• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dynamic modeling and simulation for the rigid flexible coupling system with a non-tip mass

    2015-04-22 02:33:16LICuichun李崔春MENGXiuyun孟秀云LIUZaozhen劉藻珍

    LI Cui-chun(李崔春), MENG Xiu-yun(孟秀云), LIU Zao-zhen(劉藻珍)

    (Key Laboratory of Dynamic and Control of Flight Vehicle, Ministry of Education, Beijing Institute of Technology, Beijing 100081, China)

    ?

    Dynamic modeling and simulation for the rigid flexible coupling system with a non-tip mass

    LI Cui-chun(李崔春), MENG Xiu-yun(孟秀云), LIU Zao-zhen(劉藻珍)

    (Key Laboratory of Dynamic and Control of Flight Vehicle, Ministry of Education, Beijing Institute of Technology, Beijing 100081, China)

    The rigid flexible coupling system with a mass at non-tip position of the flexible beam is studied in this paper. Using the theory about mechanics problems in a non-inertial coordinate system, the dynamic equations of the rigid flexible coupling system with dynamic stiffening are established. It is clearly elucidated for the first time that, dynamic stiffening is produced by the coupling effect of the centrifugal inertial load distributed on the beam and the transverse vibration deformation of the beam. The modeling approach in this paper successfully solves problems of popular modeling methods nowadays: the derivation process is too complex by using only one dynamic principle; a clearly theoretical mechanism for dynamic stiffening can’t be offered. First, the mass at non-tip position is incorporated into the continuous dynamic equations of the system by use of the Dirac function and the Heaviside function. Then, based on the conclusions of orthogonalization about the normal constrained modes, the finite dimensional state space equations suitable for controller design are obtained. The numerical simulation results show that: dynamic stiffening is included in the first-order model established in this paper, which indicates the dynamic responses of the rigid flexible coupling system with large overall motion accurately. The results also show that the mass has a softening effect on the dynamic behavior of the flexible beam, and the effect would be more obvious when the mass has a larger mass, or lies closer to the tip of the beam.

    non-inertial coordinate system; rigid flexible coupling; dynamic stiffening; mass at non-tip position; constrained mode

    The rapid development of aerospace technology nowadays has made the structure of spacecraft become more and more complex. A new spacecraft is often equipped with large flexible appendages, on which there might be one or several function masses. Therefore, the control object changes from a traditional rigid body to a flexible multi-body system. The essence of the modeling of a flexible multi-body system is the study of a rigid flexible coupling dynamic problem. It is a new cross discipline closely related to classical dynamics, continuum mechanics, modern control theory, and computation technology[1].

    In practical engineering, when the system is undergoing large overall motion, it is necessary to consider the significant impact generated by structural flexibility in motion. Even though the traditional zero-order model still has a large application field[2-3], the simulation results would be divergent because it can’t capture the dynamic stiffening term caused by large overall motion[4]. In 1987, Kane[5]analyzed a flexible beam with large overall motion, and pointed out that, if the dynamic responses of a cantilever beam with large rotating velocity were investigated by utilizing the zero-order approximate coupling model, the result would be divergent and inaccurate. Based on the conclusion above, Kane put forward the concept of dynamic stiffening. From then on, the dynamic stiffening problem was studied by many scholars, and a large number of approaches were proposed[6-9]. Based on the coupling of the elastic deformation and the large overall motion, the first-order approximate coupling model presented[9]not only considers the coupling of the small deformation of beam and the large overall motion, but also takes the coupling of the longitude deformation and the transverse deformation into account. So far, there is no real rational mechanism for dynamic stiffening in theory till now. The modeling of a rigid flexible coupling system with dynamic stiffening is still an important part of academic researches[10-15]. Meanwhile, the increasing complexity of aerospace tasks makes the flexible appendage with one or several functional masses, so the simple physical model (hub-beam) can’t meet the needs of modeling any longer. It becomes an important task that how to incorporate the mass into the dynamic model of a rigid flexible coupling system[16-18].

    To sum up, there are two major problems lying in the modeling of a rigid flexible coupling system: ① the mass must be incorporated into the dynamic model of the system; ② the dynamic stiffening should be included in the dynamic behaviors of the model.To solve these problems, a physical model (hub-beam-mass) is studied in this paper. Applying the subsystem modeling principle, the dynamic equations of the system with dynamic stiffening are established via the theory about mechanics problems in a non-inertial coordinate system, material mechanics, angular momentum theory, and vector analyses. This paper provides a rational mechanism for dynamic stiffening in theory. Meanwhile, the mass is incorporated into the continuous dynamic equations of the system by use of the Dirac function and the Heaviside function. The impacts of the two properties (position and mass) of the mass on the dynamic responses of the rigid flexible coupling system are investigated comprehensively, and the decisive role of the mass playing on the boundary conditions of the constrained modes of beam is emphasized.

