• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Force-feedback based active compliant position control strategy for a hydraulic quadruped robot

    2015-04-22 02:33:20WANGLipeng王立鵬WANGJunzheng王軍政MALiling馬立玲CHENGuangrong陳光榮YANGChaofeng楊超峰
    關(guān)鍵詞:軍政光榮

    WANG Li-peng(王立鵬), WANG Jun-zheng(王軍政), MA Li-ling(馬立玲), CHEN Guang-rong(陳光榮), YANG Chao-feng(楊超峰)

    (Key Laboratory of Intelligent Control and Decision of Complex System, School of Automation, Beijing Institute of Technology, Beijing 100081, China)

    ?

    Force-feedback based active compliant position control strategy for a hydraulic quadruped robot

    WANG Li-peng(王立鵬), WANG Jun-zheng(王軍政), MA Li-ling(馬立玲), CHEN Guang-rong(陳光榮), YANG Chao-feng(楊超峰)

    (Key Laboratory of Intelligent Control and Decision of Complex System, School of Automation, Beijing Institute of Technology, Beijing 100081, China)

    Most existing legged robots are developed under laboratory environments and, correspondingly, have good performance of locomotion. The robots‘ ability of walking on rough terrain is of great importance but is seldom achieved. Being compliant to external unperceived impacts is crucial since it is unavoidable that the slip, modeling errors and imprecise information of terrain will make planned trajectories to be followed with errors and unpredictable contacts. The impedance control gives an inspiration to realize an active compliance which allows the legged robots to follow reference trajectories and overcome external disturbances. In this paper, a novel impedance force/position control scheme is presented, which is based on Cartesian force measurement of leg’s end effector for our hydraulic quadruped robot The simulation verifies the efficiency of the impedance model, and the experimental results at the end demonstrate the feasibility of the proposed control scheme.

    active compliance; impedance control; force feedback; contact force; constrains space

    Research on legged robots received much attention in the articulated robot fields in recent decades[1-3]. A legged robot with the capacity to evolve into versatile, multipurpose machine may eventually be very useful in many application scenarios such as disaster recovery, service robots, anti-explode events and military logistics. To achieve these tasks, the robot must be able to overcome the challenging terrain. The majority of existing researches employ high gain position control, which can achieve fast and accurate movement with a simple control mechanism in known environments[4]. When the task is involved contact with the environment as mentioned above, robots will try to satisfy the position goal with all available forces that may severely unbalance them. To achieve both fast robust locomotion and precise movements over unstructured and unknown terrains, different control approaches are required.

    Trajectory tracking is needed when there is no physical counterforce from the external environment[5-6]. It’s better to actuate a swing leg as fast and precise as possible to place the accurate foothold. However, once the contact occurs that forces the leg into constraint space, the freedom dimensions will decrease and both robot and environment will be damaged if the impacts and crashes are too large. At this time, a compliance controller of dynamic behavior of the feet in case of physical interaction is desirable. It allows to behave either compliantly in case the robot hits an obstacle, or stiffly in case it has to locate on an object.

    However, how to improve the compliant characteristics of legged robots in complex environments is still achallenge[7-8]. The model based traditional dynamic control methods need models for forward and inverse dynamics of robot and ambient environment[9]. It involves multi-rigid-body dynamics modeling, which will become more and more difficult when the freedom dimensions of legs increase. There are a lot of calculations and online measurements of the robot system, which will lead to a poor real-time performance[10]. What’s worse, the exact value of inertia matrix is hard to obtain because of the irregular shapes of leg parts.

    1 Hydraulic quadruped robot

    1.1 Platform overview

    The experimental prototype of our hydraulic quadruped robot has 16 active DOFs and 4 passive DOFs, as shown in Fig.1. Each leg has hip-roll, hip-pitch, knee and ankle joints actuated by hydraulic cylinders which are self-designed and controlled by servo valves with high performance[11]. Each leg can be modeled as a 4-link mechanical system to generate endpoint trajectory. In this paper a 2-cycloid based zero impact foot trajectory generation method is proposed to reduce the disturbance force from the environment[12]. While the effect is limited on the floor with obstacles. Our recent research gives us a new inspiration on active compliance control. Because there are no tension and compression load cells in cylinders, our whole gait control is based on position control. So kinematics of robot will be presented firstly as follows.

    1.2 Single leg workspace model

    In order to plan the foot trajectory, the leg is modeled as a four-link mechanical system. Define the local reference coordinates and joint variableθi(i=1,2,3,4) for every revolution joint as shown in Fig.2. For notational convenience, the origin points of {Ji} are replaced by point R, P, K and A respectively for short. For lack of force sensors in cylinder, only the position control of cylinder is considered at present.

