• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Extended trajectory shaping guidance law considering a first-order autopilot lag

    2015-04-22 07:48:14WANGHui王輝WANGJiang王江CHENGZhenxuan程振軒
    關(guān)鍵詞:王江王輝

    WANG Hui (王輝), WANG Jiang (王江), CHENG Zhen-xuan (程振軒)

    (1.School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China;2.China North Industries Group Corporation, Beijing 100821, China)

    ?

    Extended trajectory shaping guidance law considering a first-order autopilot lag

    WANG Hui (王輝)1, WANG Jiang (王江)1, CHENG Zhen-xuan (程振軒)2

    (1.School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China;2.China North Industries Group Corporation, Beijing 100821, China)

    To satisfy the terminal position and impact angel constraints, an optimal guidance problem was discussed for homing missiles. For a stationary or a slowly moving target on the ground, an extended trajectory shaping guidance law considering a first-order autopilot lag (ETSGL-CFAL) was proposed. To derive the ETSGL-CFAL, a time-to-go -nth power weighted objection function was adopted and three different derivation methods were demonstrated while the Schwartz inequality method was mainly demonstrated. The performance of the ETSGL-CFAL and the ETSGL guidance laws was compared through simulation. Simulation results show that although a first-order autopilot is introduced into the ETSGL-CFAL guidance system, the position miss distance and terminal impact angle error induced by the impact angle is zero for different guidance time.

    extended trajectory shaping guidance law; time-to-go; first-order autopilot; guidance performance

    Linear optimal guidance problems have been studied since the 1960s in the last century. During this period, based on different terminal constraints, several different linear optimal guidance laws have been proposed[1-12]. In these guidance laws, the optimal guidance law with impact angle constraint (OGLIAC) attracted more attentions. As mentioned in Refs.[4-8], to enhance the missile’s warhead effectiveness, many attacking missions have additional requirements on the terminal impact angle. For example, for antitank missiles, a near-vertical attacking direction is often designed to enhance the attacking effect on the armored vehicles; and for some anti-ship missiles, a side-plane attacking technology is often used to make the missile attack the side part of the ship in a lateral-vertical direction.

    Terminal impact angle control problem has been an important area of research in the homing missile guidance in recent years. In Ref.[4], Zarchan proposed an optimal guidance law called trajectory shaping guidance law (TSGL), which can also control the terminal impact angle. With the assumption of small angle for the line of sight (LOS) angle and the flight path angle, the TSGL is equivalent to the OGLIAC[4, 6-8]. In 1998, the TSGL was defined in the desired terminal line of sight frame and the guidance performance of which was also demonstrated by Ben-Asher and Yaesh[5]. During 2003-2005, the guidance performance of TSGL with a first-order autopilot was studied by Ryoo et al[6-7]. In 2013, for a stationary or a slowly moving target on the ground, a new form of time-to-go polynomial guidance law with impact angle constraint was proposed by Kim and Lee[9-10]. The new guidance law provides a new angle of view to study the optimal guidance problem with impact angle constraint.

    As mentioned above, the TSGL or OGLIAC was usually derived using the linear quadratic optimal control theory with some given terminal constraints, where the weighting functionR(t) in the object function was defined as the traditional form, i.e.,R(t) was set as a constant value one[4-8]. Correspondingly, the guidance law can be called as the conventional TSGL (CTSGL). However, in 2006, a more generalized form of the CTSGL, namely, the extended TSGL (ETSGL), was proposed by Ohlmeyer, Ryoo, et al., where the weighting function was extended to a new form of time-to-go -nth power[11-12]. This promotes the corresponding research work of the optimal guidance laws to a more widely research area[9-13].

    In this paper, considering a first-order autopilot lag, the extended weighting function found in Refs.[11-12] is adopted to derive the ETSGL using three different methods and the method of the Schwartz inequality is mainly demonstrated. The proposed guidance law is called extended trajectory guidance law considering a first-order autopilot lag (ETSGL-CFAL). Finally, the guidance performance of the ETSGL-CFAL is analyzed.

    1 Missile’s longitudinal motion equations considering a first-order autopilot lag

    According to Ref.[14], for a stationary or a slowly moving target, the longitudinal equations of missile’s motion can be expressed as

    (1)

    wherey,V,θandamdenotes the missile position, velocity, flight path angle and acceleration response, respectively. Under the assumption thatVis constant andθis small angle, Eq.(1) can be linearized as

    (2)

    Thetransferfunctionofafirst-orderaccelerationautopilotcanbeexpressedas

    am(s)/ac(s)=1/(Tgs+1)

    (3)

    whereacmeans the missile acceleration command andTgdenotes the time constant of the autopilot. Rewrite Eq.(3) as the form of differential equation, one obtains

    (4)

    CombiningEqs.(2) (4),themissile’slongitudinalmotionequationsconsideringafirst-orderautopilotlagcanbewrittenas

    (5)

    where

    (6)

    (7)

    In Eq.(7),y(tf) is the missile position at the terminal timetf,θ(tf) is the terminal flight path angle andam(tf) is the missile terminal acceleration response. The desired values ofy(tf),θ(tf) andam(tf) areyf,θf(wàn)andaf, respectively.

