搜黄色片| 亚洲激情在线av| 精品久久蜜臀av无| 青草久久国产| 很黄的视频免费| 亚洲黑人精品在线| 亚洲人成77777在线视频| 他把我摸到了高潮在线观看| 欧美黄色片欧美黄色片| 在线观看日韩欧美| 中文字幕熟女人妻在线| 久久精品影院6| 久久久久久久久久黄片| www日本黄色视频网| 午夜影院日韩av| 啦啦啦免费观看视频1| 久久精品人妻少妇| 日本成人三级电影网站| 亚洲欧美日韩东京热| 麻豆一二三区av精品| 国产av又大| 欧美zozozo另类| 免费搜索国产男女视频| 制服丝袜大香蕉在线| or卡值多少钱| 亚洲激情在线av| 一a级毛片在线观看| 老熟妇仑乱视频hdxx| 国产精品免费视频内射| 午夜激情av网站| 亚洲一区二区三区色噜噜| 五月伊人婷婷丁香| 无遮挡黄片免费观看| 88av欧美| 亚洲av日韩精品久久久久久密| 久久香蕉国产精品| 一二三四社区在线视频社区8| 99久久精品热视频| 亚洲成人精品中文字幕电影| 18禁黄网站禁片免费观看直播| 国产av在哪里看| 两个人的视频大全免费| 天天一区二区日本电影三级| 国产成人精品久久二区二区免费| 欧美乱色亚洲激情| 国产精品免费视频内射| 久久香蕉精品热| 大型黄色视频在线免费观看| 欧美日韩黄片免| 久久久久免费精品人妻一区二区| 高清在线国产一区| 亚洲欧美精品综合久久99| 久久久久久亚洲精品国产蜜桃av| 亚洲成av人片免费观看| 国产熟女午夜一区二区三区| 美女 人体艺术 gogo| 精品一区二区三区四区五区乱码| 首页视频小说图片口味搜索| 成人18禁在线播放| 国产免费男女视频| 亚洲国产高清在线一区二区三| 成人国产一区最新在线观看| 精品久久久久久,| 99久久精品热视频| 国产一区二区激情短视频| 长腿黑丝高跟| 免费观看人在逋| 免费搜索国产男女视频| cao死你这个sao货| 高清毛片免费观看视频网站| 亚洲五月婷婷丁香| 一本久久中文字幕| 亚洲性夜色夜夜综合| 九九热线精品视视频播放| 国产精品av视频在线免费观看| 日本五十路高清| 亚洲乱码一区二区免费版| 97人妻精品一区二区三区麻豆| 国产欧美日韩一区二区三| 90打野战视频偷拍视频| 一级片免费观看大全| 国产成人aa在线观看| 亚洲av电影不卡..在线观看| 亚洲人成网站高清观看| 国产免费男女视频| 日韩国内少妇激情av| 精品不卡国产一区二区三区| 久久久久久九九精品二区国产 | 少妇人妻一区二区三区视频| 国产精品一区二区三区四区久久| 色精品久久人妻99蜜桃| 国产久久久一区二区三区| 亚洲自偷自拍图片 自拍| 精品一区二区三区视频在线观看免费| 国产又色又爽无遮挡免费看| 欧美日韩乱码在线| 老司机福利观看| 一级黄色大片毛片| 国产一区二区在线观看日韩 | 精品久久久久久久久久久久久| 手机成人av网站| 久久欧美精品欧美久久欧美| 欧美日本亚洲视频在线播放| 少妇粗大呻吟视频| 亚洲国产看品久久| 亚洲熟妇熟女久久| 91国产中文字幕| 成人手机av| 毛片女人毛片| 美女 人体艺术 gogo| 91麻豆av在线| 中文字幕最新亚洲高清| 99热这里只有精品一区 | 亚洲国产精品sss在线观看| 女人高潮潮喷娇喘18禁视频| 美女大奶头视频| 国产精品免费一区二区三区在线| 国产亚洲精品久久久久5区| 久9热在线精品视频| 国产97色在线日韩免费| 欧美一级毛片孕妇| 日日爽夜夜爽网站| 欧美日韩精品网址| 嫩草影视91久久| 99久久精品热视频| 久久人妻福利社区极品人妻图片| 俺也久久电影网| 国产成人av教育| 久久九九热精品免费| 最近最新中文字幕大全免费视频| 亚洲午夜理论影院| 久久精品成人免费网站| 午夜福利免费观看在线| a级毛片a级免费在线| 亚洲va日本ⅴa欧美va伊人久久| 级片在线观看| 51午夜福利影视在线观看| 亚洲精品中文字幕在线视频| 