    Fig.1 Hydraulic quadruped robot

    Fig.2 Kinematic links structure with joints name

    Combining Fig.1 and Fig.2, it’s easy to get the corresponding relationship between joint variableθiand related cylinder lengthlcyiin a mechanical triangle. Soθiis taken as a basic variable of kinematics in this paper. The kinematic equations of single leg in the operation space are

    xJ2=sgn (leg)[l2cos (θ2)-l3cos (θ3-θ2)]+l4cos (π/2-θ5)zJ2=-l2sin (θ2)-l3sin (θ3-θ2)-l4sin (π/2-θ5)

    (1)

    (2)

    whereJ2andJ1is {J2} and {J1} coordinates, respectively; leg is LF(left fore leg), RF(right fore leg), RH(Right hind leg), LH(Left hind leg);θ5is an auxiliary variable for calculating which is angle of friction cone[13].

    To plan the foot trajectory in a gait, the trajectory generation method is represented here (for further details, refer to Ref.[12])

    (3)

    When planning out the P=[x,y,z]Tand referenceθ5in a leg’s coordinates, according above equations, it’s easy to get the inverse kinematic equation and control variable according the above equations as briefly described as

    θ=T-1[PT,θ5]T

    (4)

    whereθ=[θ1,θ2,θ3,θ4]T. The actuated hydraulic cylinder lengthlcyican be calculated by the cosine law in the mechanical triangle.

    2 Active compliance controller design

    The conversion between the supporting phase and swinging phase of four legs according to a gait in turns composes the quadruped’s walking procedure. All the joints of our quadruped robot are actuated by hydraulic cylinders. As it is known, hydraulic actuated system has the advantages including fast output velocity and big driving force/torque. However, if a simple position control is applied to the quadruped robot out of laboratory environments, they will become hidden dangers of unbalance if feet hit an obstacle during swinging phase and the cylinders will give the maximum forces as possible as they can. So it’s very urgent to introduce a force control in a gait generation. In this paper, a position and force hybrid control scheme is designed for a single leg to achieve active compliance in force constrain space as is shown in Fig.3.

    Fig.3 Block diagram of the position and force hybrid control scheme

    As has been analyzed above, the three dimensional positions of a single leg can be actuated separately, that is, the endpoint position in the Cartesian space of a leg is freely controlled, although a single leg is a strongly coupled as a highly nonlinear system. Therefore, the impedance model of a single leg in vertical direction is presented at first, and thn it is extended to the three dimensions situation.

    2.1 Position-based impedance force control model in vertical direction

    Acommon aim of impedance model is simulated by a spring-damper system which is usually used in legged robots for passive compliance behavior. Suppose the Cartesian inertia is m, the stiffness isk, and the damping isd, the dynamical system is

    (5)

    Using Laplace transform, we have

    (6)

    If extern forcefis known, according the above equation, the end effector position can be easily figured out. Settingm=10 kg,d=60 N/(m·s),k=500 N/m, and applying an external step forcef=50 N (dashed line) andf=100 N (solid line) to the foot respectively, we obtain the following results as shown in Fig.4.

    Fig.4 End effector impedance behavior under extern disturbance force

    In other words, if the position is taken as a modified value for the planning trajectory when there are disturbances or contact forces, legs will have active compliance in a gait that will effectively reduce the damage to the robot. Inspired by the good performance of the impedance model, the leg controller can work with the same advantages when a sudden contact force occurs.

    As summarized above, the endpoint work space changes from free Cartesian space to force constrained Cartesian space when there is an obstacle in a leg swinging procedure. Thus a selection mechanism is designed between the endpoint planning and the impedance control. The feedback forceffbdetermines the mutual inhibition selected scheme to chooseSeorS′e. WhenSeis selected, the foot trajectory generation method is used in the free Cartesian space until the end point detects a contact force. While in the force constrain space, the above impedance model is regarded as a filter and a supporting force closed-loop controller is designed. Taking the vertical locomotion as an example, the impedance equation is

    (7)

    wherefris the reference supporting force assigned by force distribution;ffbis the feedback contact force;zmodis the modified position value.

    Using Laplace transform to the above equation and expressing the transfer function in block diagram form, the block diagram of force controller is shown in Fig.5.

    Fig.5 Block diagram of the impedance force control scheme

    2.2 Position-based impedance force control model of three dimensions

    Single dimensional impedance force control is deduced. In a real walking gait of a quadruped, we need 2 or 3 dimension position servo of a leg. When there are contacts occurring suddenly, it will increase the risk of the robot instability if the same position control scheme is used in the force constrain space asthe Cartesian space. So it is very important to consider multidimensional force control.

    We define the selected matrixesSeandS′ein the work space. When there are no contact forces,Seis an identity matrix andS′eis a zeros matrix. That means the swing leg is controlled by endpoint trajectory generation scheme in Cartesian space. While there are contact forces, the deflectionsfei(i=x,y,z) of reference contact forces and Cartesian measures determine the diagonal elements to be 1 or 0. Others are always zeros for the decoupling endpoint direction control. The diagonal elements ofS′ehave the completely opposite values withSe. The value 1 ofSemakes a single position control and the 1 ofS′eselects a modified position control as

    (8)

    wheregiis the function of above designed model.