    2 Derivation of the ETSGL-CFAL using three different methods

    2.1 Derivation of the ETSGL-CFAL using the linear quadratic optimal control theory

    2.1.1 Using the optimal method in Ref.[7]

    Let us first consider the following optimal control problem: subject to Eq.(5), findu(t) to minimize the cost functionJwhich is defined as

    (8)

    whereSf≥0,R(t)>0,t0is the initial time. The solution of the optimal control problem shown in Eq.(5) and Eq.(8) is given by Ref.[7], that is

    u(t)*=-R(t)-1BTΦT(tf,t)Sf[x(tf)-xf]

    (9)

    whereΦ(tf,t) is the state transition matrix fromttotfand the expression of x(tf)-xfis given by

    x(tf)-xf=

    [Φ(tf,t)x(t)-xf]

    (10)

    According to Eq.(6), the weighting funtionR(t) and the terminal state weighting matrix Sfare chosen as

    (11)

    wheretf-t=tgo. The estimation method of time-to-go and the influence of time-to-go estimation errors on the guidance performance have been studied by Ryoo et al[6-7, 12]. Therefore, we assume that time-to-go is exactly known in this paper.

    According to Eq.(10), we define C as

    (12)

    where the expressions ofM11,M12,M21andM22are given by

    D1=Tg(e-tgo/Tg+tgo/Tg-1),D2=1-e-tgo/Tg

    (13)

    (14)

    (15)

    (16)

    (17)

    CombiningEqs.(5)-(17)andaftercomplexcalculations,oneobtainstheoptimalguidancelaw:

    W2θ(t)+W3θf(wàn)+W4am(t)]

    (18)

    whereW1,W2,W3andW4are defined as

    W1=(1/Δ)(s1D1M22-s2D2M21)

    (19)

    W2=(1/Δ)[s1D1(M22Vtgo-M12)]+

    (1/Δ)[s2D2(M11-M21Vtgo)]

    (20)

    W3=(1/Δ)(s1D1M12-s2D2M11)

    (21)

    W4=(Tg/Δ)[s1D1(M22D1-M12D2/V)]+

    (Tg/Δ)[s2D2(-M21D1+M11D2/V)]

    (22)

    (23)

    AccordingtoEq.(18),wesets1→∞,s2→∞, the final expression of the ETSGL-CFAL can be simplified as

    W′3)Vθ(t)-W′3Vθf(wàn)+Tg(D1W′1+D2W′3)am(t)}

    (24)

    2.1.2 Using the optimal method in Ref.[12]

    Rewrite the terminal constraints Eq.(7) as the form of matrix, that is

    (25)

    Neglect the terminal state constraint in Eq.(8), then Eq.(8) can be simplified as

    R(t)=1/(tf-t)n,n≥0

    (26)

    According to Ref.[12], the optimal solution is given by

    u(t)*=-R(t)-1BTFG-1[E-FTx(t)]

    (27)

    where the matrices F and G are given by

    (28)

    Substituting Eqs.(6) (25) into Eq.(28), we have

    (29)

    (30)

    where G is a 2×2 matrix.

    Substituting Eqs.(6) (25) (29) (30) into Eq.(27), we finally have the ETSGL-CFAL, which is the same with Eq.(24).

    2.2 Derivation of the ETSGL-CFAL using the Schwartz inequality

    The general solution of the state space

    Eq.(5) at the final time is given by[4]

    (31)

    whereΦ(t) is the fundamental matrix related to the matrix A according to

    Φ(t)=L-1[(sI-A)-1]

    (32)

    From Eqs.(6) (32),Φ(tf-t) is found to be

    (33)

    SubstitutingEqs.(6) (7) (33)intoEq.(31),weget

    (34)

    Multiplyingouttheprecedingtwomatrixequationsyields

    (35)

    WestillwanttominimizetheextendedcostfunctiondefinedinEq.(26)subjecttothespecifiedterminalpositionandterminalimpactangle,thatis

    y(tf)=yf,θ(tf)=θf(wàn)

    (36)

    For convenience, let us first define

    f1=y(tf)-y(t)-Vtgoθ(t)-

    (37)

    (38)

    Thus,Eq.(35)canbewrittenas

    (39)

    InordertocombineEq.(39)intooneequation,wefirstdefineanewvariableσand then we have

    (40)

    IfweapplytheSchwartzinequalitytoEq.(40),weget

    (41)

    TheleftpartofinequalityEq.(40)isequivalenttotheextendedcostfunctionEq.(26)andwillbeminimizedwhentheequalitysignholds.UsingtheSchwartzinequality,theequalitysignholdsas

    a′c(t)=C(h1-σh2)

    (42)

    whereCis a constant. Therefore, when the equality sign holds, we have

    (43)

    Forconvenience,wedefinethefollowingnewvariables

    (44)