国产熟女xx| 免费在线观看亚洲国产| 性色av乱码一区二区三区2| 欧美黑人欧美精品刺激| 亚洲精品在线观看二区| 久久久国产精品麻豆| 色哟哟哟哟哟哟| 最新美女视频免费是黄的| 亚洲欧美一区二区三区黑人| 美女黄网站色视频| av福利片在线观看| 免费一级毛片在线播放高清视频| 欧美日韩亚洲国产一区二区在线观看| 亚洲五月婷婷丁香| 99热只有精品国产| 午夜免费成人在线视频| av福利片在线观看| 黑人操中国人逼视频| 欧美日韩一级在线毛片| 九九热线精品视视频播放| 国产免费av片在线观看野外av| 99在线人妻在线中文字幕| 九色成人免费人妻av| 亚洲国产看品久久| 亚洲乱码一区二区免费版| 亚洲av成人不卡在线观看播放网| 久久久久久九九精品二区国产 | 国产精品影院久久| 亚洲自偷自拍图片 自拍| 桃红色精品国产亚洲av| 免费av毛片视频| 日韩免费av在线播放| 可以在线观看毛片的网站| 在线观看免费日韩欧美大片| 五月伊人婷婷丁香| 免费观看精品视频网站| 桃红色精品国产亚洲av| 宅男免费午夜| 亚洲精品一卡2卡三卡4卡5卡| 国产v大片淫在线免费观看| 欧美一区二区国产精品久久精品 | 欧美人与性动交α欧美精品济南到| 一进一出好大好爽视频| 欧美不卡视频在线免费观看 | 人妻久久中文字幕网| 1024视频免费在线观看| av在线播放免费不卡| 757午夜福利合集在线观看| xxxwww97欧美| 一本久久中文字幕| 欧美日韩乱码在线| 色在线成人网| 日本免费一区二区三区高清不卡| 一本综合久久免费| aaaaa片日本免费| 中文字幕熟女人妻在线| 午夜a级毛片| 老熟妇仑乱视频hdxx| 一二三四在线观看免费中文在| 757午夜福利合集在线观看| 婷婷亚洲欧美| 12—13女人毛片做爰片一| 国产精品av视频在线免费观看| videosex国产| 亚洲九九香蕉| 可以免费在线观看a视频的电影网站| 欧美日本视频| 大型黄色视频在线免费观看| 中文字幕人成人乱码亚洲影| 日本精品一区二区三区蜜桃| 夜夜爽天天搞| 欧美色欧美亚洲另类二区| 免费在线观看日本一区| 国产精品99久久99久久久不卡| 99国产极品粉嫩在线观看| 天堂√8在线中文| 亚洲国产精品成人综合色| 午夜免费激情av| 免费看日本二区| 亚洲在线自拍视频| 老司机深夜福利视频在线观看| 婷婷精品国产亚洲av| 三级国产精品欧美在线观看 | 午夜日韩欧美国产| 亚洲成人免费电影在线观看| 亚洲欧美日韩无卡精品| 91麻豆精品激情在线观看国产| 淫秽高清视频在线观看| 欧美成人一区二区免费高清观看 | 午夜福利免费观看在线| 国产精品久久久久久人妻精品电影| 两性夫妻黄色片| x7x7x7水蜜桃| 亚洲av片天天在线观看| 丁香欧美五月| 日本a在线网址| 国产单亲对白刺激| 亚洲一区中文字幕在线| 久久亚洲精品不卡| 久久久久久久精品吃奶| 一进一出抽搐动态| 免费在线观看日本一区| 国产精品亚洲一级av第二区| 大型黄色视频在线免费观看| 哪里可以看免费的av片| 亚洲aⅴ乱码一区二区在线播放 | 午夜福利高清视频| 国产精品免费一区二区三区在线| a级毛片在线看网站| www国产在线视频色| 国产熟女xx| 国产av在哪里看| 国产精品av久久久久免费| 狂野欧美白嫩少妇大欣赏| 亚洲中文日韩欧美视频| 久久婷婷成人综合色麻豆| 久久亚洲精品不卡| 久久亚洲真实| 欧美中文综合在线视频| 欧美激情久久久久久爽电影| 亚洲乱码一区二区免费版| 免费观看人在逋| 很黄的视频免费| 国产精品亚洲美女久久久| 国产在线观看jvid| 午夜亚洲福利在线播放| 国产亚洲欧美98| 欧美性长视频在线观看| 搡老岳熟女国产| 俄罗斯特黄特色一大片| e午夜精品久久久久久久| 中文资源天堂在线| 18禁黄网站禁片免费观看直播| 久久天躁狠狠躁夜夜2o2o| 