• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of dual annealing upon photovoltaic properties of polymer solar cells based on poly(3-hexylthiophene)

    2015-04-22 02:33:20LIChang李暢XUEWei薛唯ZHANGTing章婷YUZhinong喻志農(nóng)JIANGYurong蔣玉蓉

    LI Chang(李暢), XUE Wei(薛唯), ZHANG Ting(章婷), YU Zhi-nong(喻志農(nóng)), JIANG Yu-rong(蔣玉蓉)

    (School of Optoelectronics, Beijing Institute of Technology, Beijing 100081, China)

    ?

    Effect of dual annealing upon photovoltaic properties of polymer solar cells based on poly(3-hexylthiophene)

    LI Chang(李暢), XUE Wei(薛唯), ZHANG Ting(章婷), YU Zhi-nong(喻志農(nóng)), JIANG Yu-rong(蔣玉蓉)

    (School of Optoelectronics, Beijing Institute of Technology, Beijing 100081, China)

    A dual annealing method comprised of toluene vapor treatment and post thermal annealing was employed to fabricate polymer solar cells (PSCs) based on poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) film. It is found that the P3HT crystallinity and chain ordering can be dramatically enhanced by this annealing process as compared with the films treated merely with solvent vapor annealing, which is verified by a higher X-ray diffraction intensity peak and clearly visible fibrillar crystalline domains of P3HT. The result suggests that a favorable equilibrium condition was established by dual annealing in the morphology reorganization. Due to the morphological improvement of active layer, the dually annealed PSCs show better overall performances, with a mean power conversion efficiency of 4.06% and an increase in each electrical parameter, than any solely annealed ones.

    dual annealing; solvent vapor annealing; thermal annealing; polymer solar cells

    Polymer solar cells (PSCs) with a bulk heterojunctions(BHJs) active layer have attracted significant interest, owing to its unique advantages of low cost and ease of large-area processing[1-4]. Of all the polymeric systems reported in the literature, poly(3-hexylthiophene)(P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) are widely-used electron donor and acceptor for the BHJ polymer solar cells, respectively[5-7]. The ideal BHJ morphology contains nanoscale interpenetrating networks with charge-separating heterojunctions throughout the photoactive layer[8-9]. More specifically, the molecular packing of both the acceptor and donor within their respective domains must be optimized for maximum charge-carrier mobility and exciton transport. In addition, the nanophase segregated heterojunction domain size must be less than the exciton diffusion length in order to keep efficient conversion of adsorbed photons into electrical current[10].

    Since the power conversion efficiency (PCE) of solar cells based on the P3HT-fullerene system depends strongly on processing conditions[11], several strategies have been used to manipulate the morphology of polymer-fullerene BHJs, including film deposition conditions and post processing techniques, such as slow growth[12], thermal annealing[13-15]and solvent vapor annealing[16-17]. Although the protocols differ significantly, the maximum PCE values reported for the various strategies are comparably 4%-5%[18]. It is the general belief that solvent vapor annealing provides potential advantages over thermal annealing, namely selective annealing of individual components and more controlled nanoscale phase segregation[17,19-20], whereas thermal annealing is prone to lead to degradation of conjugated polymers and result in large scale phase segregation[21-22]. Previous studies have showed that a successive annealing process consisting of a solvent treatment and post thermal annealing was effective in improving the efficiency of the device, yet toluene might not be a favorable choice in the solvent annealing process due to its poor solubility to PCBM[23]. In this work, a combinative annealing process were introduced to the device fabrication procedure, defined as “dual annealing”, applying toluene to the solvent vapor annealing[24]and resulting in PCE up to 4.0%. The main objective of this study is to examine the integrated effect of dual annealing upon the morphology of slow drying-cast P3HT:PCBM active layer, by monitoring the extent of crystalline within the domains of each component.

    1 Experimental

    All the BHJ layers in this work were prepared either on commercially available indium-tin oxide (ITO) coated glass with a layer thickness of ca.140 nm and a sheet resistance of 15 Ω/□ or on glass microscope slides. Substrates were ultrasonicated in acetone, isopropanol and deionized water sequentially and dried in a nitrogen flow, then exposed to ozone for 10 min under UV irradiation. The blend solutions were mainly made by dissolving 10 mg of P3HT (Rieke Metals,Mw≈70 000) and 84 mg of PCBM (Solenne BV) in 1 ml of 1,2-dichlorobenzene (ODCB), and then stirred at 50 ℃ overnight before use.

    For device fabrication,the cleaned ITO was spin-coated with a 40-nm-thick of poly(3,4-ethylene-dioxythiophene):polystyrene (PEDOT:PSS, Clevios P VP Al 4083). The PEDOT:PSS coated samples were then heat-treated at 120 ℃ for 20 min and then transferred into a nitrogen glove box for the remainder of the device fabrication. The active layer of the solar cells were spin-coated at 800 r/min for 80 s to allow the casting films to dry slowly, where a dramatic change in the color of the film can be observed when it is transformed from the liquid (orange) to the solid (dark purple) phase[12]. For solvent annealing, the solid films were then placed in a covered glass crystallizing dish filled with saturated toluene vapor. Afterward, the samples were moved into a high vacuum chamber (ca. 5×10-4Pa), where 150 nm Al electrode were vapor-deposited through a mask leaving six solar cells with an active area of 0.09 cm2. After metal deposition, the samples were either directly measured or annealed on a hotplate at 130 ℃ for 20 min for post annealing in a glove box.