    Thus,Eq.(43)canberewriteas

    (45)

    Defineσ′=σ/Vand then Eq.(45) can be expressed as

    (46)

    BytakingthederivativeofEq.(46)withrespecttoσand setting the result to zero, we get the optimalσ′ that minimizes Eq.(46), that is

    σ′=(f2g11-f1g12)/(f2g12-f1g22)

    (47)

    Substituting Eq.(42) intof1in Eq.(39) and solving for the constantC, one obtains

    C=f1/(g11-σ′g12)

    (48)

    And then, Eq.(42) can be expressed as

    a′c(t)=f1(h1-σh2)/(g11-σ′g12)

    (49)

    Substituting Eq.(47) into Eq.(49) and after some algebra yields

    (50)

    SubstitutingEqs.(37) (44)intoEq.(50),weobtainthefinalexpressionoftheETSGL-CFAL,whichisalsothesamewithEq.(24).

    Asshownintheabovetwosubsections,thethreedifferentderivationmethodsresulttothesameETSGL-CFAL.

    ComparedwithCTSGLandETSGL,ETSGL-CFALisamoregeneralizedform.IfweneglectthetimeconstantTg, i.e., the autopilot is lag-free, ETSGL-CFAL will reduce to ETSGL and if we setTg=0 andn=0 simultaneously, ETSGL-CFAL will directly reduce to CTSGL.

    2.3 Expression of the ETSGL-CFAL in engineering application

    (51)

    (52)

    DefinesomenewgainsoftheETSGL-CFALas

    (53)

    Combining Eqs.(24) (51) (52) yields

    (54)

    Eq.(54)istheexpressionoftheETSGL-CFALforengineeringapplicationinmissileguidance.FortheETSGL,Eq.(53)reducesto

    N′p=2(n+2),N′θ=(n+1)(n+2),N′a=0

    (55)

    and then the ETSGL can be written as

    (56)

    3 Analysis of the normalized acceleration and normalized miss induced by the impact angle

    For comparison, we consider both the ETSGL-CFAL and ETSGL guidance laws. Fig.1 gives the block diagram of the ETSGL-CFAL guidance system. As the gains of Eq.(55) are chosen, the ETSGL-CFAL guidance system can be simplified to the ETSGL guidance system with a first-order autopilot. In Fig.1, two constraints are considered, i.e., the desired missile positionyfand the desired impact angleθf(wàn). Simulation parameters of Fig.1 are given in Tab.1.

    Fig.1 Guidance system of the ETSGL-CFAL/ETSGL

    Tab.1 Simulation parameters

    Parameteryf/mθf(wàn)/(°)V/(m/s)Tg/stf/sValue0-30,-603000.510

    Simulation results of the trajectories and LOS angles forθf(wàn)=-30° andθf(wàn)=-60°, respectively, are shown in Fig.2 and Fig.3. It can be seen that for the ETSGL-CFAL/ETSGL, both the curves of the trajectories and LOS angles are similar if a small indexnis chosen, for example,n=0; however, a large indexn, for example,n=1, will result in a higher trajectory for the ETSGL. Correspondingly, for the ETSGL-CFAL, a lower trajectory will be got whennis chosen as a large value.

    Fig.4 gives the normalized acceleration commands of the ETSGL-CFAL/ETSGL induced by the impact angleθf(wàn). Fig.4 shows that it will result in an abrupt increase in the acceleration command at the final time if we introduce an autopilot lag into the ETSGL guidance system and this will lead to undesired position miss distance and impact angle error (as shown in Fig.5 and Fig.6), especially when the system total guidance timetfis not enough. The reason is that the ETSGL is only optimal for the lag-free autopilot and if we introduce into a first-order autopilot, the ETSGL is not optimal. However, the ETSGL-CFAL is also optimal at the existence of the first-order autopilot, and the acceleration command of which will approach to zero at the final guidance time (Fig.4). Thus, although a first-order autopilot was introduced into the ETSGL-CFAL system, there is no miss distance and terminal impact angle error as shown in Fig.5 and Fig.6.

    Fig.2 Trajectories for different θf(wàn)

    Fig.3 LOS angle q for different θf(wàn)

    Fig.4 Normalized acceleration commands induced by θf(wàn)

    Fig.5 Normalized position miss distance induced by θf(wàn)

    Fig.6 Normalized terminal impact angle error induced by θf(wàn)

    4 Conclusions

    ① Using a time-to-go weighted object function and considering a first-order autopilot lag, for a stationary or slowly moving target, an extended trajectory shaping guidance law, called ETSGL-CFAL in this paper, is proposed.

    ② Three different methods are adopted to derive the ETSGL-CFAL: two based on the linear optimal control theory and one based on the Schwartz inequality.

    ③ Performance of the ETSGL-CFAL and the ETSGL guidance laws are compared through simulation. Simulation results show that for different guidance times, although a first-order autopilot is introduced into the ETSGL-CFAL guidance system, there is no miss distance and terminal impact angle error induced by the impact angle.