国产高清videossex| 欧美三级亚洲精品| 五月玫瑰六月丁香| 国产欧美日韩一区二区精品| 伦理电影免费视频| 亚洲精品在线美女| 久久人妻福利社区极品人妻图片| 亚洲欧洲精品一区二区精品久久久| 久久人人精品亚洲av| 狠狠狠狠99中文字幕| 国产精品久久电影中文字幕| 在线观看免费视频日本深夜| 免费av毛片视频| 禁无遮挡网站| 欧美一级a爱片免费观看看 | 亚洲狠狠婷婷综合久久图片| 日本撒尿小便嘘嘘汇集6| 在线国产一区二区在线| 最好的美女福利视频网| 精品久久久久久久久久久久久| 亚洲国产欧美网| 最好的美女福利视频网| 国产精品久久久久久人妻精品电影| 国内久久婷婷六月综合欲色啪| 又紧又爽又黄一区二区| 在线免费观看的www视频| 真人一进一出gif抽搐免费| 99国产精品99久久久久| 美女免费视频网站| 亚洲aⅴ乱码一区二区在线播放 | 亚洲欧美日韩无卡精品| 欧美成人性av电影在线观看| 欧美中文综合在线视频| 精品少妇一区二区三区视频日本电影| 美女高潮喷水抽搐中文字幕| 久久午夜亚洲精品久久| 亚洲欧美日韩高清在线视频| 好男人电影高清在线观看| 我要搜黄色片| 日本三级黄在线观看| 亚洲成人免费电影在线观看| 日韩三级视频一区二区三区| 久久这里只有精品19| 久久精品国产综合久久久| 国产不卡一卡二| 18禁裸乳无遮挡免费网站照片| 一级毛片女人18水好多| 成人国产一区最新在线观看| 一夜夜www| 两个人看的免费小视频| 伊人久久大香线蕉亚洲五| 69av精品久久久久久| 最新美女视频免费是黄的| 97碰自拍视频| 18禁美女被吸乳视频| 观看免费一级毛片| 天天躁夜夜躁狠狠躁躁| www.www免费av| 好看av亚洲va欧美ⅴa在| 黄片小视频在线播放| 在线观看免费午夜福利视频| 国产伦一二天堂av在线观看| 久久中文看片网| 久久久国产成人精品二区| 看黄色毛片网站| 美女大奶头视频| 麻豆av在线久日| 久久久久久久久免费视频了| 在线观看www视频免费| 女生性感内裤真人,穿戴方法视频| 18禁黄网站禁片午夜丰满| 波多野结衣高清作品| 99精品久久久久人妻精品| 亚洲专区字幕在线| 在线永久观看黄色视频| 给我免费播放毛片高清在线观看| 可以在线观看毛片的网站| 国产亚洲精品久久久久久毛片| 波多野结衣高清作品| 99久久精品国产亚洲精品| 熟妇人妻久久中文字幕3abv| 久久精品国产清高在天天线| 成人手机av| 精品高清国产在线一区| av天堂在线播放| av有码第一页| 亚洲欧美日韩高清专用| 变态另类成人亚洲欧美熟女| 久久99热这里只有精品18| 香蕉国产在线看| 黑人操中国人逼视频| 亚洲欧美日韩无卡精品| 中文字幕熟女人妻在线| 国产成人精品久久二区二区91| 男人舔女人的私密视频| 国产成人精品久久二区二区91| 精品一区二区三区av网在线观看| 欧美av亚洲av综合av国产av| 久久久久久人人人人人| a级毛片a级免费在线| 正在播放国产对白刺激| av中文乱码字幕在线| 日韩大码丰满熟妇| 国产熟女xx| 久久久久久久久久黄片| 精品久久久久久久久久免费视频| 波多野结衣高清作品| 国产激情欧美一区二区| 19禁男女啪啪无遮挡网站| 天堂av国产一区二区熟女人妻 | 亚洲中文日韩欧美视频| 亚洲人成77777在线视频| 国产亚洲精品综合一区在线观看 | 国产精品乱码一区二三区的特点| 制服丝袜大香蕉在线| 亚洲国产精品合色在线| cao死你这个sao货| 午夜两性在线视频| 国产真实乱freesex| 国产私拍福利视频在线观看| 国产高清视频在线观看网站| 亚洲av熟女| 久久久久国产一级毛片高清牌| 国产熟女xx| 国产精品99久久99久久久不卡| 精品久久久久久成人av| 欧美久久黑人一区二区| 一本大道久久a久久精品| 超碰成人久久| 又黄又爽又免费观看的视频| 久久久久国产精品人妻aⅴ院| 欧美日韩黄片免| 少妇人妻一区二区三区视频| 一个人免费在线观看的高清视频| 欧美zozozo另类| 午夜精品久久久久久毛片777| 亚洲国产精品久久男人天堂| 日日摸夜夜添夜夜添小说| www.