    The current density-voltage (J-V) characteristics were measured using a Keithley 2612 source measurement unit under the illumination of 100 mW/cm2from a 500 W xenon lamp with AM1.5 filter. The light intensity was calibrated with a Si reference cell (Oriel). The X-ray diffraction (XRD) patterns of the P3HT:PCBM films were recorded by a Bruker D8 Advance with Cu Kα(λ=0.154 nm). The surface morphology of the blend films was examined using a multimode scanning probe microscope system (digital instruments) operated in the tapping mode. All the devices and samples were characterized under ambient conditions at room temperature.

    2 Results and discussion

    2.1 XRD peak analysis

    The crystallinity of conjugated polymer and fullerene plays an important role in determining the optoelectrical characteristics of the devices[10]. To investigate the molecular rearrangement during annealing process, we studied the XRD patterns of P3HT:PCBM blend films annealed with different methods, as shown in Fig.1. To exclude the impact of solvent evaporation time on the resulting BHJ thin film morphology[17], all sample films were spin-cast using the “slow dried” method[18], and the XRD pattern of the pristine blend film is also plotted for comparison. The diffraction intensity peak at ca.2θ=5.4° represents first-order reflection (100) of P3HT, which is associated with the crystallographic direction along the alkyl side chains (a axis)[25-26]. Since the relative intensity of the peak is correlated with polymer crystallinity, the crystallinity within P3HT domains induced by dual annealing (DA), where toluene solvent vapor annealing (SA) employed prior to thermal annealing (PA), is superlative as compared with the solely-annealed samples. Meanwhile, both thermal annealing and solvent vapor annealing can induce the formation of crystalline P3HT. It is worth noting that there are no signs of crystalline PCBM under any treatment in the scanning scale of 3°-25° (2θ), which indicates that PCBM could not form ordered crystals in the presence of a large proportion of copolymers.

    Fig.1 XRD patterns of blend films treated by different annealing processes

    In addition, the diffraction intensity peak of thermal treated films shifts “blue” slightly, as compared to the solvent annealed films. Consequently the interlayer spacing for thermal treated films, regardless of solvent annealing, is determined to be 1.65 nm according to Bragg’s law, which indicates that toluene solvent annealing tends to “compress” the interlayer in a lamellar structure as shown in Fig.1. To further increase solvent annealing duration from 20 min to 1 h, the angle between the incident and scattered X-ray wavevectors is also increased from 5.37° to 5.48°, corresponding to an interlayer spacing of 1.62 nm and 1.60 nm respectively. These results suggest that in a dual annealing process, thermal annealing possibly possesses a dominant position in improving the ordering of the alkyl chains, and leads to a more extended conformation of the alkyl chains and a larger layer spacing[10]. Besides, the integrated effect of dual annealing could further optimize the morphology of blend films to a higher level. The improvement of the crystallinity and main chain order is deemed to enhance device photovoltaic characteristics[26].

    2.2 Devices fabrication and characteristics

    Polymer solar cells based on P3HT:PCBM were fabricated with different treatments and the measured device parameters are summarized in Tab.1. Due to the inferior performance with the PCE less than 1%, the as-product device will not be discussed here. Fig. 2 shows the statistical data for device parameters derived from six cells of each type. As expected, the maximum power conversion efficiency of 4.12% is attained for the dual annealed device, where the thermal annealing section was employed after metal electrode deposition. A nearly identical checkmark-like trend in every single parameter has been observed for the devices treated with merely post thermal annealing, solvent annealing and a dual annealing process. In comparison with the solar cell underwent sole annealing treatment, the dual annealed device demonstrated an improvement in overall photovoltaic characteristics, which agrees well with XRD spectra. To elucidate this observation, the series resistance (RS) of devices were calculated by fitting the J-V curves to the Shockley equation[27], as listed in Tab.1. TheRSof the cells with dual annealing treatment was the smallest amongst all devices. Given that a smallerRSis associated with higher charge mobility, which can be ascribed to better crystalline polymer within the blend films[28], these values are thus consistent with device photovoltaic characteristics and XRD results.

    Fig.2 Device parameters derived from six cells under post annealing (PA), solvent annealing (SA), dual annealing (DA) and tri-annealing (TA), respectively

    Tab.1 Cell characteristics measured under 100 mW/cm2illumination

    TreatmentVOC/VJSC/(mA·cm-2)FFPCE/%RS/(Ω·cm2)Postannealing0 6310 200 593 784 8Solventannealing0 589 400 472 585 9Dualannealing0 6310 760 604 064 2SA+Prea+PA(TA)0 6211 080 553 755 1

    aPre-annealing

    Moreover, in order to better understand the role of thermal annealing in the dual annealing process, an extra heat-treatment was added to the fabrication procedure right after solvent annealing, referred to as “pre-annealing”. The output characteristics of these tri-annealed devices are also exhibited in Fig. 2. The PCE is reduced slightly from 4.06% to 3.75%, as compared with the dual annealed one. This value is almost equivalent to the cells treated with only post annealing, which suggests that the equilibrium condition of optimization established by dual annealing in the morphology reorganization, was not reserved anymore. Excessive introduction of thermal annealing would lead to unfavorable coarsening of the nanoscale phase segregation, resulting in device performance deterioration[10].