    [1] Kim B S, Lee J G, Han H S. Biased PNG law for impact with angular constraint [J]. IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(1): 277-288.

    [2] Ratnoo A, Ghose D. Impact angle constrained interception of stationary targets [J]. Journal of Guidance, Control, and Dynamics, 2008, 31(6): 1816-1821.

    [3] Ratnoo A, Ghose D. State dependent Riccati equation based guidance law for impact angle constrained trajectories [J]. Journal of Guidance, Control, and Dynamics, 2009, 32(1): 320-325.

    [4] Zarchan P. Tactical and strategic missile guidance[M]. 5th ed. Progress in Astronautics and Aeronautics, 2007: 541-569.

    [5] Ben-Asher J Z, Yaesh I. Advances in missile guidance theory[M]. [S.l.]: American Institute of Aeronautics and Astronautics, Inc., 1998:25-88.

    [6] Ryoo C K, Cho H, Tahk M J. Close-form solutions of optimal guidance with terminal impact angle constraint [C]∥Proceedings of IEEE International Conference on Control Application, Istanbul, Turkey, 2003: 504-509.

    [7] Ryoo C K, Cho H, Tahk M J. Optimal guidance laws with terminal impact angle constraint [J]. Journal of Guidance, Control and Dynamics, 2005, 28(4): 724-732.

    [8] Ryoo C K, Cho H, Tahk M J. Energy optimal waypoint guidance synthesis for antiship missiles [J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(1):80-95.

    [9] Kim T H, Lee C H, Tahk M J, et al. Time-to-go polynomial guidance with trajectory modulation for observability enhancement [J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(1): 55-73.

    [10] Lee C H, Kim T H, Tahk M J, et al. Polynomial guidance laws considering terminal impact angle and acceleration constraints [J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(1): 74-92.

    [11] Ohlmeyer E J, Phillips C A. Generalized vector explicit guidance [J]. Journal of Guidance, Control and Dynamics, 2006, 29(2): 261-268.

    [12] Ryoo C K, Cho H, Tahk M J. Time-to-go weighted optimal guidance with impact angle constraints [J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 14(3): 483-492.

    [13] Wang H, Lin D F, Cheng Z X, et al. Optimal guidance of extended trajectory shaping [J]. Chinese Journal of Aeronautics, 2014,27(5):1259-1272.

    [14] Qian X F, Lin R X, Zhao Y N. Missile aviation mechanics [M]. Beijing: Beijing Institute of Technology Press, 2008: 28-74. (in Chinese)

    (Edited by Wang Yuxia)

    10.15918/j.jbit1004-0579.201524.0302

    TJ 765.3 Document code: A Article ID: 1004- 0579(2015)03- 0291- 07

    Received 2013- 12- 01

    Supported by the National Natural Science Foundation of China (61172182)