    3 Simulation experiment

    The true prototype mechanism of our hydraulic quadruped robot is still under construction. In the simulations, we show a single dimension (vertical directionz) control result of the quadruped robot and a 2-dimension (horizontalxand verticalzdirections) result. Our simulation robot is 1.2 m long and 0.6 m wide and about 70 kg which is made of aluminum alloy. A single leg is about 9 kg heavy. So the impedance parameters arem=10 kg,d=60 N/(m/s) andk=500 N/m.

    3.1 Force impedance control in vertical direction

    It is supposed that the robot stands on an uneven terrain. The value of reference footholds in robot coordinates are LF -0.67 m, RF -0.69 m, RH -0.692 5 m, LH -0.695 m, and the start positions of each leg are -0.65 m, -0.689 m, -0.692 m, -0.693 m respectively. The control block diagram in Simulink is shown in Fig.6.

    We use a simple force distribution method that makes the legs to equally share the gravity of the robot. The impedance control result of our system is shown in Fig.7.

    Fig.6 Block diagram of the impedance force control for the quadruped robot in Simulink

    Fig.7 Impedance control results of four legs

    3.2 Two dimensions endpoint trajectory impedance control in Matlab and Adams co-simulation

    To demonstrate the feasibility of our control scheme shown in Fig.3, RF leg is considered as a fixed base system in Adams 2013 (see Fig.8). To assess the control effect of the proposed scheme, we ignore the spring in the foot, i.e. there is no passive impedance equipment in the leg.

    Fig.8 Physical mechanism in Adams and the endpoint trajectory of control algorithm

    Then the physical model is exported to Simulink of Matlab R2010b and the control scheme is programmed in m-file. The co-simulation block diagram is shown in Fig.9. The endpoint trajectory is generated according to Eq. (3) withS=0.3 m,H=0.2 m. Considering the fact that the horizontal direction obstacle makes worse damage to the balance, different reference contact forces are applied. The vertical reference force is given by force distribution. The result in work space is shown in Fig.8 in white curve and the contact forces under control measured at the endpoint in Adams are shown in Fig.10.

    Fig.9 Control block diagram of co-simulation of Matlab and Adams in Simulink

    The horizontal contact force in Fig.10 shows a good performance to attenuate the disturbance. The vertical force curve indicates the selection matrixes scheme work as expected and makes sure a good supporting of robot. The results in Figs.7, 8, 10 demonstrate the feasibility and effectiveness of the proposed scheme.

    Fig.10 Contact forces of RF’s endpoint

    4 Conclusions

    In this paper, firstly a hydraulic quadruped robot is introduced. Then the work space of a single leg is analyzed in walking gait. To reduce the impact force in a walking gait, our previous work on endpoint trajectory generation is introduced. As the outdoor walking environment is generally unstructured and a single trajectory generation might cause the damage to the robot and surroundings, therefore an impedance force control scheme is proposed, which is based on our small-impact trajectory planning method. The simulation results show the feasibility of the impedance control law, and then the experiments data demonstrate that the robot could be activly compliant with the obstacles in Cartesian space with force constraints.

    Impedance control can buffer the impact from the walking gait that effectively avoids the damage to the robot and environment. When contact occurs, however, the trajectory of endpoint is changed and, correspondingly, the footholds are passively selected. If there is an obstacle at the beginning of the swinging process, it will affect the gait seriously and may cause the unbalance of a robot.Thus the consideration of bionic reflection based on the endpoint force feedback is a promising research topic, which is the objective of our future work.

    [1] Raibert M, Blankespoor K, Nelson G, et al. BigDog, the rough-terrain quadruped robot [C] ∥Proceedings of the 17th World Congress the International Federation of Automatic Control, Seoul, Korea, 2008: 10822-10825.

    [2] Boaventura T, Semini C, Buchli J, et al. Dynamic torque control of a hydraulic quadruped robot [C] ∥2012 IEEE International Conference on Robotics and Automation (ICRA), Piscataway, NJ, USA, 2012: 1889-94.

    [3] Claudio S. HyQ - design and development of a hydraulically actuated quadruped robot [D]. Genoa: University of Genoa, Italy and Italian Institute of Technology, 2010.

    [4] Focchi M, Boaventura T, Semini C, et al. Torque-control based compliant actuation of a quadruped robot [C] ∥2012 12th IEEE International Workshop on Advanced Motion Control (AMC), Piscataway, NJ, USA, 2012: 6.

    [5] Xuesong S, Yiping Y, Ying Z, et al. Trajectory planning and posture adjustment of a quadruped robot for obstacle striding [C] ∥2011 IEEE International Conference on Robotics and Biomimetics (ROBIO), Piscataway, NJ, USA, 2011: 1924-1929.

