• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Radial-curve-based facial expression recognition

    2015-04-22 02:33:18YUELei岳雷SHENTingzhi沈庭芝ZHANGChao張超ZHAOShanyuan趙三元DUBuzhi杜部致
    關(guān)鍵詞:張超

    YUELei(岳雷),,SHENTing-zhi(沈庭芝),ZHANGChao(張超),ZHAOShan-yuan(趙三元),DUBu-zhi(杜部致)

    (1.School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China;2.School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China)

    ?

    Radial-curve-based facial expression recognition

    YUE Lei(岳雷)1,, SHEN Ting-zhi(沈庭芝)1, ZHANG Chao(張超)1, ZHAO Shan-yuan(趙三元)2, DU Bu-zhi(杜部致)1

    (1.School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China;2.School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China)

    A fully automatic facial-expression recognition (FER) system on 3D expression mesh models was proposed. The system didn’t need human interaction from the feature extraction stage till the facial expression classification stage. The features extracted from a 3D expression mesh model were a bunch of radial facial curves to represent the spatial deformation of the geometry features on human face. Each facial curve was a surface line on the 3D face mesh model, begun from the nose tip and ended at the boundary of the previously trimmed 3D face points cloud. Then Euclid distance was employed to calculate the difference between facial curves extracted from the neutral face and each face with different expressions of one person as feature. By employing support vector machine (SVM) as classifier, the experimental results on the well-known 3D-BUFE dataset indicate that the proposed system could better classify the six prototypical facial expressions than state-of-art algorithms.

    facial expression; radial curve; Euclidean distance; support vector machine (SVM)

    Facial expression plays a key role in non-verbal face-to-face communication. As Mehrabian[1]mentioned, facial expressions have paramount impact on human interaction: about 55 percent of the effectiveness of a conversation relies on facial expressions, 38 percent is conveyed by voice intonation, and 7 percent by the spoken words. Therefore, automatic facial expression is essential to unleash the potential of many applications such as intelligent human-computer interaction (HCI) social analysis of human behavior and human emotion analysis.

    The pioneer research of human expression couldbe traced back to 1872, when Darwin pointed out the universality of facial expression on the basis of his evolutionary theory for the very first time, no matter what nation and ethnic group the human being is. This early study demonstrates the universality of facial expression and is the basis of the declaration of the six (anger, disgust, fear, happiness, sadness, and surprise) basic expressions.

    The early research on facial-expression recognition (FER) is mostly focused on 2D because of the lacking of publicly available 3D facial expression dataset. For the 2D FER, readers can refer to the resent survey papers[2,11]for a comprehensive understanding. In the year 2006, a 3D mesh dataset 3D-BUFE[3]was introduced by Yin et al. Since then, the research has been focused on 3D FER.

    Jun Wang et al.[4]used so called principal curvature, primitive geometric features or topographic contexts to extract the features. The principal curvatures are: peak, ridge, saddle, hill, flat, ravine, or pit. Hill-labeled pixels can be further specified as one of the labels convex hill, concave hill, saddle hill or slope hill. Saddle hills can be further distinguished as concave saddle hill or convex saddle hill. Saddle can be specified as ridge saddle or ravine saddle. So there are a total of 12 types of topographic labels. Among these 12 features, the following 6 features are more important than others: convex hill, concave hill, convex saddle hill, concave saddle hill, ridge and ravine. The face image is segmented into eight sub regions, and the numbers of the six topographic features is counted in these 8 sub regions as feature. Soyel et al.[5]relied on the distance vectors retrieved from 3D distribution of facial feature points to classify universal facial expressions. Tang et al.[6]proposed a novel automatic feature selection method based on maximizing the average relative entropy of marginalized class-conditional feature distributions and applied it to a complete pool of candidate features composed of normalized Euclidean distances between manually located facial feature points in the 3D points cloud.

    1 Fully automatic radial curve features extraction

    Studies have been done to analyze 3D facial expression and promising classification rates have been obtained. Tang et al.[6]got an average recognition rate of 95.1%. But most of them utilized manually located fiducial points labeled on the 3D facial mesh model to extract feature, which lead to a semi-automatic procedure that couldn’t be used in real time to analyze human emotion. So, we tried to propose a fully automatic facial radial curve based feature extraction procedure to deal with this problem.