    E-mail: wh20031131@126.com

    猜你喜歡
    王江王輝
    本期面孔
    遼河(2022年12期)2023-01-29 13:24:58
    Parkinsonian oscillations and their suppression by closed-loop deep brain stimulation based on fuzzy concept
    洛書
    寶藏(2021年12期)2022-01-15 04:19:44
    劇作家王輝
    火花(2021年10期)2021-11-04 09:23:52
    Characterization of size effect of natural convection in melting process of phase change material in square cavity?
    王江薈國(guó)畫系列作品《安仁古八景》
    竹之韻
    Orientation and alignment during materials processing under high magnetic fields?
    王江作品
    The Thought on PPP in China
    性色avwww在线观看| 亚洲成人久久爱视频| 丰满人妻一区二区三区视频av | 亚洲18禁久久av| 全区人妻精品视频| 久久久久免费精品人妻一区二区| 欧美乱码精品一区二区三区| 欧美乱色亚洲激情| 亚洲天堂国产精品一区在线| 成人欧美大片| 曰老女人黄片| 欧美一级毛片孕妇| 老司机午夜十八禁免费视频| 日韩有码中文字幕| 校园春色视频在线观看| 99久久99久久久精品蜜桃| 国产又黄又爽又无遮挡在线| 少妇的丰满在线观看| 国产又黄又爽又无遮挡在线| 成人一区二区视频在线观看| 丁香六月欧美| 国产伦一二天堂av在线观看| 激情在线观看视频在线高清| 国产黄片美女视频| 精品国产亚洲在线| 久久久久久九九精品二区国产| 久久精品91蜜桃| 黑人巨大精品欧美一区二区mp4| 又粗又爽又猛毛片免费看| 久久精品aⅴ一区二区三区四区| 国产精品99久久99久久久不卡| 亚洲狠狠婷婷综合久久图片| 国产免费av片在线观看野外av| 国产私拍福利视频在线观看| 亚洲精品国产精品久久久不卡| 亚洲五月天丁香| 午夜精品一区二区三区免费看| 757午夜福利合集在线观看| www.自偷自拍.com| 深夜精品福利| 免费看十八禁软件| 91麻豆av在线| 国产亚洲精品av在线| 国内精品美女久久久久久| 热99在线观看视频| 51午夜福利影视在线观看| 别揉我奶头~嗯~啊~动态视频| 成人18禁在线播放| 亚洲自偷自拍图片 自拍| 亚洲 欧美 日韩 在线 免费| 美女大奶头视频| 国产精品日韩av在线免费观看| 性色avwww在线观看| 欧美黄色淫秽网站| 级片在线观看| 啦啦啦观看免费观看视频高清| 亚洲va日本ⅴa欧美va伊人久久| 婷婷精品国产亚洲av| 国产精品99久久99久久久不卡| 国产三级在线视频| 美女高潮喷水抽搐中文字幕| 91久久精品国产一区二区成人 | 天堂网av新在线| 欧美高清成人免费视频www| 一级毛片高清免费大全| 在线十欧美十亚洲十日本专区| 亚洲欧美日韩东京热| 国产精品98久久久久久宅男小说| 麻豆久久精品国产亚洲av| 日本五十路高清| 一二三四社区在线视频社区8| 在线观看午夜福利视频| 麻豆成人午夜福利视频| 成年免费大片在线观看| 国产欧美日韩精品一区二区| 麻豆成人av在线观看| 日韩免费av在线播放| 日韩 欧美 亚洲 中文字幕| 亚洲av免费在线观看| 久久香蕉国产精品| 91av网站免费观看| 色播亚洲综合网| 99国产综合亚洲精品| cao死你这个sao货| 99精品久久久久人妻精品| 午夜激情福利司机影院| aaaaa片日本免费| 最新在线观看一区二区三区| 老司机午夜十八禁免费视频| 亚洲欧洲精品一区二区精品久久久| 精品国内亚洲2022精品成人| 国产精品野战在线观看| 小蜜桃在线观看免费完整版高清| 久久久久久久久免费视频了| 亚洲一区二区三区不卡视频| 熟妇人妻久久中文字幕3abv| 男人舔女人的私密视频| 久久精品国产清高在天天线| 成年女人永久免费观看视频| 国产成人精品久久二区二区91| 成人无遮挡网站| 国产亚洲欧美98| 欧美中文综合在线视频| 中文字幕av在线有码专区| 又黄又粗又硬又大视频| 国产精品亚洲一级av第二区| 欧美又色又爽又黄视频| 宅男免费午夜| 亚洲av电影在线进入| 男人的好看免费观看在线视频| 99久国产av精品| 天堂影院成人在线观看| 久久久久久久久免费视频了| 99国产精品一区二区三区| 黑人巨大精品欧美一区二区mp4| 午夜视频精品福利| 老司机深夜福利视频在线观看| 