    [6] Zucker M, Ratliff N, Stolle M, et al. Optimization and learning for rough terrain legged locomotion [J]. International Journal of Robotics Research, 2011, 30(2): 175-191.

    [7] Jaehwan P, Jong Hyeon P. Impedance control of quadruped robot and its impedance characteristic modulation for trotting on irregular terrain [C] ∥2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2012), Piscataway, NJ, USA, 2012: 175-180.

    [8] Zhang T, Wei Q, Ma H. Position/force control for a single leg of a quadruped robot in an operation space [J]. International Journal of Advanced Robotic Systems, 2013, 10(2): 323-330.

    [9] Buchli J, Kalakrishnan M, Mistry M, et al. Compliant quadruped locomotion over rough terrain [C] ∥Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on, 10-15 Oct. 2009, 2009: 814-820.

    [10] Craig J J. Introduction to Robotics: Mechanics and Control (3rd ed) [M]. Upper Saddle River, NJ: Prentice Hall, 2004.

    [11] Wang L P, Wang J Z, He Y D, et al. A dual-fuzzy pressure compensation based symmetric control scheme of single-rod electro-hydraulic actuator [C] ∥4th International Conference on Manufacturing Science and Technology, ICMST 2013, August 2013, Dubai, United arab emirates. Trans Tech Publications Ltd, 2013: 379-384.

    [12] Wang Lipeng , Wang Junzheng, Wang Shoukun, et al. Strategy of foot trajectory generation for hydraulic quadruped robots gait planning [J]. Journal of Mechanical Engineering, 2013, 49(1): 39-44.

    [13] Takemura H, Deguchi M, Jun U, et al. Slip-adaptive walk of quadruped robot [J]. Robotics and Autonomous Systems, 2005, 53(2): 124-141.

    (Edited by Wang Yuxia)

    10.15918/j.jbit1004-0579.201524.0418

    TP 24 Document code: A Article ID: 1004- 0579(2015)04- 0546- 07

    Received 2014- 03- 15

    Supported by the National High Technology Research and Development Program of China (863 Program) (2011AA041002)