    2.3 Surface morphology of blend films

    To further investigate the morphological changes induced by different annealing processes, the mesoscale film morphology in the lateral direction of the blend films has been visualized using tapping mode atomic force microscopy (TM-AFM). The film processing conditions for AFM images were kept the same as those in device fabrication for accurate comparison. Fig. 3 shows typical TM-AFM phase images of P3HT:PCBM blend films treated with thermal, toluene vapor, and dual annealing. It has been found that the surface topography of the thermally annealed film is significantly rougher than the solvent annealed film; the former films have a root mean square roughness (Rrms) of 1.3 nm, compared to 0.6 nm for the latter ones. The rough surface can be deemed as a “signature” of polymer self-organization induced by thermal annealing[28-29]. Dual annealing results in a moderately rough surface withRrmsof 0.8 nm, however, the fibrillar crystalline domains of P3HT, with a lamellar periodicity of approximately 30 nm are clearly visible only in the dual annealed films (Fig. 3c), whereas fragmentary nanofibrillar domains are observed in the other annealed films (Fig. 3a and Fig.3b). This difference in film morphology suggests that the enhanced molecular mobility that a successive dual annealing afford enables the molecules to reach a more thermodynamically favorable morphology[18]. As P3HT self-organizes to fibrillar highly crystalline domains with periodicity close to twice the exciton diffusion length[12,30], the mobile P3HT chains force amorphous PCBM to form nano-clusters among these ordered structures during annealing process, hence a percolated network of crystalline P3HT and PCBM takes shape,without allowing for large scale disordered regions with harbor structural defects like chain ends and folds and tie segments[31](Fig. 2b). Therefore, the device performance improvement through dual annealing can be explained by film morphology rearrangement during this processing series.

    Fig.3 TM-AFM phase images for blend films fabricated using different annealing processes

    3 Conclusion

    In summary, polymer solar cells fabricated with different annealing processes were examined. The solar cells which underwent the dual annealing comprised of solvent vapor annealing and post thermal annealing, exhibits high output characteristics with enhancedJSC,VOCand FF. The maximum power conversion efficiency of 4.12% is obtained from dual annealed device, which is higher than all of the solely annealed solar cells in this case. The improved performance were attributed to the improvement in P3HT crystallinity and chain ordering, which is resulted from the integrated effect of dual annealing, by taking XRD analysis and surface morphologies into consideration.

    [1] Hoppe H, Sariciftci N S. Morphology of polymer/fullerene bulk heterojunction solar cells[J]. J Mater Chem, 2006,16(1):45-61.

    [2] Brabec C J, Durrant J R. Solution-processed organic solar cells[J]. MRS Bull, 2008,33(7):670-675.

    [3] Thompson B C, Frechet J M J. Polymer-fullerene composite solar cells[J]. Angew Chem Int Ed, 2008,47(1):58-77.

    [4] Service R F. Outlook brightens for plastic solar cells[J]. Science, 2011,332(6027):293-303.

    [5] Li G, Shrotriya V, Huang J, et al. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends[J]. Nat Mater, 2005,4(11):864-868.

    [6] Ma W, Yang C, Gong X, et al. Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology[J]. Adv Funct Mater, 2005,15(10):1617-1622.

    [7] Reyes-Reyes M, Kim K, Carroll D L. High-efficiency photovoltaic devices based on annealed poly(3-hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)C61 blends[J]. Appl Phys Lett, 2005,87(8):083506.

    [8] Tang C W. Two-layer organic photovoltaic cell[J]. Appl Phys Lett, 1986,48(2):183-185.

    [9] Yu G, Heeger A J. Charge separation and photovoltaic conversion in polymer composites with internal donor/acceptor heterojunctions[J]. J Appl Phys, 1995,78(7):4510-4515.

    [10] Verploegen E, Mondal R, Bettinger C J, et al. Effects of thermal annealing upon the morphology of polymer-fullerene blends[J]. Adv Funct Mater, 2010,20(20):3519-3529.

    [11] Yang X, Loos J. Toward high-performance polymer solar cells: the importance of morphology control[J]. Macromolecules, 2007,40(5):1353-1362.

    [12] Li G, Yao Y, Yang H, et al. “Solvent annealing” effect in polymer solar cells based on poly(3-hexylthiophene) and methanofullerenes[J]. Adv Funct Mater, 2007,17(10):1636-1644.

    [13] Bertho S, Janssen G, Cleij T J, et al. Effect of temperature on the morphological and photovoltaic stability of bulk heterojunction polymer:fullerene solar cells[J]. Sol Energy Mater Sol Cells, 2008,92(7):753-760.

    [14] Kim Y, Choulis S A, Nelson J, et al. Device annealing effect in organic solar cells with blends of regioregular poly(3-hexylthiophene) and soluble fullerene[J]. Appl Phys Lett, 2005,86(6):063502.