一区二区三区激情视频| 美女午夜性视频免费| 欧美日韩中文字幕国产精品一区二区三区| 色精品久久人妻99蜜桃| 久久午夜亚洲精品久久| 99热6这里只有精品| 免费看日本二区| 99精品在免费线老司机午夜| 黄色成人免费大全| 女人高潮潮喷娇喘18禁视频| 亚洲精品美女久久久久99蜜臀| 一个人免费在线观看电影 | 免费一级毛片在线播放高清视频| 无限看片的www在线观看| 12—13女人毛片做爰片一| 男女做爰动态图高潮gif福利片| 亚洲国产欧美人成| 一本久久中文字幕| 法律面前人人平等表现在哪些方面| 亚洲中文日韩欧美视频| 麻豆成人av在线观看| 亚洲自拍偷在线| 免费高清视频大片| 亚洲aⅴ乱码一区二区在线播放| 亚洲精华国产精华精| 亚洲第一欧美日韩一区二区三区| 久久精品国产综合久久久| 在线观看66精品国产| 国产精品久久久久久亚洲av鲁大| 免费电影在线观看免费观看| 听说在线观看完整版免费高清| 一个人观看的视频www高清免费观看 | 午夜福利欧美成人| 久久香蕉国产精品| 高清毛片免费观看视频网站| 国产高清videossex| 亚洲精品一卡2卡三卡4卡5卡| 少妇人妻一区二区三区视频| 国产91精品成人一区二区三区| 亚洲欧美日韩卡通动漫| 成年女人毛片免费观看观看9| 丰满人妻熟妇乱又伦精品不卡| 久久伊人香网站| 午夜日韩欧美国产| 小说图片视频综合网站| 天天躁狠狠躁夜夜躁狠狠躁| 一二三四社区在线视频社区8| 嫩草影院入口| 欧美成狂野欧美在线观看| 老鸭窝网址在线观看| 色视频www国产| 一级毛片高清免费大全| 日韩中文字幕欧美一区二区| 99re在线观看精品视频| 在线观看美女被高潮喷水网站 | 久久久久免费精品人妻一区二区| 国产精品99久久99久久久不卡| 久久久国产欧美日韩av| 一二三四社区在线视频社区8| 桃红色精品国产亚洲av| 国产单亲对白刺激| 国产亚洲精品综合一区在线观看| 国产一级毛片七仙女欲春2| 国产精品av视频在线免费观看| 制服丝袜大香蕉在线| 亚洲国产色片| 久久草成人影院| 国产精品亚洲美女久久久| 日韩免费av在线播放| 国产精品免费一区二区三区在线| 亚洲欧美日韩卡通动漫| www国产在线视频色| 国产成人精品久久二区二区免费| 一级黄色大片毛片| 亚洲真实伦在线观看| 国产精品,欧美在线| 少妇裸体淫交视频免费看高清| 久久精品91无色码中文字幕| 高清在线国产一区| 亚洲专区国产一区二区| 少妇丰满av| 国产黄a三级三级三级人| 一边摸一边抽搐一进一小说| e午夜精品久久久久久久| 99国产精品99久久久久| 最好的美女福利视频网| 91久久精品国产一区二区成人 | 日本黄色片子视频| 国语自产精品视频在线第100页| 丰满人妻一区二区三区视频av | 久9热在线精品视频| 亚洲av成人一区二区三| www日本黄色视频网| 一个人观看的视频www高清免费观看 | 人人妻人人看人人澡| 五月伊人婷婷丁香| 欧美在线一区亚洲| 黑人欧美特级aaaaaa片| 国产乱人视频| 51午夜福利影视在线观看| 国产av一区在线观看免费| 亚洲电影在线观看av| 久久久精品欧美日韩精品| 熟女少妇亚洲综合色aaa.| 黄色日韩在线| 久久中文看片网| 母亲3免费完整高清在线观看| 国产精品亚洲av一区麻豆| 中文资源天堂在线| 久久人人精品亚洲av| 亚洲中文av在线| 禁无遮挡网站| 国产精品 欧美亚洲| 老司机在亚洲福利影院| 宅男免费午夜| 亚洲国产欧美一区二区综合| xxxwww97欧美| 亚洲欧美日韩高清在线视频| 欧美激情久久久久久爽电影| 日本五十路高清| 国产伦人伦偷精品视频| 国产淫片久久久久久久久 | 午夜福利在线在线| 国产三级黄色录像| 国产淫片久久久久久久久 | 欧美日韩中文字幕国产精品一区二区三区| 成年免费大片在线观看| www日本在线高清视频| 老熟妇仑乱视频hdxx| 天天添夜夜摸| 免费在线观看亚洲国产| 在线观看舔阴道视频| 中文字幕人成人乱码亚洲影| 亚洲国产精品成人综合色| 特大巨黑吊av在线直播| 国产成+人综合+亚洲专区| 国产三级在线视频| 亚洲九九香蕉| 特大巨黑吊av在线直播| 757午夜福利合集在线观看| 亚洲美女黄片视频| 十八禁网站免费在线| 国产欧美日韩一区二区精品| 脱女人内裤的视频| 精品国产亚洲在线| 亚洲av美国av| 99精品久久久久人妻精品| 啦啦啦观看免费观看视频高清| 伊人久久大香线蕉亚洲五| 90打野战视频偷拍视频| 在线免费观看不下载黄p国产 | 又紧又爽又黄一区二区| 色吧在线观看| 国产伦人伦偷精品视频| 国产97色在线日韩免费| 亚洲欧美日韩东京热| 2021天堂中文幕一二区在线观| 亚洲精品粉嫩美女一区| 久久久色成人| 两个人看的免费小视频| 亚洲成人免费电影在线观看| 床上黄色一级片| 精品一区二区三区四区五区乱码| 久久精品国产综合久久久| 久久精品人妻少妇| 亚洲精品久久国产高清桃花| 色av中文字幕| 国语自产精品视频在线第100页| 国产伦精品一区二区三区视频9 | 亚洲av第一区精品v没综合| 国产探花在线观看一区二区| 久久中文看片网| 亚洲av电影不卡..