    E-mail: wangjz@bit.edu.cn

    猜你喜歡
    軍政光榮
    光榮升旗手
    少先隊活動(2021年5期)2021-07-22 09:00:08
    開創(chuàng)輝煌
    永遠的光榮
    心聲歌刊(2018年1期)2018-04-17 07:22:57
    “勞動”最光榮
    東北抗聯(lián)的軍政學校
    WU軍政觀察社:在正經(jīng)中爆發(fā)宇宙
    學生天地(2017年1期)2017-05-17 05:48:09
    還有多少光榮正在遠去
    《宋西北邊境軍政文書》印記考釋三則
    西夏學(2016年1期)2016-02-12 02:23:32
    光盤光榮
    新中國大行政區(qū)軍政委員會的緣起與演變
    亚洲国产欧美日韩在线播放| 亚洲自偷自拍图片 自拍| 免费日韩欧美在线观看| 亚洲人成网站在线观看播放| 狂野欧美激情性bbbbbb| 久久99热这里只频精品6学生| 国产一区二区三区av在线| 在线天堂中文资源库| videos熟女内射| 在线观看www视频免费| 制服人妻中文乱码| 午夜av观看不卡| 国产一卡二卡三卡精品| 欧美亚洲日本最大视频资源| 日日摸夜夜添夜夜爱| 日韩av免费高清视频| 欧美日韩视频精品一区| 青草久久国产| 国产成人精品久久二区二区91| 欧美激情极品国产一区二区三区| 日韩 欧美 亚洲 中文字幕| 在线亚洲精品国产二区图片欧美| 午夜福利影视在线免费观看| 亚洲国产中文字幕在线视频| 欧美日韩视频精品一区| 亚洲av欧美aⅴ国产| 人人妻人人澡人人爽人人夜夜| 男女床上黄色一级片免费看| av在线老鸭窝| 飞空精品影院首页| 国产精品99久久99久久久不卡| 高清不卡的av网站| 亚洲精品国产一区二区精华液| 操出白浆在线播放| 久久免费观看电影| 成人亚洲欧美一区二区av| 18禁国产床啪视频网站| 久久人人97超碰香蕉20202| 国产精品熟女久久久久浪| 久久影院123| 国产精品秋霞免费鲁丝片| 大话2 男鬼变身卡| 欧美日本中文国产一区发布| 久热这里只有精品99| 国产一级毛片在线| 热99国产精品久久久久久7| 免费在线观看日本一区| 色婷婷av一区二区三区视频| 欧美亚洲 丝袜 人妻 在线| 波野结衣二区三区在线| 国产不卡av网站在线观看| 久久人人97超碰香蕉20202| 9热在线视频观看99| 少妇猛男粗大的猛烈进出视频| 国产熟女午夜一区二区三区| 国产熟女欧美一区二区| 成年动漫av网址| 性少妇av在线| 亚洲七黄色美女视频| 亚洲,欧美精品.| 丁香六月天网| 国产视频一区二区在线看| 欧美日韩av久久| 99久久综合免费| 久久影院123| 久久久久国产一级毛片高清牌| 国产色视频综合| 亚洲av国产av综合av卡| 大话2 男鬼变身卡| 汤姆久久久久久久影院中文字幕| 日本a在线网址| 在线看a的网站| 久久精品aⅴ一区二区三区四区| 韩国精品一区二区三区| 亚洲欧美激情在线| 欧美性长视频在线观看| 搡老乐熟女国产| 美女主播在线视频| 亚洲五月婷婷丁香| 麻豆av在线久日| 肉色欧美久久久久久久蜜桃| 午夜福利在线免费观看网站| 久久亚洲国产成人精品v| 国产精品麻豆人妻色哟哟久久| 三上悠亚av全集在线观看| 狂野欧美激情性bbbbbb| 一本大道久久a久久精品| 午夜91福利影院| 激情五月婷婷亚洲| 18禁裸乳无遮挡动漫免费视频| 久久国产精品人妻蜜桃| 国产男人的电影天堂91| 国产成人av教育| 男女下面插进去视频免费观看| 丝袜美腿诱惑在线| 夫妻性生交免费视频一级片| 90打野战视频偷拍视频| 国产有黄有色有爽视频| 亚洲欧美一区二区三区黑人| 老汉色av国产亚洲站长工具| 热99久久久久精品小说推荐| 两个人免费观看高清视频| 亚洲午夜精品一区,二区,三区| 各种免费的搞黄视频| 最近中文字幕2019免费版| 在线观看人妻少妇| 国产成人精品久久二区二区免费| 亚洲激情五月婷婷啪啪| 80岁老熟妇乱子伦牲交| 亚洲欧美精品综合一区二区三区| 亚洲国产中文字幕在线视频| 久久天躁狠狠躁夜夜2o2o | 精品人妻1区二区| 少妇猛男粗大的猛烈进出视频| 99精品久久久久人妻精品| 亚洲九九香蕉| 两个人免费观看高清视频| 亚洲精品久久成人aⅴ小说| 亚洲精品久久成人aⅴ小说| 欧美人与善性xxx| 老汉色av国产亚洲站长工具| 亚洲国产日韩一区二区| 精品免费久久久久久久清纯 | 国产av一区二区精品久久| 在线观看人妻少妇| 极品少妇高潮喷水抽搐| 91字幕亚洲| 少妇粗大呻吟视频| 欧美日韩亚洲高清精品| 飞空精品影院首页| 