    [15] Al-Ibrahim M, Ambacher O, Sensfuss S, et al. Effects of solvent and annealing on the improved performance of solar cells based on poly(3-hexylthiophene):fullerene[J]. Appl Phys Lett, 2005,86(20):201120.

    [16] Miller S, Fanchini G, Lin Y Y, et al. Investigation of nanoscale morphological changes in organic photovoltaics during solvent vapor annealing[J]. J Mater Chem, 2008,18(3),306-312.

    [17] Verploegen E, Miller C E, Schmidt K, et al. Manipulating the morphology of P3HT-PCBM bulk heterojunction blends with solvent vapor annealing[J]. Chem Mater, 2012,24(20),3923-3931.

    [18] Campoy-Quiles M, Ferenczi T, Agostinelli T, et al. Morphology evolution via self-organization and lateral and vertical diffusion in polymer:fullerene solar cell blends[J]. Nat Mater, 2008,7(2):158-164.

    [19] Vogelsang J, Brazard J, Adachi T, et al. Watching the annealing process one polymer chain at a time[J]. Angew Chem Int Ed, 2011,50(10):2257-2261.

    [20] Zhang T, Deng Y, Johnson S, et al. Highly efficient blue polyfluorene-based polymer light-emitting diodes through solvent vapour annealing[J]. J Phys D Appl Phys, 2009,42(14):145104.

    [21] Tang H W, Lu G H, Li L G, et al. Precise construction of PCBM aggregates for polymer solar cells via multi-step controlled solvent vapor annealing[J]. J Mater Chem, 2010,20(4):683-688.

    [22] Savenije T J, Kroeze J E, Yang X N, et al. The effect of thermal treatment on the morphology and charge carrier dynamics in a polythiophene-fullerene bulk heterojunction[J]. Adv Funct Mater, 2005,15(8):1260-1266.

    [23] Zhao Y, Guo X Y, Xie Z Y, et al. Solvent vapor-induced self assembly and its influence on optoelectronic conversion of poly(3-hexylthiophene):methanofullerene bulk heterojunction photovoltaic cells[J]. J Appl Polym Sci, 2009,111(4):1799-1804.

    [24] Li Chang, Zhang Ting, Xue Wei. Enhancement of polymer crystallinity in high performance poly(3-hexylthiophene)-based solar cells via solvent vapor pretreatment-assisted thermal annealing[J]. Chinese Journal of Luminescence, 2014, 35(2):202-206. (in Chinese)

    [25] Yoshino K, Yin X H, Morita S, et al. Enhanced photoconductivity of C60 doped poly(3-alkylthiophene)[J]. Solid State Commun, 1993,85(2):85-88.

    [26] Kittichungchit V, Hori T, Moritou H, et al. Effect of solvent vapor treatment on photovoltaic properties of conducting polymer/C60 interpenetrating heterojunction structured organic solar cell[J]. Thin Solid Films, 2009,518(2):518-521.

    [27] Kawano K, Sakai J, Yahiro M, et al. Effect of solvent on fabrication of active layers in organic solar cells based on poly(3-hexylthiophene) and fullerene derivatives[J]. Sol Energy Mater Sol Cells, 2009,93(4):514-518.

    [28] Yang F, Shtein M, Forrest S R, Controlled growth of a molecular bulk heterojunction photovoltaic cell[J]. Nat Mater, 2005,4(1):37-41.

    [29] Wu Z W, Song T, Jin Y Z, et al. High performance solar cell based on ultra-thin poly(3-hexylthiophene):fullerene film without thermal and solvent annealing[J]. Appl Phys Lett, 2011,99(14):143306.

    [30] Chu C W, Yang H, Hou W J, et al. Control of the nanoscale crystallinity and phase separation in polymer solar cells[J]. Appl Phys Lett, 2008,92(10):103306.

    [31] Brinkmann M, Wittmann J C. Orientation of regioregular poly(3-hexylthiophene) by directional solidification: a simple method to reveal the semicrystalline structure of a conjugated polymer[J]. Adv Mater, 2006,18(7):860-863.

    (Edited by Cai Jianying)

    10.15918/j.jbit1004-0579.201524.0416

    O 43; O 469 Document code: A Article ID: 1004- 0579(2015)04- 0534- 06

    Received 2014- 02- 18

    Supported by the National Natural Science Foundation of China (10904002); the Excellent Young Scholars Research Fund of Beijing Institute of Technology (2009Y0408); the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry (3040036821101)