在线观看| 搡老岳熟女国产| 亚洲成人久久爱视频| 在线观看免费视频日本深夜| 国产精品久久久久久人妻精品电影| 国产成人精品久久二区二区免费| 国产午夜精品久久久久久| 国产av一区在线观看免费| 91av网一区二区| 热99re8久久精品国产| 欧美三级亚洲精品| 亚洲精品久久国产高清桃花| 亚洲欧美精品综合一区二区三区| 亚洲aⅴ乱码一区二区在线播放| 91在线观看av| 精品久久久久久久毛片微露脸| 亚洲在线自拍视频| 99热只有精品国产| 国产aⅴ精品一区二区三区波| av欧美777| 夜夜夜夜夜久久久久| 日韩免费av在线播放| 国产亚洲av嫩草精品影院| 亚洲国产精品合色在线| 51午夜福利影视在线观看| netflix在线观看网站| 国产av不卡久久| av黄色大香蕉| 免费av毛片视频| 成人亚洲精品av一区二区| 女人高潮潮喷娇喘18禁视频| 在线看三级毛片| 每晚都被弄得嗷嗷叫到高潮| 真人一进一出gif抽搐免费| 在线观看免费视频日本深夜| 亚洲国产精品成人综合色| 成人永久免费在线观看视频| 亚洲av电影在线进入| 中文字幕久久专区| 日本精品一区二区三区蜜桃| 亚洲人成网站高清观看| 久久99热这里只有精品18| 欧美一级毛片孕妇| www日本黄色视频网| 最新在线观看一区二区三区| av天堂在线播放| 国产淫片久久久久久久久 | 亚洲av成人精品一区久久| 国产又色又爽无遮挡免费看| 99久久综合精品五月天人人| 美女午夜性视频免费| 国产亚洲欧美98| 97碰自拍视频| 18禁黄网站禁片午夜丰满| 色哟哟哟哟哟哟| 高清毛片免费观看视频网站| 久久精品91蜜桃| 欧美黑人巨大hd| 亚洲欧美日韩东京热| 久久中文字幕人妻熟女| 麻豆一二三区av精品| 99精品欧美一区二区三区四区| 久久午夜综合久久蜜桃| 午夜免费观看网址| 国产综合懂色| 97超视频在线观看视频| 九色国产91popny在线| 国产蜜桃级精品一区二区三区| 亚洲第一欧美日韩一区二区三区| 精华霜和精华液先用哪个| 国产亚洲欧美98| 女人高潮潮喷娇喘18禁视频| 国产精品亚洲av一区麻豆| 久久久久亚洲av毛片大全| 午夜精品久久久久久毛片777| 老汉色∧v一级毛片| 午夜免费激情av| 精品不卡国产一区二区三区| 亚洲精华国产精华精| 老司机在亚洲福利影院| 久久天躁狠狠躁夜夜2o2o| 免费无遮挡裸体视频| 18禁美女被吸乳视频| 国产精品亚洲美女久久久| 国产一区二区三区在线臀色熟女| 在线观看舔阴道视频| 国产一区二区三区在线臀色熟女| 在线观看舔阴道视频| a级毛片a级免费在线| 波多野结衣巨乳人妻| 亚洲国产欧美人成| 亚洲国产欧美网| 成人特级av手机在线观看| 人妻丰满熟妇av一区二区三区| 五月玫瑰六月丁香| 天堂网av新在线| 88av欧美| 日日夜夜操网爽| 哪里可以看免费的av片| 看片在线看免费视频| 女生性感内裤真人,穿戴方法视频| 一级毛片女人18水好多| 视频区欧美日本亚洲| 久久久久久久久中文| 久久久久久大精品| 精品久久久久久久人妻蜜臀av| АⅤ资源中文在线天堂| 国产av麻豆久久久久久久| 国产一区二区在线av高清观看| 国产av麻豆久久久久久久| 久久香蕉国产精品| 国产亚洲精品综合一区在线观看| 国产精品女同一区二区软件 | a级毛片在线看网站| 婷婷精品国产亚洲av| 精品久久久久久久末码| 精品国产亚洲在线| 亚洲国产高清在线一区二区三| 国产精品 国内视频| 成年版毛片免费区| 亚洲精品久久国产高清桃花| 欧美日韩黄片免| 国产亚洲精品久久久com| 亚洲中文字幕日韩| 国产欧美日韩一区二区精品| 日韩精品青青久久久久久| 亚洲人成伊人成综合网2020| 国产精品久久久av美女十八| 欧美极品一区二区三区四区| 精品国产三级普通话版| 一本精品99久久精品77| 亚洲精品美女久久久久99蜜臀| 看免费av毛片| 国产精品日韩av在线免费观看| 99国产精品99久久久久| 日韩欧美免费精品| 久久久久国产精品人妻aⅴ院| 日韩av在线大香蕉| 又紧又爽又黄一区二区| 好男人在线观看高清免费视频| 国产高清视频在线播放一区| 亚洲人成伊人成综合网2020| 亚洲国产精品999在线| 老司机福利观看| 男女做爰动态图高潮gif福利片| 伦理电影免费视频| 日本精品一区二区三区蜜桃| 亚洲av中文字字幕乱码综合| 免费看美女性在线毛片视频| 激情在线观看视频在线高清| 美女 人体艺术 gogo| 国内精品一区二区在线观看| 亚洲精华国产精华精| 精品一区二区三区视频在线观看免费| 国产成人一区二区三区免费视频网站| 亚洲欧美日韩无卡精品| 