天堂俺去俺来也www色官网| 国产精品99久久99久久久不卡| 国产精品久久久久久精品电影小说| 欧美人与性动交α欧美软件| 亚洲中文日韩欧美视频| 高清不卡的av网站| 一区二区三区四区激情视频| 国产1区2区3区精品| av国产久精品久网站免费入址| 亚洲精品日本国产第一区| 亚洲欧美一区二区三区国产| 9热在线视频观看99| 婷婷成人精品国产| 秋霞在线观看毛片| 天堂俺去俺来也www色官网| 999精品在线视频| 亚洲av综合色区一区| 中文字幕制服av| 欧美av亚洲av综合av国产av| 久久天堂一区二区三区四区| 国产av精品麻豆| 久久久亚洲精品成人影院| 久久免费观看电影| 欧美精品人与动牲交sv欧美| 交换朋友夫妻互换小说| 亚洲成av片中文字幕在线观看| 国产一级毛片在线| 久久精品久久精品一区二区三区| 久久精品久久久久久噜噜老黄| av网站免费在线观看视频| 精品国产一区二区三区久久久樱花| 亚洲,欧美,日韩| 亚洲精品中文字幕在线视频| 久久人人爽av亚洲精品天堂| 男人操女人黄网站| 一二三四社区在线视频社区8| 欧美 日韩 精品 国产| 高清不卡的av网站| 亚洲国产av新网站| 久久99一区二区三区| 午夜影院在线不卡| www日本在线高清视频| 午夜激情久久久久久久| 亚洲av日韩在线播放| 亚洲国产看品久久| 欧美成人精品欧美一级黄| 午夜视频精品福利| 精品国产一区二区三区四区第35| 成人午夜精彩视频在线观看| 免费av中文字幕在线| 国产片内射在线| 黄色a级毛片大全视频| 9191精品国产免费久久| 人人妻人人添人人爽欧美一区卜| 一区二区三区四区激情视频| 在线观看免费高清a一片| 丝袜美足系列| 亚洲欧美中文字幕日韩二区| 一级黄片播放器| 亚洲伊人色综图| 国产亚洲av片在线观看秒播厂| 亚洲欧美色中文字幕在线| 欧美在线黄色| 国产日韩欧美亚洲二区| 国产亚洲av片在线观看秒播厂| 午夜福利视频在线观看免费| 国产淫语在线视频| 亚洲视频免费观看视频| kizo精华| 波野结衣二区三区在线| 超色免费av| 久久天躁狠狠躁夜夜2o2o | 夫妻午夜视频| 精品少妇内射三级| 97人妻天天添夜夜摸| 亚洲精品在线美女| h视频一区二区三区| 国产成人一区二区在线| 人体艺术视频欧美日本| 伊人亚洲综合成人网| 国产一区二区三区av在线| 在线av久久热| 亚洲情色 制服丝袜| 日日爽夜夜爽网站| 高清欧美精品videossex| 侵犯人妻中文字幕一二三四区| 国产高清视频在线播放一区 | a 毛片基地| 性色av一级| 国产成人系列免费观看| 欧美人与善性xxx| 精品免费久久久久久久清纯 | 国产精品一区二区在线观看99| 香蕉丝袜av| 十八禁人妻一区二区| 精品久久久久久电影网| 亚洲情色 制服丝袜| 男男h啪啪无遮挡| 欧美日韩av久久| 一区二区三区激情视频| 天天躁夜夜躁狠狠躁躁| 久久国产精品男人的天堂亚洲| 另类亚洲欧美激情| 国产精品.久久久| 一级片免费观看大全| 极品人妻少妇av视频| 多毛熟女@视频| 欧美日韩国产mv在线观看视频| 国产精品久久久久久精品电影小说| 久久人人爽人人片av| 中文字幕制服av| 日韩电影二区| 国产伦理片在线播放av一区| 免费高清在线观看日韩| 欧美亚洲 丝袜 人妻 在线| 日韩一卡2卡3卡4卡2021年| 国产高清videossex| 美女福利国产在线| 亚洲欧美精品综合一区二区三区| 韩国高清视频一区二区三区| 嫩草影视91久久| 人妻 亚洲 视频| 一级毛片黄色毛片免费观看视频| 久久精品成人免费网站| 桃花免费在线播放| 中文字幕av电影在线播放| 久久国产精品影院| 免费在线观看影片大全网站 | 中文字幕人妻丝袜一区二区| 国产成人精品久久久久久| 自拍欧美九色日韩亚洲蝌蚪91| 又黄又粗又硬又大视频| 蜜桃国产av成人99| 男女无遮挡免费网站观看| 性高湖久久久久久久久免费观看| 久久人妻熟女aⅴ| 亚洲美女黄色视频免费看| 亚洲免费av在线视频| 黑人欧美特级aaaaaa片| 日本欧美国产在线视频| 每晚都被弄得嗷嗷叫到高潮| 欧美97在线视频| 成年人免费黄色播放视频| 亚洲七黄色美女视频| 日韩伦理黄色片| 久久久精品94久久精品| 丝袜美足系列| 亚洲三区欧美一区| 搡老岳熟女国产| 精品少妇黑人巨大在线播放| 久久精品国产亚洲av高清一级| 午夜av观看不卡| 欧美日韩亚洲国产一区二区在线观看 | 欧美人与性动交α欧美软件| 一级黄片播放器| 亚洲欧美色中文字幕在线| 在线精品无人区一区二区三| 国产成人精品久久久久久| 亚洲色图 男人天堂 中文字幕| 亚洲国产欧美在线一区| 国产av国产精品国产| 国产精品99久久99久久久不卡| 