    E-mail: zhangting@bit.edu.cn

    国产精品 欧美亚洲| 欧美精品人与动牲交sv欧美| 亚洲三区欧美一区| 五月天丁香电影| 黑人欧美特级aaaaaa片| 成人亚洲精品一区在线观看| 亚洲成人手机| 亚洲精品日韩在线中文字幕| 亚洲图色成人| 国产精品 欧美亚洲| 欧美日韩成人在线一区二区| 美国免费a级毛片| 亚洲熟女精品中文字幕| 欧美+日韩+精品| 97人妻天天添夜夜摸| 日韩制服骚丝袜av| 国产成人精品在线电影| 巨乳人妻的诱惑在线观看| 秋霞在线观看毛片| 一级a爱视频在线免费观看| 咕卡用的链子| 一区二区三区乱码不卡18| 9色porny在线观看| 国产成人免费无遮挡视频| 啦啦啦在线免费观看视频4| 一区二区三区四区激情视频| 人妻人人澡人人爽人人| 韩国高清视频一区二区三区| 久久精品久久久久久久性| 如何舔出高潮| 老汉色∧v一级毛片| 麻豆乱淫一区二区| 国产乱来视频区| 中文字幕精品免费在线观看视频| 午夜免费鲁丝| 亚洲欧美中文字幕日韩二区| 丁香六月天网| 岛国毛片在线播放| 国产精品国产三级专区第一集| 国产精品国产三级专区第一集| 国产精品av久久久久免费| 国产探花极品一区二区| 人妻一区二区av| 亚洲精品一二三| 新久久久久国产一级毛片| 成人二区视频| 天堂俺去俺来也www色官网| 麻豆精品久久久久久蜜桃| 一级黄片播放器| 不卡av一区二区三区| 嫩草影院入口| 美女福利国产在线| 多毛熟女@视频| 美女xxoo啪啪120秒动态图| 久久97久久精品| 春色校园在线视频观看| 亚洲精品成人av观看孕妇| 性色av一级| 18禁观看日本| 在线观看一区二区三区激情| 自线自在国产av| 久久久久久久大尺度免费视频| 女人高潮潮喷娇喘18禁视频| 精品亚洲成a人片在线观看| 亚洲av在线观看美女高潮| 成人午夜精彩视频在线观看| 女性生殖器流出的白浆| 看十八女毛片水多多多| 免费大片黄手机在线观看| 久久久久久久久久久久大奶| 亚洲在久久综合| 成人午夜精彩视频在线观看| 国产欧美亚洲国产| 午夜福利一区二区在线看| 如何舔出高潮| 免费看av在线观看网站| 人妻少妇偷人精品九色| 成人二区视频| 久久人人97超碰香蕉20202| 伊人久久大香线蕉亚洲五| 亚洲国产欧美在线一区| 中国国产av一级| 在线观看免费高清a一片| 亚洲成人手机| 看免费av毛片| av女优亚洲男人天堂| 一区二区av电影网| 精品国产一区二区久久| 有码 亚洲区| 性色avwww在线观看| 午夜福利视频精品| 亚洲欧美一区二区三区久久| 日本av手机在线免费观看| 好男人视频免费观看在线| 免费看av在线观看网站| 亚洲第一av免费看| 午夜免费观看性视频| 看免费成人av毛片| 中文字幕另类日韩欧美亚洲嫩草| 汤姆久久久久久久影院中文字幕| 欧美日韩成人在线一区二区| 亚洲av成人精品一二三区| 成年女人毛片免费观看观看9 | 观看av在线不卡| 一级毛片 在线播放| 我的亚洲天堂| 999久久久国产精品视频| 伦理电影大哥的女人| 亚洲av成人精品一二三区| 9191精品国产免费久久| 成年女人在线观看亚洲视频| 亚洲精品,欧美精品| 日本爱情动作片www.在线观看| 国产精品久久久久久久久免| 你懂的网址亚洲精品在线观看| 国产一区亚洲一区在线观看| 国产日韩欧美视频二区| 国产一区二区激情短视频 | 国产成人91sexporn| 免费av中文字幕在线| 王馨瑶露胸无遮挡在线观看| 国产精品99久久99久久久不卡 | 精品一区在线观看国产| 亚洲欧洲精品一区二区精品久久久 | 黄色视频在线播放观看不卡| 男女午夜视频在线观看| 午夜免费观看性视频| 亚洲人成网站在线观看播放| 大香蕉久久网| 国产欧美亚洲国产| 精品国产露脸久久av麻豆| 久久99精品国语久久久| 一级毛片 在线播放| 久久综合国产亚洲精品| 成年av动漫网址| videosex国产| 男女边吃奶边做爰视频| 国产无遮挡羞羞视频在线观看| 十八禁网站网址无遮挡| 久久久精品国产亚洲av高清涩受| 成年人午夜在线观看视频| 18+在线观看网站| 电影成人av| 有码 亚洲区| 麻豆精品久久久久久蜜桃| 欧美日本中文国产一区发布| 又大又黄又爽视频免费| 咕卡用的链子| 亚洲,欧美精品.