    1 Continuous dynamic modeling based on mechanics problems ina non-inertial system

    1.1 Rigid flexible coupling physical model

    Consider the physical model of a rigid flexible coupling system as shown in Fig.1, which consists of a central rigid body (hub), a flexible beam (beam) and a mass at non-tip position of the beam (mass). Refer to Ref.[19], the ditterence between the two system is the mass on the beam.mtis the mass, anddis the position on beam for mass. Furthermore,dis in the interval [0, 1). It must be pointed out that, corresponding to the boundary conditions of the beam, the position of mass on the flexible beam is clearly restricted tod∈[0, 1) in this paper. That is to say, mass lies at any position of beam except the tip.

    Fig.1 Physical model of a rigid flexible coupling system

    1.2 Modeling of beam based on material mechanics

    Based on the basic theory of material mechanics about the transverse bending deformation of a flexible beam, vector analysis is employed to establish the model of beam. According to material mechanics, the bending deformation of Beam is determined by the bending moment acting on beam as follows

    (1)

    whereM(x) is the bending moment acting atx. According to material mechanics, the bending moment is determined by the vertical load acting on Beam, including distributed load and concentrated force. The bending deformation of Beam with large overall motion is shown in Fig.2.

    Fig.2 Deformation field of beam with large overall motion

    (2)

    Based on the geometric relations shown in Fig.2 and the assumption about little displacement and little angle, and meanwhile, the high orders of series of trigonometric functions are omitted, the simplified form of the external vertical distributed load acting on beam can be written as

    (3)

    Similarly, on the basis of the centrifugal force and the tangential force acting on mass in Fig.2, the concentrated force perpendicular to beam is

    (4)

    With the aid of material mechanics, as a result of the existence of the concentrated force, the expressions of the shear force and the bending moment are both piecewise continuous functions. Thus, the Heaviside function is introduced.

    (5)

    (6)

    Substitute Eq.(6) into Eq.(1), and calculate the partial derivatives aboutxin both sides of Eq.(1) twice. The continuous dynamic equation of Beam is derived by substituting Eq.(3) into Eq.(1) which has been dealt with.

    (7)

    1.3 Modeling of hub based on angular momentum theory

    The relevant forces are shown in Fig.3.Th(t) is the applied torque.Fs(0,t) andM(0,t) are the force and the torque of beam acting on hub at the joint respectively.

    Fig.3 Forces and torques acting on hub

    According to Eqs. (3)-(6), the continuous dynamic equation of hub can be written as

    (8)

    2 Discrete dynamic modeling based on the conclusions of orthogonalization about normal constrained modes

    According to the assumptions, mass is at any position of beam except the tip. The boundary conditions of beam are the same as those of a common cantilever beam: ① the displacement and the angle at the fixed end are 0; ② the shear force and the bending moment at the free end are 0. Therefore, all relevant conclusions of the common cantilever beam remain valid. Thus it can be seen that, it is necessary to restrict the position of mass. Otherwise, when mass is at the tip of beam, the boundary conditions of the free vibration of Beam would change. As a result, the relevant conclusions about the normal constrained modes would change. All changes have significant impacts on the expressions of the finite dimensional dynamic model. It should be pointed out that, this issue didn’t receive enough attention, and conclusions of the common cantilever beam directly continued to use in some papers. As a consequence, it resulted in inaccurate conclusions in those papers when Mass was at the tip of beam.

    According to the boundary conditions, the corresponding conclusions of orthogonalization are

    (9)

    (10)

    Utilize the expansion about the firstN-orders of the normal constrained modes to describe the transverse vibration deformation of beam approximately as following:

    (11)

    (12)

    whereFN(t) is theN-order discrete approximation of the inertial concentrated force caused by Mass, and its expression is

    (13)

    (14)

    where

    q=[q1(tq2(t)q3(t) …qN(t)]T

    (15)

    ΛN=diag[ω1ω2ω3…ωN]

    (16)

    (17)

    (18)

    (19)

    Substituting Eq. (13) into Eq. (14), the simplified finite dimensional dynamic equation of beam can be written as

    (20)

    where

    (21)

    (22)

    where

    (23)

    (24)

    (25)

    3 Numerical simulation

    3.1 Validation of dynamic stiffening

    The parameters of beam are from Ref.[20]: lengthl=8 m, sectional areaA=7.3×10-5m2, rotary inertia of cross sectionI=8.218×10-9m4, bulk densityρ=2.766 67×103kg/m3, Young’s modulus of elasticityE=6.895×1010N/m2, and the mass is omitted. The regular pattern of the known large overall motion is