日本91视频免费播放| 午夜福利,免费看| 丝袜人妻中文字幕| 一级片'在线观看视频| 王馨瑶露胸无遮挡在线观看| 欧美日韩精品网址| 国产黄色视频一区二区在线观看| 中文字幕精品免费在线观看视频| 一本综合久久免费| 亚洲国产最新在线播放| 久久99热这里只频精品6学生| 欧美另类一区| 久久久久精品国产欧美久久久 | a 毛片基地| 9191精品国产免费久久| netflix在线观看网站| 美女福利国产在线| 日本av手机在线免费观看| 成人18禁高潮啪啪吃奶动态图| 少妇的丰满在线观看| 精品久久蜜臀av无| 人妻人人澡人人爽人人| 男人添女人高潮全过程视频| 成人亚洲欧美一区二区av| 中文字幕人妻熟女乱码| 黄片播放在线免费| 97精品久久久久久久久久精品| 国产又爽黄色视频| 捣出白浆h1v1| 后天国语完整版免费观看| 日本猛色少妇xxxxx猛交久久| 国产99久久九九免费精品| 亚洲熟女毛片儿| 在线观看一区二区三区激情| 黄色视频不卡| 欧美日韩视频精品一区| 少妇人妻久久综合中文| 女警被强在线播放| av国产久精品久网站免费入址| 天天躁夜夜躁狠狠躁躁| 五月开心婷婷网| 欧美人与性动交α欧美精品济南到| 一区二区三区四区激情视频| 亚洲精品国产区一区二| 国产一区二区三区综合在线观看| 国产黄色免费在线视频| 亚洲精品国产色婷婷电影| 亚洲专区国产一区二区| 久久久欧美国产精品| 91国产中文字幕| 丁香六月欧美| 亚洲av成人不卡在线观看播放网 | 久久久久久久大尺度免费视频| 老汉色av国产亚洲站长工具| 亚洲欧洲国产日韩| 99久久综合免费| av在线老鸭窝| 交换朋友夫妻互换小说| 一级毛片电影观看| 国产亚洲av高清不卡| 人人妻人人爽人人添夜夜欢视频| 亚洲天堂av无毛| 在线观看国产h片| 久久人人爽人人片av| 国产欧美日韩一区二区三 | 国产免费现黄频在线看| 成年美女黄网站色视频大全免费| 天天添夜夜摸| 亚洲 国产 在线| 老熟女久久久| 久久99一区二区三区| 成人国语在线视频| 中文字幕制服av| 亚洲专区中文字幕在线| 国产精品九九99| 99久久精品国产亚洲精品| 考比视频在线观看| 久热这里只有精品99| 亚洲av欧美aⅴ国产| 一级毛片电影观看| 国产一级毛片在线| 99精国产麻豆久久婷婷| 日韩一卡2卡3卡4卡2021年| 亚洲欧美清纯卡通| 亚洲国产看品久久| a级毛片在线看网站| 免费av中文字幕在线| 精品少妇一区二区三区视频日本电影| 国产精品国产av在线观看| 欧美精品一区二区免费开放| 国产av国产精品国产| 狠狠精品人妻久久久久久综合| 午夜福利在线免费观看网站| 一本—道久久a久久精品蜜桃钙片| 五月天丁香电影| 一区福利在线观看| 欧美精品人与动牲交sv欧美| 午夜久久久在线观看| 国产精品99久久99久久久不卡| 国产精品香港三级国产av潘金莲 | 高清av免费在线| 亚洲午夜精品一区,二区,三区| 尾随美女入室| 又大又黄又爽视频免费| 国产成人精品久久二区二区免费| 成年av动漫网址| 国产高清不卡午夜福利| 久久精品久久久久久噜噜老黄| 老司机深夜福利视频在线观看 | 免费黄频网站在线观看国产| 久久99精品国语久久久| 真人做人爱边吃奶动态| 97人妻精品一区二区三区麻豆 | 国产成人欧美在线观看| 变态另类成人亚洲欧美熟女| 国产成年人精品一区二区| 人人妻人人澡人人看| 女性被躁到高潮视频| 久久精品影院6| bbb黄色大片| 99国产精品一区二区三区| 婷婷六月久久综合丁香| 一区二区三区精品91| 搡老熟女国产l中国老女人| 欧美在线黄色| 国产欧美日韩一区二区精品| 搞女人的毛片| 久久久久久久久久黄片| xxxwww97欧美| 亚洲成人免费电影在线观看| 久久香蕉国产精品| 国产v大片淫在线免费观看| 熟女电影av网| 天堂√8在线中文| 免费在线观看亚洲国产| 色婷婷久久久亚洲欧美| 国产精品一区二区三区四区久久 | 免费看日本二区| 国产一区二区三区视频了| 搡老妇女老女人老熟妇| 国产高清videossex| 12—13女人毛片做爰片一| 日韩视频一区二区在线观看| 99热这里只有精品一区 | 国产私拍福利视频在线观看| 国产色视频综合| 亚洲av片天天在线观看| 日韩 欧美 亚洲 中文字幕| 国产成人影院久久av| 黄片播放在线免费| 久久欧美精品欧美久久欧美| 欧美成人性av电影在线观看| 中文在线观看免费www的网站 | 婷婷精品国产亚洲av| 中文字幕人成人乱码亚洲影| 亚洲国产精品sss在线观看| 曰老女人黄片| 一级毛片女人18水好多| 99久久综合精品五月天人人| 国产成人一区二区三区免费视频网站| 淫秽高清视频在线观看| 