| 青草久久国产| 91精品国产国语对白视频| 亚洲美女搞黄在线观看| 一级片免费观看大全| 欧美精品av麻豆av| 国产深夜福利视频在线观看| 国产成人精品久久二区二区91 | 青春草亚洲视频在线观看| 久久久久久免费高清国产稀缺| 老汉色av国产亚洲站长工具| 日韩制服骚丝袜av| 午夜激情av网站| 国产不卡av网站在线观看| 欧美精品一区二区免费开放| 日韩免费高清中文字幕av| 精品视频人人做人人爽| 国产精品国产三级专区第一集| 国产综合精华液| 狠狠精品人妻久久久久久综合| 最近中文字幕2019免费版| 中文精品一卡2卡3卡4更新| 黄色视频在线播放观看不卡| 国产免费现黄频在线看| 中文精品一卡2卡3卡4更新| 狂野欧美激情性bbbbbb| 国产白丝娇喘喷水9色精品| 成人国产av品久久久| 国产精品久久久久久精品电影小说| 久久婷婷青草| 久久精品国产自在天天线| 丝袜美足系列| 国产淫语在线视频| 久久这里只有精品19| 亚洲欧美精品综合一区二区三区 | 寂寞人妻少妇视频99o| 十分钟在线观看高清视频www| 午夜福利视频精品| 久久久久国产精品人妻一区二区| 亚洲人成网站在线观看播放| 亚洲精品自拍成人| 中文字幕精品免费在线观看视频| 亚洲国产欧美日韩在线播放| 欧美激情极品国产一区二区三区| 国产精品一国产av| 欧美国产精品一级二级三级| 久久午夜福利片| 香蕉精品网在线| 亚洲人成网站在线观看播放| 亚洲精品aⅴ在线观看| 看非洲黑人一级黄片| 丰满迷人的少妇在线观看| 丝袜脚勾引网站| 日本91视频免费播放| 国产一区二区激情短视频 | 男男h啪啪无遮挡| 亚洲第一av免费看| 少妇熟女欧美另类| 如何舔出高潮| 国产精品蜜桃在线观看| 免费在线观看完整版高清| 久久久久久久久久久久大奶| 男女下面插进去视频免费观看| 亚洲精品乱久久久久久| 日韩成人av中文字幕在线观看| 水蜜桃什么品种好| 男女无遮挡免费网站观看| 亚洲欧美一区二区三区黑人 | 一区二区三区激情视频| 国产精品不卡视频一区二区| 精品国产一区二区三区久久久樱花| 亚洲欧洲国产日韩| 看免费av毛片| 老司机影院成人| 日日啪夜夜爽| 亚洲在久久综合| av网站免费在线观看视频| 美女国产视频在线观看| 久久韩国三级中文字幕| 亚洲av在线观看美女高潮| 久久久国产精品麻豆| 五月伊人婷婷丁香| 91精品伊人久久大香线蕉| 午夜精品国产一区二区电影| 久久鲁丝午夜福利片| 欧美bdsm另类| 99九九在线精品视频| 日韩中文字幕欧美一区二区 | 一区二区av电影网| 免费久久久久久久精品成人欧美视频| 男男h啪啪无遮挡| 男女午夜视频在线观看| 五月伊人婷婷丁香| 狂野欧美激情性bbbbbb| 精品人妻熟女毛片av久久网站| a级毛片在线看网站| 亚洲人成电影观看| 在线观看国产h片| 日韩 亚洲 欧美在线| 国产野战对白在线观看| 国产熟女欧美一区二区| 色婷婷av一区二区三区视频| 国精品久久久久久国模美| 曰老女人黄片| 欧美日韩精品网址| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 免费日韩欧美在线观看| 亚洲人成77777在线视频| 久久久久人妻精品一区果冻| 天天躁狠狠躁夜夜躁狠狠躁| 最黄视频免费看| 欧美日韩av久久| 夫妻性生交免费视频一级片| 看免费av毛片| 欧美激情 高清一区二区三区| 日韩大片免费观看网站| 九九爱精品视频在线观看| 午夜日本视频在线| 99久国产av精品国产电影| 欧美日本中文国产一区发布| 国产综合精华液| 男人添女人高潮全过程视频| 国产97色在线日韩免费| 99久久人妻综合| 18在线观看网站| 国产精品久久久久成人av| 亚洲精品美女久久av网站| 国产精品免费大片| 国产精品麻豆人妻色哟哟久久| 如日韩欧美国产精品一区二区三区| 免费在线观看视频国产中文字幕亚洲 | 少妇的丰满在线观看| 免费看av在线观看网站| 91午夜精品亚洲一区二区三区| 午夜91福利影院| 国产一区二区三区综合在线观看| 久久影院123| 亚洲图色成人| 免费在线观看黄色视频的| 亚洲精品成人av观看孕妇| 免费观看av网站的网址| 丰满少妇做爰视频| 黑丝袜美女国产一区| 校园人妻丝袜中文字幕| 成人午夜精彩视频在线观看| 一级片'在线观看视频| 男女午夜视频在线观看| 久久久精品国产亚洲av高清涩受| 欧美日韩亚洲高清精品| 制服诱惑二区| 亚洲精品日本国产第一区| 青春草视频在线免费观看| 哪个播放器可以免费观看大片| 九色亚洲精品在线播放| 亚洲一码二码三码区别大吗| 中文字幕av电影在线播放| 麻豆乱淫一区二区| 