    Inspired by the difference between the cutting curves of the same person’s faces when applying different expressions (Fig.1), we introduced a new facial feature, which calculate the distance between radial cutting curves on the surface of 3D facial mesh model. First, we automatically located the nose tip points on a facial points cloud from the 3D-BUFE dataset. The coordinate system correspond to the points cloud from that dataset is strict, which means that the positive direction ofX-axis is to the level right, the positive direction ofY-axis is straight up and the positive direction ofZ-axis is vertical to the plane defined byX-axis andY-axis. And with the knowledge of anatomy, we knew that, the point on each 3D facial mesh model with the maximumZvalue would be the tip of the nose.

    Fig.1 Difference between facial curves

    After the nose tip on the points cloud was located, we drew a bunch of planes that were vertical to theX-Yplane through this point and extracted the intersection line of these planes and the surface of 3D mesh model as radial curves. The angles between adjacent facial curves were not even, because different parts of the face contribute to the tense of expressions in different ways. Generally speaking, eyes and mouths illustrate more powerful distinguish abilities than other parts of face, such as cheek. Fig.2 shows the experimental results of the importance of different parts on a single face. The brighter the color is, the bigger importance that part represents[7]. Then we concatenated the even samples of each radial facial curve started from nose tip ended at the edge of each mesh model to represent a single face. In this article, we employed different parts with different importance schemes like this. As shown in Fig.2, the parts of eyes and mouth have higher weight. We drew dense facial curves in these parts, like 5° between adjacent facial curves, and sparse curves at other parts of face, like 10° between adjacent facial curves.

    Fig.2 Different parts of a face represent different importance

    When facial curves were extracted from an apex frame of each expression and the corresponding neutral face, we evenly sampled each facial curve intondimensional vectorEn, and calculated the Euclidean distance as

    d=|En-Nn|=

    (1)

    betweentwocorrespondingcurvevectors(En,Nn) on apex expression face and neutral face (Nnrepresents the corresponding curve vector on natural face), such as the left line of the two lines in middle of Fig.2 as apex happiness and right line of the two lines as neutral face.

    Then we concatenated the Euclidean distance generated from all the corresponding facial curves as a histogram featureDto feed to the classifier.

    2 Automatic classification

    A FER system is usually composed of three components: face detection, expression feature extraction and classification. The 3D mesh models provided in the BU-3DFE dataset were already pre-trimmed, so when 3D radial-curve-based feature was automatically extracted, the next and last component of the fully automatic 3D FER task was automatic classification.

    We employed the widely used support vector machine (SVM)[9]as the classier. SVM is supervised learning models that associated with learning algorithms which recognizes patterns and analyzes data, and is widely used for classification and regression analysis tasks. In our proposal, we did our experiments with ten times cross validation. Each time we randomly picked 80 subjects as the training set and the other 20 subjects as the testing set. We did not pick the training and testing samples as regard to the ratio of the numbers of male and female subjects. Because according to the Facial Action Unit Coding System (FACS) by P. Ekman and W. Friesen[10], there is no sign that different gender conducts the same facial expression with different AU combinations and the same expression should be delivered in the same way. When feed the feature to SVM, grid search method was employed to search for the parameter to maximize the classification rate automatically. And different kernel functions were tried to guarantee the best performance.

    2.1 Support vector machine

    The main scheme of SVM is as follows. Given some training dataDwhich is a set ofmpoints with the form

    (2)

    Whereyiis either 1 or -1, indicating which class the pointxibelongs to. Eachxiis ap-dimensional real vector. The goal of SVM is to find the maximum-margin hyper planes that separate the points which havingyi=1 from those havingyi=-1. The two marginal hyper planes could be represented as

    (3)

    (4)

    whereyi[(wxi)+b]-1≥0,i=1,2,…,nis the constraint. The equations above are based on the assumption that training dataDis linearly dividable. If the assumption is invalid, we used a kernel function to map the low dimension sample points into high dimension ones which could help to make the data linearly dividable. The mostly used kernel functions are linear, polynomial, RBF and sigmoid. There is no identified evidence showing which kernel function is better than other for a specific task. Therefore, when do classification, we tried different kernel functions and keep the best results.

    3 Experiments

    We conducted our experiments with the 3D expression mesh models from the widely used 3D-BUFE dataset[3].The automatically extracted facial radial curve features were feed to SVM by ten times cross validation with optimized parameters selected automatically with grid searching scheme.

    3.1 BU-3DFE dataset

    The BU-3DFE dataset was developed in Binghamton University for the purpose of evaluating 3D FER algorithms. The databases come in two versions, one with the static data and the other with dynamic data. The static database includes still color images, while the dynamic database contains video sequences of subjects with expressions. The databases also include the neutral expression with the six prototypic expressions.