亚洲aⅴ乱码一区二区在线播放 | 999久久久精品免费观看国产| 婷婷精品国产亚洲av| 麻豆成人av在线观看| 国产精品98久久久久久宅男小说| 国产蜜桃级精品一区二区三区| а√天堂www在线а√下载| 久久午夜亚洲精品久久| x7x7x7水蜜桃| 一区二区三区国产精品乱码| 又紧又爽又黄一区二区| 精华霜和精华液先用哪个| 欧美黄色片欧美黄色片| 满18在线观看网站| 美女 人体艺术 gogo| 日韩大尺度精品在线看网址| 黑人操中国人逼视频| 夜夜看夜夜爽夜夜摸| 精品国产一区二区三区四区第35| 国产精品自产拍在线观看55亚洲| 免费看日本二区| 女性被躁到高潮视频| 99久久久亚洲精品蜜臀av| 一a级毛片在线观看| 日本a在线网址| 琪琪午夜伦伦电影理论片6080| 制服诱惑二区| 中文字幕精品免费在线观看视频| 1024香蕉在线观看| 国产成人一区二区三区免费视频网站| 亚洲av五月六月丁香网| 变态另类丝袜制服| 亚洲人成电影免费在线| 欧美乱码精品一区二区三区| 久久精品国产亚洲av香蕉五月| 99久久无色码亚洲精品果冻| 日本一本二区三区精品| 熟女电影av网| 亚洲第一青青草原| 成年人黄色毛片网站| 脱女人内裤的视频| 日韩成人在线观看一区二区三区| 亚洲久久久国产精品| 无人区码免费观看不卡| 天天一区二区日本电影三级| 亚洲熟妇中文字幕五十中出| 亚洲av成人一区二区三| 亚洲aⅴ乱码一区二区在线播放 | 日韩精品免费视频一区二区三区| 国产在线精品亚洲第一网站| 视频区欧美日本亚洲| 超碰成人久久| 久久精品成人免费网站| 一区二区三区高清视频在线| 首页视频小说图片口味搜索| 国产野战对白在线观看| 国产精品永久免费网站| 日韩三级视频一区二区三区| 搞女人的毛片| 日韩大码丰满熟妇| 好男人电影高清在线观看| 欧美日韩亚洲国产一区二区在线观看| 亚洲男人天堂网一区| 久久久久久久久中文| 国产成人精品无人区| 在线观看66精品国产| av福利片在线| 美女免费视频网站| 成熟少妇高潮喷水视频| 日本精品一区二区三区蜜桃| 欧美乱码精品一区二区三区| 18禁裸乳无遮挡免费网站照片 | 午夜免费激情av| 大型黄色视频在线免费观看| 欧美一级毛片孕妇| 美女高潮喷水抽搐中文字幕| 韩国av一区二区三区四区| 在线观看午夜福利视频| www.自偷自拍.com| 精品久久久久久成人av| 长腿黑丝高跟| 黄色毛片三级朝国网站| 国产成人精品久久二区二区91| 久久精品91蜜桃| 亚洲人成伊人成综合网2020| 男女做爰动态图高潮gif福利片| 一级毛片女人18水好多| 两个人视频免费观看高清| 精品国产亚洲在线| 国产区一区二久久| 亚洲精品在线观看二区| 一本久久中文字幕| 满18在线观看网站| 国产1区2区3区精品| 男女下面进入的视频免费午夜 | 成人18禁在线播放| 色在线成人网| 精品一区二区三区四区五区乱码| 色哟哟哟哟哟哟| 男人的好看免费观看在线视频 | 黄色成人免费大全| 久久久久久久精品吃奶| 黑人操中国人逼视频| 国产一区二区在线av高清观看| 一本精品99久久精品77| 日本免费一区二区三区高清不卡| 亚洲国产欧美一区二区综合| 亚洲午夜理论影院| 日本熟妇午夜| 国产高清激情床上av| 男人操女人黄网站| 欧美日本视频| 视频区欧美日本亚洲| 级片在线观看| 国产av在哪里看| 亚洲精品中文字幕一二三四区| 在线播放国产精品三级| 身体一侧抽搐| 欧美性猛交╳xxx乱大交人| 老司机福利观看| 黄色 视频免费看| 亚洲av熟女| 国产精品野战在线观看| 美女大奶头视频| 亚洲成av人片免费观看| 真人做人爱边吃奶动态| 岛国视频午夜一区免费看| xxx96com| 国产精品二区激情视频| 观看免费一级毛片| 午夜福利一区二区在线看| 欧洲精品卡2卡3卡4卡5卡区| 男女做爰动态图高潮gif福利片| 夜夜躁狠狠躁天天躁| 视频区欧美日本亚洲| 亚洲自偷自拍图片 自拍| cao死你这个sao货| 亚洲成人免费电影在线观看| 操出白浆在线播放| 97人妻精品一区二区三区麻豆 | 50天的宝宝边吃奶边哭怎么回事| 波多野结衣高清作品| 我的亚洲天堂| 国产精品九九99| 国产伦一二天堂av在线观看| 男女之事视频高清在线观看| 亚洲一区中文字幕在线| 亚洲五月天丁香| 在线观看www视频免费| 在线观看免费午夜福利视频| 久久国产乱子伦精品免费另类| 亚洲精品国产精品久久久不卡| 成人三级做爰电影| 久久国产精品男人的天堂亚洲| 人妻久久中文字幕网| 国内揄拍国产精品人妻在线 | 久久国产精品人妻蜜桃| 欧美黑人欧美精品刺激| 一级毛片高清免费大全| 免费观看人在逋| 欧美 亚洲 国产 日韩一| 精品免费久久久久久久清纯|