自偷自拍.com| 国产成人欧美在线观看| 草草在线视频免费看| 两个人看的免费小视频| 色综合站精品国产| 中文资源天堂在线| 国产精品久久久久久人妻精品电影| 国产精品99久久99久久久不卡| 国产av又大| 人人妻人人澡欧美一区二区| 美女扒开内裤让男人捅视频| 99热只有精品国产| 久久久久久久久中文| 51午夜福利影视在线观看| 亚洲专区国产一区二区| 可以在线观看的亚洲视频| 村上凉子中文字幕在线| 久久伊人香网站| 亚洲18禁久久av| 91九色精品人成在线观看| cao死你这个sao货| 免费在线观看影片大全网站| e午夜精品久久久久久久| 午夜a级毛片| 亚洲人成网站高清观看| 欧美一区二区国产精品久久精品 | 久久亚洲精品不卡| 国产99久久九九免费精品| 听说在线观看完整版免费高清| 国产精品国产高清国产av| 一本久久中文字幕| 亚洲精品一区av在线观看| 国产v大片淫在线免费观看| 亚洲,欧美精品.| 成人精品一区二区免费| av视频在线观看入口| 夜夜看夜夜爽夜夜摸| 美女 人体艺术 gogo| www日本黄色视频网| 久久国产精品人妻蜜桃| 露出奶头的视频| 婷婷亚洲欧美| 午夜精品久久久久久毛片777| 国产精品久久久av美女十八| 国产又黄又爽又无遮挡在线| 久久久国产精品麻豆| 欧美日韩瑟瑟在线播放| 久久午夜亚洲精品久久| 国产亚洲精品第一综合不卡| 黄色丝袜av网址大全| 国产三级黄色录像| 曰老女人黄片| 国产熟女午夜一区二区三区| 日韩成人在线观看一区二区三区| 欧美久久黑人一区二区| 免费观看人在逋| 亚洲人成网站在线播放欧美日韩| 国内精品久久久久久久电影| 国产精品av视频在线免费观看| 国产探花在线观看一区二区| 精品免费久久久久久久清纯| 日本黄色视频三级网站网址| 国产视频内射| 国产精品久久久久久精品电影| 久久午夜综合久久蜜桃| 国产午夜福利久久久久久| 中文字幕人妻丝袜一区二区| 两个人免费观看高清视频| 国产欧美日韩一区二区精品| 不卡av一区二区三区| 欧美黑人精品巨大| 日韩大码丰满熟妇| 精品第一国产精品| 中文资源天堂在线| 国产精品久久久人人做人人爽| 嫁个100分男人电影在线观看| 亚洲avbb在线观看| 婷婷精品国产亚洲av| 香蕉av资源在线| 69av精品久久久久久| 亚洲一区高清亚洲精品| 搡老熟女国产l中国老女人| 欧美又色又爽又黄视频| 我要搜黄色片| 亚洲欧洲精品一区二区精品久久久| 男人舔女人的私密视频| 欧美成人性av电影在线观看| 色尼玛亚洲综合影院| 国产精品影院久久| 久久天躁狠狠躁夜夜2o2o| 麻豆一二三区av精品| 男人舔女人下体高潮全视频| 男人的好看免费观看在线视频 | 波多野结衣高清作品| 色老头精品视频在线观看| 欧美人与性动交α欧美精品济南到| 搡老岳熟女国产| 日日爽夜夜爽网站| 岛国在线免费视频观看| 一区二区三区高清视频在线| 一卡2卡三卡四卡精品乱码亚洲| 床上黄色一级片| 国产精品免费视频内射| 美女高潮喷水抽搐中文字幕| 亚洲精品av麻豆狂野| 色精品久久人妻99蜜桃| 2021天堂中文幕一二区在线观| 高清在线国产一区| 丰满人妻一区二区三区视频av | 两个人视频免费观看高清| 精品电影一区二区在线| 日本在线视频免费播放| 亚洲狠狠婷婷综合久久图片| 熟女电影av网| 国产熟女午夜一区二区三区| 国产高清激情床上av| 色综合婷婷激情| 久久九九热精品免费| 搡老岳熟女国产| 男男h啪啪无遮挡| 丝袜人妻中文字幕| 亚洲自拍偷在线| 高潮久久久久久久久久久不卡| 叶爱在线成人免费视频播放| 99久久久亚洲精品蜜臀av|