久久鲁丝午夜福利片| 这个男人来自地球电影免费观看 | 久久99热这里只频精品6学生| 国语对白做爰xxxⅹ性视频网站| 亚洲欧美色中文字幕在线| 精品国产乱码久久久久久男人| freevideosex欧美| 国产精品一区二区在线不卡| 香蕉精品网在线| 亚洲成人av在线免费| 欧美日韩亚洲国产一区二区在线观看 | 一区二区三区激情视频| 大香蕉久久网| 桃花免费在线播放| 在线 av 中文字幕| 男人添女人高潮全过程视频| freevideosex欧美| 高清不卡的av网站| 黄色一级大片看看| 91精品国产国语对白视频| 国产探花极品一区二区| 免费观看性生交大片5| 宅男免费午夜| 国产精品 欧美亚洲| 国产亚洲精品第一综合不卡| 亚洲av.av天堂| 久久精品国产亚洲av天美| 欧美bdsm另类| 伊人久久大香线蕉亚洲五| 69精品国产乱码久久久| 美女视频免费永久观看网站| 亚洲天堂av无毛| 韩国av在线不卡| 天天躁夜夜躁狠狠久久av| 亚洲精品日本国产第一区| 中文字幕人妻丝袜制服| 不卡av一区二区三区| 中文字幕另类日韩欧美亚洲嫩草| 春色校园在线视频观看| 大话2 男鬼变身卡| www日本在线高清视频| 大陆偷拍与自拍| 卡戴珊不雅视频在线播放| 国产欧美亚洲国产| 91在线精品国自产拍蜜月| 午夜福利,免费看| 久久ye,这里只有精品| 赤兔流量卡办理| 有码 亚洲区| 成年女人在线观看亚洲视频| 欧美少妇被猛烈插入视频| 欧美97在线视频| 精品久久蜜臀av无| 欧美精品高潮呻吟av久久| 中国三级夫妇交换| 亚洲国产毛片av蜜桃av| 久久久久国产一级毛片高清牌| 日日啪夜夜爽| av免费在线看不卡| 久久久a久久爽久久v久久| 成人国语在线视频| 午夜影院在线不卡| 又粗又硬又长又爽又黄的视频| 在线观看人妻少妇| 日韩中文字幕视频在线看片| 成年动漫av网址| av网站在线播放免费| 国产又爽黄色视频| av网站在线播放免费| 在线观看一区二区三区激情| 亚洲精品国产一区二区精华液| 波多野结衣av一区二区av| 国产成人91sexporn| 97在线人人人人妻| av片东京热男人的天堂| av在线老鸭窝| 一边亲一边摸免费视频| 午夜福利一区二区在线看| 午夜久久久在线观看| 两个人免费观看高清视频| √禁漫天堂资源中文www| 欧美97在线视频| av又黄又爽大尺度在线免费看| 欧美av亚洲av综合av国产av | 亚洲欧美清纯卡通| 免费观看av网站的网址| 9热在线视频观看99| 边亲边吃奶的免费视频| 日韩 亚洲 欧美在线| 久久久亚洲精品成人影院| 在线免费观看不下载黄p国产| 亚洲精品视频女| 97人妻天天添夜夜摸| 一级片免费观看大全| 水蜜桃什么品种好| 亚洲精品久久久久久婷婷小说| 秋霞在线观看毛片| 免费观看a级毛片全部| 欧美 日韩 精品 国产| 69精品国产乱码久久久| 精品99又大又爽又粗少妇毛片| 亚洲国产av新网站| 波多野结衣av一区二区av| 亚洲av福利一区| 在线观看一区二区三区激情| 日本猛色少妇xxxxx猛交久久| 在线观看免费视频网站a站| 丰满乱子伦码专区| 深夜精品福利| 免费观看无遮挡的男女| 精品国产露脸久久av麻豆| 亚洲精品国产av成人精品| 日本免费在线观看一区| 人妻少妇偷人精品九色| 免费人妻精品一区二区三区视频| 国产精品久久久久久精品古装| 少妇被粗大猛烈的视频| 精品99又大又爽又粗少妇毛片| 亚洲av成人精品一二三区| 十八禁高潮呻吟视频| 成人国产av品久久久| 伦精品一区二区三区| 精品少妇久久久久久888优播| 久久鲁丝午夜福利片| 少妇猛男粗大的猛烈进出视频| 波野结衣二区三区在线| 亚洲精品日本国产第一区| 美女大奶头黄色视频| 最近2019中文字幕mv第一页| 久久99蜜桃精品久久| 国产成人欧美| 菩萨蛮人人尽说江南好唐韦庄| 亚洲国产毛片av蜜桃av| 欧美国产精品一级二级三级| 久久av网站| 黄色毛片三级朝国网站| 精品国产一区二区三区久久久樱花| 亚洲欧美清纯卡通| 亚洲精品自拍成人| 丝袜在线中文字幕| 性少妇av在线| 青春草视频在线免费观看| 国产精品 欧美亚洲| 国产精品不卡视频一区二区| 黄色毛片三级朝国网站| 精品国产乱码久久久久久男人| 久久国产精品男人的天堂亚洲| 各种免费的搞黄视频| 日韩电影二区| 久久人人爽av亚洲精品天堂| 看十八女毛片水多多多| 欧美人与性动交α欧美软件| 亚洲精品视频女| 妹子高潮喷水视频| 精品国产一区二区久久| 