    (26)

    whereωmis the final angular velocity, andTmis the accelerating time from 0 toωm.Tmequals 15 s.ωmequals 2 rad/s and 4 rad/s respectively in the simulation. It can be seen from Fig.4 that, whenωmequals 2 rad/s, the simulation result of ZDM is quite different from that of FDM. It shows that, the large overall motion leads to an obvious inaccuracy in the simulation of ZDM. When the value ofωmis large enough (ωm=4 rad/s), the simulation result of ZDM is rapidly divergent, while that of FDM is still convergent. The simulation results above show that, FDM established in this paper has considered dynamic stiffening. Against the background of a large overall motion with high velocity, it still has a good convergence and applies to practical engineering.

    Fig.4 Responses of tip displacement of Beam with known large overall motions

    3.2 Impacts of mass on dynamic responses of the system

    Assume the parameters of the system as: ① For hub, radiusb=0.06 m, rotary inertiaJstar=1.16 kg·m2; ② For beam, lengthl=1.8 m, sectional areaA=2.5×10-4m2, rotary inertia of cross sectionI=1.302 1×10-10m4, bulk densityρ=2.766×103kg/m3, Young’s modulus of elasticityE=6.9×1010N/m2; ③ For mass, positiond=0.9l and massmt=0.085 kg. The driving torque acting on hub is

    (27)

    whereTm=2 s, andThm=2 N·m.

    ① Impact of positiond(mtequals default value)

    Fig.5 corresponds to the response curves of system when Mass lies at the positionsd=0.21 andd=0.8l. It can be seen from Fig.5 that, during the acting time of torque, the tip maximum response amplitude of Beam whend=0.8l is obviously larger than that whend=0.2l. After the cancellation of torque, obviously the tip steady state response amplitude of Beam when Mass lies at the positiond=0.8l is also larger than that whend=0.2l.

    Fig.5 Responses of system when mass lies at different positions

    From the analyses above, it can be inferred that: Mass has a softening effect on the dynamic behavior of the flexible beam, and the effect is more obvious when mass lies closer to the tip of beam. In order to investigate the impact of the mass position on the system, the position ratio ofRd=d/lis introduced. According to the restrictive condition, there isRd∈[0,1). Fig.6 shows the impact of the Mass position on the tip response of Beam. From Fig.6, whenRd≤0.3, the impact is negligible. WhenRd>0.3, the impact is quite obvious, and with the growth ofRd, the increasing processes of the maximum response amplitude and the steady state response amplitude are both approximate exponential growths. The conclusion here strongly support the inference at the beginning.

    Fig.6 Impact of position ratio on the tip response amplitude of beam

    ② Impact of massmt(dequals default value)

    Fig.7 corresponds to the response curves of the system whenmt=0 kg andmt=0.085 kg. During the acting time of torque, the tip maximum response amplitude of Beam with the mass is 0.263 m, and that without the mass is 0.223 m. After the cancellation of torque, the corresponding tip steady state response amplitudes are 0.141 m and 0.081 m respectively. Obviously, the response amplitude of Beam with the mass is larger.

    Fig.7 Responses of system when Mass has different masses

    Referring to the inferences aboutd, it can be inferred aboutmtthat: Mass has a softening effect on the dynamic behavior of the flexible beam, and the effect is more obvious when its mass is larger. Introduce the mass ratioRM=mt/(ρAl). Restrict the mass ratio in the interval [0, 1]. Fig.8 shows the impact that the mass ratio makes on the tip response of Beam. It can be seen from Fig.8 that, the tip maximum response amplitude of Beam and the steady state response amplitude of beam increase with the growth ofRM, and the regular patterns are both approximately logarithmic growths.

    Fig.8 Impact of the mass ratio on the tip response amplitude of beam

    4 Conclusions

    A rigid flexible coupling system with a non-tip mass (hub-beam-mass) is investigated in this paper. By introducing the theory about mechanics problems in a non-inertial system, the dynamic equations are established. According to the theoretical analyses and numerical simulations, the following conclusions are obtained:

    ① A rational mechanism for the dynamic stiffening phenomenon when the rigid flexible coupling system is undergoing large overall motion is clearly offered in this paper. It is produced by the coupling effect of the centrifugal inertial load distributed on the flexible beam and the transverse vibration deformation of the beam.

    ② By using the Dirac function and the Heaviside function, the mass is incorporated into the dynamic equations of the system. According to the boundary conditions about the constrained modes, the position of mass is restricted in a rational interval. It should be pointed out that, this paper provides a complete set of program of solution for the modeling of a rigid flexible coupling system with a non-tip mass, containing how to establish the continuous dynamic equations, how to analyze the constrained modes, and how to deduce the finite dimensional state space equations which are suitable for controller design.