色尼玛亚洲综合影院| 宅男免费午夜| 看片在线看免费视频| 最近视频中文字幕2019在线8| 亚洲专区字幕在线| 日本 欧美在线| 夜夜看夜夜爽夜夜摸| 麻豆国产av国片精品| 成人国产一区最新在线观看| 狂野欧美激情性xxxx| av欧美777| 狂野欧美激情性xxxx| 久久亚洲精品不卡| 亚洲在线观看片| 国产一区二区在线av高清观看| 亚洲av成人一区二区三| 成人午夜高清在线视频| 在线a可以看的网站| 成年人黄色毛片网站| 18禁观看日本| 久久久久性生活片| 美女免费视频网站| 国产 一区 欧美 日韩| 天堂√8在线中文| 99国产精品99久久久久| 搡老妇女老女人老熟妇| 成人国产综合亚洲| 禁无遮挡网站| 日韩欧美国产一区二区入口| 一卡2卡三卡四卡精品乱码亚洲| 国产91精品成人一区二区三区| 国内精品久久久久精免费| 长腿黑丝高跟| 又黄又粗又硬又大视频| 18美女黄网站色大片免费观看| 精品一区二区三区视频在线观看免费| 国产成人av教育| 国产真人三级小视频在线观看| 熟女少妇亚洲综合色aaa.| 丰满人妻一区二区三区视频av | 91老司机精品| 国产一区二区三区在线臀色熟女| 手机成人av网站| 欧美xxxx黑人xx丫x性爽| 999精品在线视频| 精品一区二区三区四区五区乱码| 日韩 欧美 亚洲 中文字幕| 高清在线国产一区| 亚洲精品国产精品久久久不卡| 亚洲国产日韩欧美精品在线观看 | 99久久综合精品五月天人人| 99久久精品热视频| 日日摸夜夜添夜夜添小说| 国产精品精品国产色婷婷| 一个人看的www免费观看视频| 欧美乱妇无乱码| 久久精品人妻少妇| www.精华液| 床上黄色一级片| 亚洲va日本ⅴa欧美va伊人久久| 男插女下体视频免费在线播放| 国产精品久久久久久亚洲av鲁大| 日本三级黄在线观看| 亚洲av成人av| 少妇的逼水好多| 夜夜爽天天搞| ponron亚洲| 欧美极品一区二区三区四区| 变态另类丝袜制服| 国产毛片a区久久久久| 最近在线观看免费完整版| 色在线成人网| 精品久久久久久久久久免费视频| 制服丝袜大香蕉在线| 成人特级黄色片久久久久久久| 99热6这里只有精品| 99久久精品热视频| 亚洲av片天天在线观看| 国产精品久久视频播放| 久久久久亚洲av毛片大全| 丰满人妻熟妇乱又伦精品不卡| 成人特级av手机在线观看| h日本视频在线播放| av女优亚洲男人天堂 | 成熟少妇高潮喷水视频| 国产黄a三级三级三级人| 两性午夜刺激爽爽歪歪视频在线观看| 男人和女人高潮做爰伦理| 成人三级黄色视频| 高潮久久久久久久久久久不卡| 男女之事视频高清在线观看| 身体一侧抽搐| 成年免费大片在线观看| 亚洲av美国av| 超碰成人久久| 国产真实乱freesex| 在线观看一区二区三区| 精品久久久久久久人妻蜜臀av| 国产精品 国内视频| 此物有八面人人有两片| av黄色大香蕉| 91av网站免费观看| 999精品在线视频| 老司机福利观看| 久久香蕉国产精品| 黄色成人免费大全| 欧美色欧美亚洲另类二区| 18禁国产床啪视频网站| 色综合婷婷激情| 18禁裸乳无遮挡免费网站照片| 国产三级在线视频| 精品一区二区三区av网在线观看| 91在线精品国自产拍蜜月 | 90打野战视频偷拍视频| 精品不卡国产一区二区三区| 国产97色在线日韩免费| 亚洲国产欧洲综合997久久,| 日本熟妇午夜| 亚洲成人免费电影在线观看| 很黄的视频免费| 黄片小视频在线播放| 国产亚洲精品av在线| 美女cb高潮喷水在线观看 | 亚洲人成网站高清观看| 国产高清有码在线观看视频| 一进一出抽搐gif免费好疼| 午夜成年电影在线免费观看| 嫩草影院精品99| 亚洲电影在线观看av| 99久国产av精品| 国产一区二区在线av高清观看| 亚洲精品一卡2卡三卡4卡5卡| xxxwww97欧美| 国产成年人精品一区二区| 岛国在线观看网站| 女警被强在线播放| 免费av毛片视频| 亚洲自偷自拍图片 自拍| 午夜精品久久久久久毛片777| 日本 av在线| 亚洲av成人一区二区三| 青草久久国产| 国产不卡一卡二| 一级毛片高清免费大全| 一本久久中文字幕| av国产免费在线观看| 天堂av国产一区二区熟女人妻| 91久久精品国产一区二区成人 | 国内揄拍国产精品人妻在线| 18禁裸乳无遮挡免费网站照片| 真人一进一出gif抽搐免费| 欧美日韩黄片免| 国产欧美日韩一区二区三| 午夜亚洲福利在线播放| 天堂影院成人在线观看| 亚洲成人免费电影在线观看| 老鸭窝网址在线观看| 免费观看精品视频网站| 午夜日韩欧美国产| 悠悠久久av| 久久久久久国产a免费观看| 精品99又大又爽又粗少妇毛片 | 午夜福利高清视频| 国产黄a三级三级三级人| 国产 一区 欧美 日韩| 天天躁狠狠躁夜夜躁狠狠躁| 两人在一起打扑克的视频| 在线a可以看的网站| or卡值多少钱| 亚洲在线观看片|