巨乳人妻的诱惑在线观看| 欧美精品av麻豆av| 免费大片黄手机在线观看| 好男人视频免费观看在线| 大话2 男鬼变身卡| 精品少妇一区二区三区视频日本电影 | 天堂中文最新版在线下载| 国产精品久久久久久精品电影小说| 男女啪啪激烈高潮av片| 黄色 视频免费看| 亚洲国产av影院在线观看| 国产一区有黄有色的免费视频| 国产精品免费大片| 不卡视频在线观看欧美| 精品久久久精品久久久| 纵有疾风起免费观看全集完整版| 妹子高潮喷水视频| 亚洲国产av影院在线观看| 伦精品一区二区三区| 国产精品一区二区在线不卡| 看免费成人av毛片| 高清欧美精品videossex| 一级,二级,三级黄色视频| 国产精品一二三区在线看| 日产精品乱码卡一卡2卡三| 男人爽女人下面视频在线观看| 成人免费观看视频高清| 国产av国产精品国产| 精品少妇内射三级| 80岁老熟妇乱子伦牲交| 久久ye,这里只有精品| 亚洲国产精品999| 在线看a的网站| 老司机亚洲免费影院| 久久久久久久久久人人人人人人| av国产久精品久网站免费入址| 岛国毛片在线播放| 亚洲情色 制服丝袜| 两个人免费观看高清视频| av网站在线播放免费| 国产精品麻豆人妻色哟哟久久| 成人国产av品久久久| 啦啦啦在线观看免费高清www| 午夜精品国产一区二区电影| 青草久久国产| 欧美成人午夜精品| 亚洲av中文av极速乱| 欧美日韩av久久| 99精国产麻豆久久婷婷| 91精品国产国语对白视频| 捣出白浆h1v1| 久久综合国产亚洲精品| av视频免费观看在线观看| 国产亚洲午夜精品一区二区久久| 一个人免费看片子| 久久久精品国产亚洲av高清涩受| 青春草视频在线免费观看| 美女xxoo啪啪120秒动态图| videosex国产| 亚洲四区av| 婷婷色麻豆天堂久久| 老熟女久久久| 国产男女内射视频| 91精品三级在线观看| 欧美人与性动交α欧美软件| 丝袜人妻中文字幕| 三上悠亚av全集在线观看| 亚洲av福利一区| 国产毛片在线视频| av国产久精品久网站免费入址| 伊人亚洲综合成人网| 另类精品久久| av免费在线看不卡| 亚洲男人天堂网一区| 亚洲国产欧美网| 美女脱内裤让男人舔精品视频| av电影中文网址| 天天操日日干夜夜撸| 婷婷成人精品国产| 国产精品亚洲av一区麻豆 | 汤姆久久久久久久影院中文字幕| 中文字幕制服av| av又黄又爽大尺度在线免费看| 国产成人一区二区在线| 日韩免费高清中文字幕av| 超色免费av| 九九爱精品视频在线观看| 精品一区在线观看国产| 夫妻性生交免费视频一级片| 欧美精品亚洲一区二区| 菩萨蛮人人尽说江南好唐韦庄| 考比视频在线观看| av卡一久久| 高清黄色对白视频在线免费看| 久久久久久人人人人人| 国产男女内射视频| 女性生殖器流出的白浆| 在线免费观看不下载黄p国产| 亚洲欧美成人综合另类久久久| 精品视频人人做人人爽| 啦啦啦视频在线资源免费观看| 大话2 男鬼变身卡| 18禁动态无遮挡网站| 国产精品三级大全| 国产精品.久久久| 美女国产高潮福利片在线看| 亚洲美女黄色视频免费看| 国产一区有黄有色的免费视频| 亚洲情色 制服丝袜| 中文字幕人妻丝袜制服| 如何舔出高潮| 国产精品免费大片| 色94色欧美一区二区| 精品少妇一区二区三区视频日本电影 | 满18在线观看网站| 秋霞在线观看毛片| av免费在线看不卡| 捣出白浆h1v1| 成年人午夜在线观看视频| 精品国产乱码久久久久久小说| 午夜福利一区二区在线看| 卡戴珊不雅视频在线播放| a级毛片在线看网站| 国产乱人偷精品视频| 国产高清国产精品国产三级| 香蕉丝袜av| 女人被躁到高潮嗷嗷叫费观| xxx大片免费视频| 亚洲在久久综合| 欧美 亚洲 国产 日韩一| 一级,二级,三级黄色视频| 亚洲伊人色综图| 青青草视频在线视频观看| 人体艺术视频欧美日本| 黄网站色视频无遮挡免费观看| 十分钟在线观看高清视频www| 午夜福利,免费看| 中文字幕精品免费在线观看视频| 日本av免费视频播放| 欧美97在线视频| 黄色毛片三级朝国网站| 麻豆av在线久日| 久久久a久久爽久久v久久| 久久热在线av| 你懂的网址亚洲精品在线观看| 另类精品久久| 在线观看三级黄色| 久久女婷五月综合色啪小说| 久久精品夜色国产| 99久久中文字幕三级久久日本| 在线天堂中文资源库| 97人妻天天添夜夜摸| 色婷婷av一区二区三区视频| 精品人妻熟女毛片av久久网站| av女优亚洲男人天堂|