    There were totally 100 subjects who participated in face scan, including undergraduates, graduates and faculty from various departments of Binghamton University (e.g. Psychology, Arts, and Engineering) and State University of New York (e.g. Computer Science, Electrical Engineering, and Mechanical Engineering). The majority of participants were undergraduates from the Psychology Department. The resulting database consists of about 60% female and 40% male subjects with a variety of ethnic/racial ancestries, including White, Black, East-Asian, Middle-east Asian, Hispanic Latino, and others. Each subject performed seven expressions (six prototype expressions and neutral) in front of the 3D face scanner. With the exception of the neutral expression, each of the six prototypic expressions (i.e. happiness, disgust, fear, angry, surprise, and sadness) includes four levels of intensity. The six prototype expressions including the neutral face were shown in Fig.3. Therefore, there are 25 3D expression models for each subject. As a result, the dataset in total contains 2 500 3D facial expression models and each model has its corresponding 2D texture image.

    Fig.3 Samples of seven expressions (from left to right): anger, disgust, fear, happiness, neutral, sadness, and surprise

    3.2 Experiment results

    We carried out our experiment using LIBSVM[8], a widely used SVM library developed by Lin et al., with ten times cross validation under the previously mentioned training and testing set partition scheme. The classification results show that when RBF kernel function was employed, we could get the best classification results. The confusion matrix (Tab.1) shows promising classification rates in the FER society. We got the best recognition rate of 94.2% on surprise mainly because when human do such expression the mouth and eyes deformed the most compared to other expressions and the difference between the curves on a surprising face and a neutral face are huge. And the largest recognition rate is 78.5% on fear. From the confusion matrix, angry is always misclassified with fear and fear tent to be misclassified with disgust and happiness.

    Tab.1 Confusion matrix %

    Comparing to the state-of-art FER algorithm proposed by Tang et al.[6], we did better in some particular expressions, like disgust; but a little bit worse in the others. But our proposal has a huge advantage compared to the scheme proposed in their article. They used a subset of the 83 manually located fiducial points on the 3D facial points cloud to extract 24 Euclidean distances as feature, which lead to a semi-automatic procedure. And a useful real time human expression and emotion analysis system couldn’t bear that much of human interaction.

    Our proposal still has potential to improve. For example, we just evenly sampled the curves, which is not precise. So, we will continue this research to get better classification results.

    4 Conclusion

    In this paper, we introduced a new feature based on facial curves generate from 3D face mesh model to handle FER task, and achieved promising recognition rate. When generating the feature histograms, we just evenly sampled the curves, which is not precise. From Fig.2, along each curve from nose tip to facial edge, the weight of each sample value is different. So, we will take this into consideration to further improve the recognition rate.

    [1] Mehrabian A. Communication without words[J]. Psychology Today, 1968, 2(4):53-56.

    [2] Pantic M. Machine analysis of facial behavior: naturalistic & dynamic behavior[J].Philosophical Transactions of the Royal Society B Biological Sciences, 2009,364(1535):3505-3513

    [3] Yin L, Wei X, Sun Y, et al. A 3d facial expression database for facial behavior research[C]∥International Conference on Automatic Face and Gesture Recognition,Southampton, UK,2006.

    [4] Wang J, Yin L, Wei X. 3D Facial expression recognition based on primitive surface feature distribution[C]∥IEEE Conference on Computer Vision and Pattern Recognition, New York, USA, 2006.

    [5] Soyel H, Demirel H. Facial expression recognition using 3D facial feature distances[C]∥International Conferenceon Image Analysis and Recognition, Montreal,Canada,2007.

    [6] Tang H, Huang T. 3D facial expression recognition based on automatically selected Features[C]∥IEEE Conference on Computer Vision and Pattern Recognition,Anchorage, Alaska, USA,2008.

    [7] Shan C, Gong S, McOwan P. Robust facial expression recognition using Local Binary Patterns[C]∥IEEE International Conference on Image Processing, Genova, Italy,2005.

    [8] Chang C, Lin C. LIBSVM: a library for support vector machines[J]. ACM Transactions on Intelligent Systems and Technology, 2011,2(27):1-27.

    [9] Cortes C,Vapnik V. Support-vector networks[J]. Machine Learning, 1995,20: 273-297.

    [10] Ekman P, Friesen W. Facial action coding system: a technique for the measurement of facial movement[M]. Palo Alto: Consulting Psychologists Press, 1978.