    ③ A comprehensive review of the impacts of mass properties (position and mass) on the dynamic response of the rigid flexible coupling system is carried out in this paper. The relevant inferences presented in this paper are verified: Mass has a softening effect on the dynamic behavior of the flexible beam, and the effect is more obvious when it has a larger mass, or it lies closer to the tip of beam.

    [1] Tamer M Wasfy, Ahmed K Noor. Computational strategies for flexible multibody systems[J]. Applied Mechanics Reviews, 2003, 56(6): 553-613.

    [2] Enrico Silani, Marco Lovera. Magnetic spacecraft attitude control: a survey and some new results[J]. Control Engineering Practice, 2005, 13(3): 357-371.

    [3] Hu Qinglei, Shi Peng, Gao Huijun. Adaptive variable structure and commanding shaped vibration control of flexible spacecraft[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(3): 804-815.

    [4] Choura S, Jayasuriya S, Medick M A. On the modeling, and open-loop control of a rotating thin flexible beam[J]. Journal of Dynamic Systems, Measurement and Control, 1991, 113(1): 26-33.

    [5] Kane T R, Ryan R R, Banerjee A K. Dynamics of a cantilever beam attached to a moving base[J]. Journal of Guidance, Control and Dynamics, 1987, 10(2): 139-151.

    [6] Mayo J, Domínguez J. Geometrically non-linear formulation of flexible multibody systems in terms of beam elements: Geometric stiffness[J]. Computers and Structures, 1996, 59(6): 1039-1050.

    [7] Yang Hui, Hong Jiazhen, Yu Zhengyue. Dynamics modeling of a flexible hub-beam system with a tip mass[J]. Journal of Sound and Vibration, 2003, 266(4): 759-774.

    [8] Cai Guoping, Lim C W. Dynamics studies of a flexible hub-beam system with significant damping effect[J]. Journal of Sound and Vibration, 2008, 318(1-2): 1-17.

    [9] Yu Jibang, Zhang Dingguo. Subsystem method for dynamic modeling of rigid-flexible coupling multibody system with dynamic stiffening[J]. Journal of Nanjing University of Science and Technology: Natural Science Edition, 2006, 30(4): 409-413. (in Chinese)

    [10] García-Vallejo D, Sugiyama H, Shabana A A. Finite element analysis of the geometric stiffening effect. Part 1: a correction in the floating frame of reference formulation[J]. Journal of Multi-body Dynamics, 2005, 219(2): 187-202.

    [11] Sugiyama Hiroyuki, Gerstmayr Johannes, Shabana Ahmed A. Deformation modes in the finite element absolute nodal coordinate formulation[J]. Journal of Sound and Vibration, 2006, 298(4-5): 1129-1149.

    [12] Huang Yong’an, Deng Zichen, Yao Linxiao. An improved symplectic precise integration method for analysis of the rotating rigid-flexible coupled system[J]. Journal of Sound and Vibration, 2007, 299(1-2): 229-246.

    [13] Graham G Sanborn, Ahmed A Shabana. On the integration of computer aided design and analysis using the finite element absolute nodal coordinate formulation[J]. Multibody System Dynamics, 2012, 22(2): 181-197.

    [14] Graham G Sanborn, Ahmed A Shabana. A rational finite element method based on the absolute nodal coordinate formulation[J]. Nonlinear Dynamics, 2009, 58(3): 565-572.

    [15] Dong Fuxiang, Hong Jiazhen, Zhu Kun. Initial conditions of impact dynamics[J]. Journal of Shanghai Jiaotong University, 2010, 15(3): 368-371. (in Chinese)

    [16] Shen Shaopin, Li Zhibin. Attitude dynamics of a spacecraft with tip mass attached deploying flexible appendage[J]. Journal of Vibration and Shock, 2008, 27(5): 115-118, 178-179. (in Chinese)

    [17] Bai Shengjian, Huang Xinshen. Dynamic modeling of large flexible spacecraft undergoing fast maneuvering[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(10): 1985-1992. (in Chinese)

    [18] Han Qingpeng, Gao Peixin. Dynamic analysis of rigid-flexible manipulators undergoing a large overall motion condition[J]. Journal of machine design, 2013, 30(2): 27-31. (in Chinese)

    [19] Li Cuichun, Meng Xiuyun, Liu Zaozhen. Dynamic modeling and simulation for the flexible spacecraft with dynamic stiffening[J]. Journal of Beijing Institute of Technology, 2015, 24(3):305-312.