    [11] Zeng Z, Pantic M, Roisman I, et al. A survey of affect recognition methods: audio,visual, and spontaneous expressions[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2009, 31(1):39-58

    (Edited by Cai Jianying)

    10.15918/j.jbit1004-0579.201524.0412

    TP 37 Document code: A Article ID: 1004- 0579(2015)04- 0508- 05

    Received 2014- 02- 28

    Supported by the National Natural Science Foundation of China(60772066)

    E-mail: napoylei@163.com

    猜你喜歡
    張超
    張超,《平安夜》,不銹鋼,高310cm,2023
    張超個人簡介
    散文百家(2021年11期)2021-11-12 03:06:38
    My New Invention
    How to Protect Us from Infectious Diseases
    張超個人簡介
    散文百家(2021年4期)2021-04-30 03:15:20
    張超個人簡介
    散文百家(2021年2期)2021-04-03 14:08:22
    BOUNDEDNESS OF VARIATION OPERATORS ASSOCIATED WITH THE HEAT SEMIGROUP GENERATED BY HIGH ORDER SCHRDINGER TYPE OPERATORS?
    張超攝影展
    攝影與攝像(2020年7期)2020-09-10 07:22:44
    張超作品
    創(chuàng)意立體燈籠賀卡
    青春草亚洲视频在线观看| 国产在线视频一区二区| 久久久久网色| 久久ye,这里只有精品| 黄色片一级片一级黄色片| 国产精品 国内视频| 国产又色又爽无遮挡免| 亚洲精品一卡2卡三卡4卡5卡 | 久久天堂一区二区三区四区| 晚上一个人看的免费电影| 国产精品一区二区在线不卡| 两人在一起打扑克的视频| 亚洲人成电影观看| 亚洲久久久国产精品| 精品亚洲成a人片在线观看| 一级黄色大片毛片| 国产99久久九九免费精品| 国产麻豆69| 婷婷色麻豆天堂久久| 一二三四社区在线视频社区8| 另类精品久久| 我要看黄色一级片免费的| 中国国产av一级| xxx大片免费视频| 别揉我奶头~嗯~啊~动态视频 | 精品亚洲成a人片在线观看| 欧美性长视频在线观看| 久久国产精品人妻蜜桃| 又粗又硬又长又爽又黄的视频| 亚洲精品自拍成人| 国产一区二区三区综合在线观看| 久久久欧美国产精品| 热re99久久精品国产66热6| 国产精品三级大全| 国产男人的电影天堂91| 免费在线观看黄色视频的| 久久中文字幕一级| 九草在线视频观看| 日韩一区二区三区影片| 日本av手机在线免费观看| 国产一区二区在线观看av| 欧美日韩综合久久久久久| 少妇精品久久久久久久| 国产精品免费视频内射| 啦啦啦在线免费观看视频4| 国产成人啪精品午夜网站| 国产成人av教育| 日韩人妻精品一区2区三区| videosex国产| 日韩视频在线欧美| 另类精品久久| 水蜜桃什么品种好| 精品少妇内射三级| 国产男女内射视频| 少妇人妻 视频| 一区在线观看完整版| 交换朋友夫妻互换小说| 亚洲成人国产一区在线观看 | 日本午夜av视频| 免费女性裸体啪啪无遮挡网站| 老汉色av国产亚洲站长工具| 国产成人系列免费观看| 精品亚洲成a人片在线观看| 91字幕亚洲| 亚洲精品一卡2卡三卡4卡5卡 | 欧美日韩亚洲综合一区二区三区_| 在线观看一区二区三区激情| 亚洲成人免费电影在线观看 | 国产精品二区激情视频| 日韩视频在线欧美| 日韩欧美一区视频在线观看| 婷婷色av中文字幕| 欧美日韩精品网址| 热re99久久国产66热| 久久国产亚洲av麻豆专区| 亚洲精品国产色婷婷电影| 精品国产一区二区久久| 最新的欧美精品一区二区| 只有这里有精品99| 天天操日日干夜夜撸| 99精国产麻豆久久婷婷| 国产又色又爽无遮挡免| 天天躁狠狠躁夜夜躁狠狠躁| 欧美+亚洲+日韩+国产| 精品亚洲乱码少妇综合久久| 热re99久久精品国产66热6| 国产精品久久久久成人av| av在线播放精品| 久久影院123| 多毛熟女@视频| 各种免费的搞黄视频| 99热网站在线观看| 如日韩欧美国产精品一区二区三区| 99国产精品一区二区蜜桃av | www.av在线官网国产| 人妻 亚洲 视频| 国产又爽黄色视频| 亚洲欧美色中文字幕在线| 亚洲精品国产区一区二| 久久久久久人人人人人| 超碰97精品在线观看| 丝袜在线中文字幕| 亚洲中文字幕日韩| 国产精品一区二区精品视频观看| 又黄又粗又硬又大视频| 在线观看免费高清a一片| 国产免费视频播放在线视频| 久久久精品94久久精品| 伦理电影免费视频| 国产激情久久老熟女| 亚洲国产精品一区三区| e午夜精品久久久久久久| 最黄视频免费看| 午夜av观看不卡| 18在线观看网站| 日本a在线网址| 99国产综合亚洲精品| 看免费成人av毛片| 国产一卡二卡三卡精品| 人妻一区二区av| 国产三级黄色录像| 国产91精品成人一区二区三区 | 又大又黄又爽视频免费| 欧美人与性动交α欧美精品济南到| 国产亚洲精品久久久久5区| 国产三级黄色录像| 中文字幕人妻丝袜一区二区| 国产一卡二卡三卡精品| 80岁老熟妇乱子伦牲交| 巨乳人妻的诱惑在线观看| 欧美av亚洲av综合av国产av| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲成人免费av在线播放| 国产精品久久久av美女十八| 亚洲国产精品国产精品| 999久久久国产精品视频| 国产在线一区二区三区精| 免费黄频网站在线观看国产| av天堂在线播放| 亚洲av在线观看美女高潮| 国产亚洲av片在线观看秒播厂| 精品人妻一区二区三区麻豆| av在线老鸭窝| 午夜福利视频在线观看免费| 精品亚洲成a人片在线观看| 伊人久久大香线蕉亚洲五| 天天躁夜夜躁狠狠躁躁| 亚洲图色成人| 亚洲 国产 在线| 考比视频在线观看| 国产淫语在线视频| 搡老岳熟女国产| 精品一品国产午夜福利视频| 男女午夜视频在线观看| 久久精品国产a三级三级三级| 国产成人系列免费观看| 免费少妇av软件| 亚洲精品国产一区二区精华液| 亚洲人成电影免费在线| 国产一区二区在线观看av| av网站在线播放免费| 欧美大码av| 中文字幕高清在线视频| 99久久综合免费| 老汉色∧v一级毛片| 美女中出高潮动态图| 国产三级黄色录像| 黄色视频不卡| www.999成人在线观看| 国产主播在线观看一区二区 | 岛国毛片在线播放| 成人午夜精彩视频在线观看| 欧美人与善性xxx| 精品人妻在线不人妻| 熟女av电影| 19禁男女啪啪无遮挡网站| 叶爱在线成人免费视频播放| 电影成人av| 成年人黄色毛片网站| 一区二区av电影网| 亚洲精品乱久久久久久| 一边亲一边摸免费视频| 看免费av毛片| 97人妻天天添夜夜摸| 美女中出高潮动态图| 香蕉丝袜av| 国产成人一区二区三区免费视频网站 | 狠狠婷婷综合久久久久久88av| 男女免费视频国产| 1024视频免费在线观看| 只有这里有精品99| 最黄视频免费看| 最新在线观看一区二区三区 | 超碰成人久久| 亚洲欧美激情在线| 中文字幕亚洲精品专区| 免费少妇av软件| 亚洲,欧美,日韩| 大陆偷拍与自拍| 国产伦人伦偷精品视频| 欧美精品人与动牲交sv欧美| 十八禁人妻一区二区| 免费观看a级毛片全部| 亚洲av男天堂| 