    [20] Liu Jinyang, Hong Jiazhen. Rigid flexible coupling dynamic analysis of flexible body[J]. Chinese Journal of Solid Mechanics, 2002, 23(2): 159-166. (in Chinese)

    (Edited by Wang Yuxia)

    10.15918/j.jbit1004-0579.201524.0402

    V 414.33 Document code: A Article ID: 1004- 0579(2015)04- 0432- 09

    Received 2013- 11- 26

    E-mail: mengxy@bit.edu.cn

    国产黄a三级三级三级人| 国产精品久久久久久精品电影小说 | 久久精品国产99精品国产亚洲性色| 麻豆av噜噜一区二区三区| 久久精品国产亚洲av天美| 又黄又爽又刺激的免费视频.| 大又大粗又爽又黄少妇毛片口| 内地一区二区视频在线| 久久鲁丝午夜福利片| av在线蜜桃| 免费看a级黄色片| 亚洲综合色惰| 天美传媒精品一区二区| 国产淫片久久久久久久久| 青春草国产在线视频 | 尾随美女入室| 欧美一区二区精品小视频在线| 村上凉子中文字幕在线| 97超视频在线观看视频| 六月丁香七月| 成人二区视频| 成年版毛片免费区| 日本五十路高清| 久久中文看片网| 一个人免费在线观看电影| 美女cb高潮喷水在线观看| 最近2019中文字幕mv第一页| 尤物成人国产欧美一区二区三区| 九草在线视频观看| 精品人妻偷拍中文字幕| 精品午夜福利在线看| 精品免费久久久久久久清纯| 国产亚洲欧美98| 又黄又爽又刺激的免费视频.| 久久鲁丝午夜福利片| 一进一出抽搐gif免费好疼| 国产 一区精品| 最新中文字幕久久久久| 久久午夜福利片| 久久99热6这里只有精品| 久久人人爽人人片av| 麻豆乱淫一区二区| 熟女人妻精品中文字幕| 久久草成人影院| 精品国内亚洲2022精品成人| 成年女人看的毛片在线观看| 悠悠久久av| 亚洲av二区三区四区| 一个人观看的视频www高清免费观看| 乱人视频在线观看| 成人国产麻豆网| 日韩中字成人| 在线观看一区二区三区| 亚洲真实伦在线观看| 国产亚洲精品久久久久久毛片| 伦精品一区二区三区| av专区在线播放| 别揉我奶头 嗯啊视频| 晚上一个人看的免费电影| 男人狂女人下面高潮的视频| 久久精品国产亚洲网站| av卡一久久| 少妇猛男粗大的猛烈进出视频 | 嫩草影院精品99| 久久精品人妻少妇| 日日摸夜夜添夜夜添av毛片| 国内精品久久久久精免费| 99热这里只有精品一区| 高清毛片免费观看视频网站| 亚洲欧洲日产国产| 九九久久精品国产亚洲av麻豆| 国产精品无大码| 国产一区二区三区av在线 | 久久人人爽人人爽人人片va| 日韩欧美三级三区| 岛国在线免费视频观看| 简卡轻食公司| 男人的好看免费观看在线视频| 草草在线视频免费看| 欧美日韩在线观看h| 国产精品无大码| 丰满人妻一区二区三区视频av| 少妇裸体淫交视频免费看高清| 青春草亚洲视频在线观看| 国产黄a三级三级三级人| 丰满乱子伦码专区| 搡老妇女老女人老熟妇| 中国美女看黄片| 欧美性猛交╳xxx乱大交人| 欧美性感艳星| 3wmmmm亚洲av在线观看| 国产亚洲精品久久久久久毛片| 精品熟女少妇av免费看| 亚洲国产精品合色在线| 国产色婷婷99| 久久精品国产鲁丝片午夜精品| 亚洲国产精品国产精品| 成年免费大片在线观看| 欧美丝袜亚洲另类| 91精品国产九色| 日本三级黄在线观看| 国产色婷婷99| 亚洲国产日韩欧美精品在线观看| 婷婷亚洲欧美| 高清午夜精品一区二区三区 | 村上凉子中文字幕在线| 22中文网久久字幕| 欧美日本亚洲视频在线播放| 国产精品久久久久久亚洲av鲁大| 亚洲av中文av极速乱| 日韩欧美一区二区三区在线观看| 欧美在线一区亚洲| 国产久久久一区二区三区| 黄色配什么色好看| 日韩精品有码人妻一区| 亚洲国产精品成人综合色| 美女高潮的动态| 97超碰精品成人国产| 不卡一级毛片| 久久久久久久久久黄片| 99久久精品国产国产毛片| 日本三级黄在线观看| 大香蕉久久网| 欧美精品一区二区大全| 麻豆国产97在线/欧美| 亚洲四区av| 老司机福利观看| 欧美激情国产日韩精品一区| 日韩欧美精品v在线| 日韩强制内射视频| 国产69精品久久久久777片| 日日摸夜夜添夜夜添av毛片| 国产一区二区三区av在线 | 在线播放无遮挡| 又粗又爽又猛毛片免费看| 长腿黑丝高跟| 成人av在线播放网站| 国产色婷婷99| 99久久久亚洲精品蜜臀av| 免费电影在线观看免费观看| 免费观看的影片在线观看| 99久久成人亚洲精品观看| 在线观看66精品国产| 国产成人精品久久久久久| 精品人妻视频免费看| 欧美性感艳星| 亚洲av电影不卡..在线观看| 久久久久久久久久久免费av| 国产蜜桃级精品一区二区三区| 欧美激情在线99| 亚洲av电影不卡..在线观看| 九九在线视频观看精品| 99热只有精品国产| 午夜爱爱视频在线播放| 国产午夜精品论理片| av天堂在线播放| 丰满乱子伦码专区| 免费看日本二区| 欧美日韩国产亚洲二区| 国产精品一区二区性色av| www.色视频.com| 丰满乱子伦码专区| 久久久久久国产a免费观看| 成人特级黄色片久久久久久久| 黄色一级大片看看| 久久久久久久久中文| 日韩国内少妇激情av| 国产毛片a区久久久久| 亚洲中文字幕一区二区三区有码在线看| 身体一侧抽搐| 91午夜精品亚洲一区二区三区| avwww免费| 久久婷婷人人爽人人干人人爱| 在线免费观看的www视频| 国产av不卡久久| 有码 亚洲区| 国产片特级美女逼逼视频| 99久久精品一区二区三区| 成人毛片a级毛片在线播放| 久久人人爽人人爽人人片va| 秋霞在线观看毛片| 中国美白少妇内射xxxbb| 蜜臀久久99精品久久宅男| 99九九线精品视频在线观看视频| 国产精品久久久久久久久免| 波野结衣二区三区在线| 男女下面进入的视频免费午夜| 99久久无色码亚洲精品果冻| 久久久a久久爽久久v久久| 欧美日韩综合久久久久久| 日日撸夜夜添| 99九九线精品视频在线观看视频| 狠狠狠狠99中文字幕| 日本与韩国留学比较| 波多野结衣高清无吗| 少妇的逼好多水| 国产亚洲av嫩草精品影院| 亚洲av电影不卡..在线观看| 国产探花在线观看一区二区| 夫妻性生交免费视频一级片| 国产精品久久久久久久电影| 亚洲美女视频黄频| а√天堂www在线а√下载| 国产v大片淫在线免费观看| 不卡视频在线观看欧美| 国产不卡一卡二| 亚洲七黄色美女视频| 国产v大片淫在线免费观看| 国产白丝娇喘喷水9色精品| 国产蜜桃级精品一区二区三区| 亚洲va在线va天堂va国产| 高清在线视频一区二区三区 | 一级黄片播放器| 欧美人与善性xxx| 99国产极品粉嫩在线观看| 日韩成人av中文字幕在线观看| 青春草国产在线视频 | 欧美区成人在线视频| 97超视频在线观看视频| 97热精品久久久久久| 精品久久久久久成人av| 不卡一级毛片| 国产精品爽爽va在线观看网站| 色视频www国产| 欧美日韩国产亚洲二区| 日韩欧美一区二区三区在线观看| 国产精品美女特级片免费视频播放器| 国产成人一区二区在线| eeuss影院久久| 两个人视频免费观看高清| 午夜福利成人在线免费观看| 99视频精品全部免费 在线| 国产精品国产三级国产av玫瑰| 麻豆国产av国片精品| 18+在线观看网站| 亚洲自拍偷在线| 国产成人a∨麻豆精品| 精品久久久久久久久久久久久| 国内精品美女久久久久久| 床上黄色一级片| 久久99热6这里只有精品| 天堂av国产一区二区熟女人妻| 2022亚洲国产成人精品| 女人十人毛片免费观看3o分钟| 最近的中文字幕免费完整| 成人永久免费在线观看视频| 一区福利在线观看| 国产精品嫩草影院av在线观看| 国产精品伦人一区二区| 老熟妇乱子伦视频在线观看| 久久精品国产亚洲av香蕉五月| 99久久精品国产国产毛片| 日韩欧美国产在线观看| 寂寞人妻少妇视频99o| 婷婷色综合大香蕉| a级毛片a级免费在线| 性欧美人与动物交配| 