欧美另类一区| 日日夜夜操网爽| 最近手机中文字幕大全| 黄色视频在线播放观看不卡| av天堂在线播放| 中文字幕人妻丝袜一区二区| 精品少妇黑人巨大在线播放| 亚洲成av片中文字幕在线观看| 精品人妻1区二区| 男人添女人高潮全过程视频| 另类亚洲欧美激情| 欧美激情极品国产一区二区三区| 黄频高清免费视频| 亚洲精品久久久久久婷婷小说| 精品熟女少妇八av免费久了| 国产97色在线日韩免费| 多毛熟女@视频| 啦啦啦视频在线资源免费观看| 99国产精品一区二区三区| 午夜两性在线视频| 亚洲精品国产av蜜桃| 天天影视国产精品| 久久精品国产亚洲av涩爱| 欧美日韩亚洲综合一区二区三区_| 欧美精品人与动牲交sv欧美| 波多野结衣一区麻豆| 欧美黄色淫秽网站| 精品第一国产精品| 91精品伊人久久大香线蕉| 国产精品免费视频内射| 三上悠亚av全集在线观看| 亚洲欧美色中文字幕在线| 国产一卡二卡三卡精品| 亚洲成色77777| 免费看十八禁软件| 久久久精品国产亚洲av高清涩受| 欧美另类一区| 美女福利国产在线| 99国产精品一区二区三区| 亚洲精品在线美女| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲精品一二三| 成人亚洲欧美一区二区av| 亚洲精品日韩在线中文字幕| 国产精品秋霞免费鲁丝片| 多毛熟女@视频| 久久 成人 亚洲| 下体分泌物呈黄色| 晚上一个人看的免费电影| 美女中出高潮动态图| 黄色一级大片看看| 99国产精品一区二区蜜桃av | 中国美女看黄片| 国产成人av教育| 亚洲欧洲精品一区二区精品久久久| 大片免费播放器 马上看| 欧美成人午夜精品| 成人国产一区最新在线观看 | 青草久久国产| 可以免费在线观看a视频的电影网站| 欧美日韩视频高清一区二区三区二| 热re99久久精品国产66热6| 无遮挡黄片免费观看| 中文字幕人妻丝袜一区二区| 国产成人精品久久久久久| 女警被强在线播放| 免费一级毛片在线播放高清视频 | 天堂俺去俺来也www色官网| 精品亚洲成a人片在线观看| 久久av网站| 天天操日日干夜夜撸| 国产国语露脸激情在线看| 熟女少妇亚洲综合色aaa.| 中文字幕av电影在线播放| 亚洲五月色婷婷综合| 少妇精品久久久久久久| 欧美激情极品国产一区二区三区| 老鸭窝网址在线观看| 性少妇av在线| 人人妻人人添人人爽欧美一区卜| 超碰成人久久| 自线自在国产av| 亚洲第一青青草原| 免费女性裸体啪啪无遮挡网站| 久久精品亚洲av国产电影网| 欧美成狂野欧美在线观看| 国产男人的电影天堂91| 91精品国产国语对白视频| 国产日韩欧美视频二区| 日本欧美视频一区| 夫妻性生交免费视频一级片| 一区二区三区精品91| 熟女少妇亚洲综合色aaa.| 一级毛片我不卡| 18禁观看日本| 欧美黄色片欧美黄色片| 欧美在线一区亚洲| 国产成人欧美在线观看 | 久久影院123| 久热爱精品视频在线9| 亚洲欧美色中文字幕在线| 成人免费观看视频高清| 国产色视频综合| 美女扒开内裤让男人捅视频| 最近手机中文字幕大全| 自线自在国产av| 在线精品无人区一区二区三| 18在线观看网站| 高清不卡的av网站| 日本五十路高清| 久久久国产精品麻豆| 成人手机av| 国产高清国产精品国产三级| 在线 av 中文字幕| 久久久国产欧美日韩av| 美女高潮到喷水免费观看| 成年人黄色毛片网站| 亚洲精品国产色婷婷电影| 在现免费观看毛片| videos熟女内射| 女性生殖器流出的白浆| 久久九九热精品免费| 亚洲精品国产色婷婷电影| 久久久久网色| 国产日韩欧美在线精品| 叶爱在线成人免费视频播放| 国产精品秋霞免费鲁丝片| av国产精品久久久久影院| 黄网站色视频无遮挡免费观看| 巨乳人妻的诱惑在线观看| 美女脱内裤让男人舔精品视频| 又大又黄又爽视频免费| 久久精品久久精品一区二区三区| 国产精品一二三区在线看| 国产精品国产av在线观看| 美女大奶头黄色视频| 91麻豆av在线| 国产精品熟女久久久久浪| 国产野战对白在线观看| 成人亚洲精品一区在线观看| 精品熟女少妇八av免费久了| 久久久久久久精品精品| 国产日韩欧美视频二区| 热99久久久久精品小说推荐| 老鸭窝网址在线观看| 日韩av免费高清视频| 女性被躁到高潮视频| 欧美精品高潮呻吟av久久| 夫妻性生交免费视频一级片| 国产国语露脸激情在线看| 亚洲精品av麻豆狂野| 欧美成人精品欧美一级黄| 久久久久精品人妻al黑| 中文欧美无线码| 久久热在线av| 亚洲熟女毛片儿| 亚洲,欧美精品.| 最新的欧美精品一区二区| 国产精品欧美亚洲77777| 曰老女人黄片| 男女无遮挡免费网站观看| 大型av网站在线播放| 国产男人的电影天堂91| 女性被躁到高潮视频| 精品一区二区三卡| 最近最新中文字幕大全免费视频 | 国产亚洲一区二区精品| 黄片小视频在线播放| 亚洲五月婷婷丁香| 亚洲情色 制服丝袜| 啦啦啦啦在线视频资源| 亚洲久久久国产精品| 成人国产一区最新在线观看 | 啦啦啦啦在线视频资源| 99香蕉大伊视频| 纯流量卡能插随身wifi吗| 中文字幕人妻熟女乱码| 嫩草影视91久久| 极品人妻少妇av视频| 国产爽快片一区二区三区| 黄色片一级片一级黄色片| 丝瓜视频免费看黄片| 日韩制服骚丝袜av| 天天躁狠狠躁夜夜躁狠狠躁| 免费久久久久久久精品成人欧美视频| 精品一区二区三卡| 久久久精品94久久精品| 亚洲,欧美,日韩| 一级毛片女人18水好多 | 国产精品久久久久成人av| 日本a在线网址| 一边摸一边抽搐一进一出视频| 久久久久久久久久久久大奶| 一区二区三区激情视频| 欧美日韩福利视频一区二区| 新久久久久国产一级毛片| 国产成人欧美在线观看 | 久久99热这里只频精品6学生| 日韩,欧美,国产一区二区三区| 国产1区2区3区精品| 免费高清在线观看日韩| 夜夜骑夜夜射夜夜干| 最近最新中文字幕大全免费视频 | 亚洲人成电影免费在线| 新久久久久国产一级毛片| 精品久久蜜臀av无| 国产精品国产av在线观看| 黑人欧美特级aaaaaa片| 日韩熟女老妇一区二区性免费视频| 男男h啪啪无遮挡| 精品国产一区二区三区久久久樱花| 免费在线观看视频国产中文字幕亚洲 | 人成视频在线观看免费观看| 午夜两性在线视频| 操出白浆在线播放| 一个人免费看片子| 丰满人妻熟妇乱又伦精品不卡| 亚洲,欧美精品.| 久久精品久久精品一区二区三区| 精品国产一区二区三区久久久樱花| av不卡在线播放| 99国产精品一区二区蜜桃av | 久久久精品国产亚洲av高清涩受| 在线观看一区二区三区激情| 久久ye,这里只有精品| 99国产精品免费福利视频| 啦啦啦视频在线资源免费观看| 久久国产精品大桥未久av| 不卡av一区二区三区| 日韩一本色道免费dvd| 激情视频va一区二区三区| 亚洲人成电影免费在线| 无遮挡黄片免费观看| www.精华液| 亚洲男人天堂网一区| 国产1区2区3区精品| 精品国产乱码久久久久久男人| 一边摸一边抽搐一进一出视频| 又大又爽又粗| 伊人久久大香线蕉亚洲五| 亚洲成国产人片在线观看| 日韩精品免费视频一区二区三区| 国产精品一区二区免费欧美 | 亚洲伊人久久精品综合| 国产真人三级小视频在线观看| www.熟女人妻精品国产| 黄色视频不卡| 欧美性长视频在线观看| 欧美亚洲 丝袜 人妻 在线| 晚上一个人看的免费电影| 国产成人免费观看mmmm| 80岁老熟妇乱子伦牲交| 亚洲色图综合在线观看| 久久人妻福利社区极品人妻图片 | 日韩伦理黄色片| 无遮挡黄片免费观看| 欧美另类一区| 国产一区二区激情短视频 | 国产免费又黄又爽又色| 黑人欧美特级aaaaaa片| 亚洲中文av在线| 亚洲av片天天在线观看| 国产精品久久久久久人妻精品电影 | 男女国产视频网站| 九草在线视频观看| 色婷婷久久久亚洲欧美| 久久九九热精品免费| 亚洲av在线观看美女高潮| 一级片'在线观看视频| 亚洲国产精品999| 91精品伊人久久大香线蕉| 久久精品国产亚洲av高清一级| 亚洲欧美激情在线| 精品一区二区三区四区五区乱码 | 99久久精品国产亚洲精品| 一区福利在线观看| 一区二区三区四区激情视频| 精品国产乱码久久久久久男人| 一级a爱视频在线免费观看| 波多野结衣一区麻豆| 国产野战对白在线观看| 国产高清国产精品国产三级| 亚洲av电影在线进入| 美女国产高潮福利片在线看| 免费观看a级毛片全部| 久久久国产欧美日韩av| 久久午夜综合久久蜜桃| 成在线人永久免费视频| 一级黄色大片毛片| 日本wwww免费看| 日韩 欧美 亚洲 中文字幕| 欧美日韩视频高清一区二区三区二| 欧美日韩综合久久久久久| 国产精品免费视频内射| 国产成人av教育| h视频一区二区三区| 国产99久久九九免费精品| 黄频高清免费视频| 亚洲av综合色区一区| 日韩大片免费观看网站| 亚洲国产精品999| 咕卡用的链子| 麻豆av在线久日| 自线自在国产av| 午夜久久久在线观看| 啦啦啦 在线观看视频| 热99国产精品久久久久久7| 在线观看免费日韩欧美大片| 国产亚洲av片在线观看秒播厂| 欧美大码av| 色网站视频免费| 精品少妇一区二区三区视频日本电影| 亚洲国产av影院在线观看| 两个人免费观看高清视频| 91精品国产国语对白视频| 国产精品久久久久久人妻精品电影 | 50天的宝宝边吃奶边哭怎么回事| 你懂的网址亚洲精品在线观看| 亚洲熟女毛片儿| 国产成人免费观看mmmm| 黄片小视频在线播放| 人妻人人澡人人爽人人| 国产黄频视频在线观看| 少妇精品久久久久久久| 黄色怎么调成土黄色| 天堂中文最新版在线下载| 久久久久久免费高清国产稀缺| 首页视频小说图片口味搜索 | 国语对白做爰xxxⅹ性视频网站| 又大又爽又粗| 丁香六月天网| 精品一区二区三区av网在线观看 | 美女中出高潮动态图| av在线播放精品| 交换朋友夫妻互换小说| 久久人人97超碰香蕉20202| 多毛熟女@视频| 美女高潮到喷水免费观看| 97人妻天天添夜夜摸| 少妇人妻 视频| 久久毛片免费看一区二区三区| 国产免费一区二区三区四区乱码| 国产精品国产三级专区第一集| videos熟女内射| 9色porny在线观看| 国产成人精品久久久久久| 飞空精品影院首页| www.精华液| 久久女婷五月综合色啪小说| 亚洲精品成人av观看孕妇| 两人在一起打扑克的视频| 人妻一区二区av| 国产精品熟女久久久久浪| 欧美人与性动交α欧美精品济南到| 青春草视频在线免费观看| 久久国产亚洲av麻豆专区| 久久天躁狠狠躁夜夜2o2o | 精品一区在线观看国产| 国产高清不卡午夜福利| 在线观看www视频免费| 日韩中文字幕视频在线看片| 国产欧美日韩精品亚洲av| 亚洲午夜精品一区,二区,三区| 亚洲欧洲国产日韩| 欧美老熟妇乱子伦牲交| 欧美人与性动交α欧美软件| 美女主播在线视频| 赤兔流量卡办理| 一本综合久久免费| 欧美日韩视频精品一区| 久久亚洲精品不卡| 一区二区三区四区激情视频| 老鸭窝网址在线观看| 亚洲国产精品国产精品| 黄片播放在线免费| 纵有疾风起免费观看全集完整版| 丝瓜视频免费看黄片| 成人18禁高潮啪啪吃奶动态图| 欧美xxⅹ黑人| 欧美成人精品欧美一级黄| 多毛熟女@视频| 国产精品av久久久久免费| 蜜桃国产av成人99| 日本猛色少妇xxxxx猛交久久| 久久精品人人爽人人爽视色| 亚洲中文字幕日韩| 啦啦啦在线观看免费高清www| videosex国产| 国产亚洲一区二区精品| 2018国产大陆天天弄谢| 国产高清不卡午夜福利| 999精品在线视频| www.精华液| 欧美日韩亚洲综合一区二区三区_| 丝袜在线中文字幕| 激情五月婷婷亚洲| 性色av乱码一区二区三区2| 午夜精品国产一区二区电影| 亚洲欧洲精品一区二区精品久久久| 久久人妻熟女aⅴ| 好男人电影高清在线观看| 制服人妻中文乱码| 国产成人精品无人区| 精品亚洲乱码少妇综合久久| 黄色怎么调成土黄色| 一级,二级,三级黄色视频| 亚洲国产毛片av蜜桃av| 男男h啪啪无遮挡| 日本av免费视频播放| 成人午夜精彩视频在线观看| 欧美人与性动交α欧美软件|