国语自产精品视频在线第100页| 美女大奶头视频| 欧美zozozo另类| 国产 一区 欧美 日韩| 午夜福利高清视频| 一个人免费在线观看电影| 天堂影院成人在线观看| 国产三级中文精品| 91在线精品国自产拍蜜月| 校园春色视频在线观看| 12—13女人毛片做爰片一| 噜噜噜噜噜久久久久久91| 少妇丰满av| 亚洲最大成人手机在线| 欧美人与善性xxx| 久久婷婷人人爽人人干人人爱| 欧美成人a在线观看| 成熟少妇高潮喷水视频| 男女啪啪激烈高潮av片| 亚洲av一区综合| 国产av一区在线观看免费| 日韩一本色道免费dvd| 69av精品久久久久久| 国产色爽女视频免费观看| 亚洲乱码一区二区免费版| 久久综合国产亚洲精品| 国产在线精品亚洲第一网站| av在线观看视频网站免费| 卡戴珊不雅视频在线播放| 免费观看精品视频网站| 久久99蜜桃精品久久| 99riav亚洲国产免费| 亚洲av成人精品一区久久| 国产老妇女一区| ponron亚洲| 人人妻人人看人人澡| 国产老妇女一区| 男人舔女人下体高潮全视频| 国产精品女同一区二区软件| 欧美成人一区二区免费高清观看| 国产69精品久久久久777片| 国产av麻豆久久久久久久| 三级国产精品欧美在线观看| 亚洲精品成人久久久久久| 免费大片18禁| 国产黄色视频一区二区在线观看 | 国产成人精品婷婷| 亚洲五月天丁香| 亚洲久久久久久中文字幕| 亚洲国产精品合色在线| 看非洲黑人一级黄片| 18禁在线播放成人免费| 丝袜喷水一区| 日本黄大片高清| 久久这里只有精品中国| 非洲黑人性xxxx精品又粗又长| av福利片在线观看| 亚洲av一区综合| 国产成人精品一,二区 | 午夜爱爱视频在线播放| 亚洲国产精品合色在线| 久久精品综合一区二区三区| 尤物成人国产欧美一区二区三区| 国产精品综合久久久久久久免费| 欧美xxxx黑人xx丫x性爽| 97超碰精品成人国产| 我的女老师完整版在线观看| 国产大屁股一区二区在线视频| 天天一区二区日本电影三级| 久久中文看片网| 国产精品伦人一区二区| av国产免费在线观看| 麻豆乱淫一区二区| 日本与韩国留学比较| 亚洲人与动物交配视频| 婷婷精品国产亚洲av| 久久久久久大精品| 小蜜桃在线观看免费完整版高清| 久久精品影院6| 国产成人精品一,二区 | 国产精品不卡视频一区二区| or卡值多少钱| 欧美日韩国产亚洲二区| 国产黄片视频在线免费观看| 日韩,欧美,国产一区二区三区 | 99热6这里只有精品| h日本视频在线播放| 91久久精品国产一区二区三区| 久久久久久久久久久丰满| 国产爱豆传媒在线观看| 国产黄色小视频在线观看| 国产久久久一区二区三区| 边亲边吃奶的免费视频| 日韩成人av中文字幕在线观看| 一本精品99久久精品77| 亚洲激情五月婷婷啪啪| 91久久精品国产一区二区成人| 精品国内亚洲2022精品成人| 3wmmmm亚洲av在线观看| 麻豆成人午夜福利视频| 九草在线视频观看| 久久精品影院6| 成熟少妇高潮喷水视频| 天天躁夜夜躁狠狠久久av| 丝袜美腿在线中文| 成人午夜精彩视频在线观看| 日韩欧美一区二区三区在线观看| 色视频www国产| 12—13女人毛片做爰片一| 日日摸夜夜添夜夜爱| 久久精品国产亚洲av涩爱 | 人体艺术视频欧美日本| 午夜免费激情av| 日本成人三级电影网站| 毛片女人毛片| 22中文网久久字幕| 人妻系列 视频| 国产精品久久久久久亚洲av鲁大| 欧美丝袜亚洲另类| 久久国产乱子免费精品| 女的被弄到高潮叫床怎么办| 99久久精品热视频| 又黄又爽又刺激的免费视频.| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲三级黄色毛片| 久久久久久久久久黄片| 99精品在免费线老司机午夜| 麻豆国产97在线/欧美| 久久这里有精品视频免费| 久久久久久国产a免费观看| 欧美变态另类bdsm刘玥| 中国国产av一级| 在线播放无遮挡| 久久综合国产亚洲精品| 婷婷亚洲欧美| 高清毛片免费观看视频网站| 国产女主播在线喷水免费视频网站 | 久久精品国产自在天天线| 成人亚洲精品av一区二区| 国产一区二区在线观看日韩| 久久久久久久久久久丰满| 高清日韩中文字幕在线| 啦啦啦韩国在线观看视频| 亚洲国产欧美人成| 麻豆成人av视频| 日韩成人av中文字幕在线观看| 看免费成人av毛片| 亚洲精品久久国产高清桃花| 三级国产精品欧美在线观看| 精品无人区乱码1区二区| 人人妻人人澡欧美一区二区| 校园春色视频在线观看| 美女黄网站色视频| 亚洲丝袜综合中文字幕| 深爱激情五月婷婷| www.av在线官网国产| 国产精品久久视频播放| 色哟哟哟哟哟哟| 国产成人aa在线观看| 日本五十路高清| 久久久国产成人精品二区| 国产不卡一卡二| 又爽又黄a免费视频| 国产成年人精品一区二区| 成人欧美大片| 国产精品精品国产色婷婷| 欧美+日韩+精品| 狠狠狠狠99中文字幕| 人人妻人人澡人人爽人人夜夜 | 成人一区二区视频在线观看| 最近视频中文字幕2019在线8| 亚洲在久久综合| 免费搜索国产男女视频| 成年女人看的毛片在线观看| 午夜激情欧美在线| 欧美日韩精品成人综合77777| 亚洲图色成人| 久久人人爽人人爽人人片va| 尾随美女入室| 嫩草影院入口| 亚洲一区二区三区色噜噜| 最近的中文字幕免费完整| 欧美日韩在线观看h| 国产精品久久电影中文字幕| 免费电影在线观看免费观看| 亚洲av中文字字幕乱码综合| 国产精品女同一区二区软件| 国产精品1区2区在线观看.| 久久国内精品自在自线图片| 一级二级三级毛片免费看| 内地一区二区视频在线| 中文欧美无线码| 免费人成视频x8x8入口观看| 国产午夜精品论理片| 亚洲无线在线观看| 久久九九热精品免费| 国产精品乱码一区二三区的特点| 国产一区二区在线观看日韩| 秋霞在线观看毛片| 亚洲欧美精品自产自拍| 精品免费久久久久久久清纯| 中文字幕免费在线视频6| 少妇人妻一区二区三区视频| 六月丁香七月| 国产精品野战在线观看| 欧美日本亚洲视频在线播放| 精品一区二区三区视频在线| 大香蕉久久网| 99久久中文字幕三级久久日本| 国产精品一二三区在线看| 插逼视频在线观看| 欧美一区二区亚洲| 精品国内亚洲2022精品成人| 高清日韩中文字幕在线| 欧美一级a爱片免费观看看| 狂野欧美激情性xxxx在线观看| 亚洲性久久影院| 美女内射精品一级片tv| 午夜福利高清视频| 中文字幕制服av| 日韩三级伦理在线观看| 中国美白少妇内射xxxbb| 色播亚洲综合网| 夫妻性生交免费视频一级片| 国产精品美女特级片免费视频播放器| av国产免费在线观看| 国产色爽女视频免费观看| 综合色av麻豆| 亚洲av二区三区四区| 麻豆国产av国片精品| 国产午夜精品久久久久久一区二区三区| 国产91av在线免费观看| 久久精品国产清高在天天线| 国产成人午夜福利电影在线观看| 岛国在线免费视频观看| 麻豆久久精品国产亚洲av| 精品无人区乱码1区二区| 男人舔女人下体高潮全视频| 精品国内亚洲2022精品成人| 69人妻影院| 99视频精品全部免费 在线| 午夜激情欧美在线| 久久精品国产亚洲av香蕉五月| 一级毛片aaaaaa免费看小| 一夜夜www| 高清午夜精品一区二区三区 | 欧美bdsm另类| 一级毛片aaaaaa免费看小| 亚洲av第一区精品v没综合| 成人特级黄色片久久久久久久| 99热全是精品| 免费av毛片视频| 中文字幕av在线有码专区| 卡戴珊不雅视频在线播放| 国产女主播在线喷水免费视频网站 | 偷拍熟女少妇极品色| 欧美日韩综合久久久久久| 热99re8久久精品国产| 一区福利在线观看| a级一级毛片免费在线观看| 69av精品久久久久久| 99久久久亚洲精品蜜臀av| 欧美成人精品欧美一级黄| 亚洲自偷自拍三级| 免费看光身美女| 日韩亚洲欧美综合| 国产真实伦视频高清在线观看| 国产乱人偷精品视频| 国产精品爽爽va在线观看网站| 黄色日韩在线| 99热全是精品| 美女黄网站色视频| 熟妇人妻久久中文字幕3abv| 99久国产av精品国产电影| 国产精品福利在线免费观看| 日本一本二区三区精品| 校园人妻丝袜中文字幕| 熟女电影av网| 女人被狂操c到高潮| 亚洲精品色激情综合| 特级一级黄色大片| 免费观看的影片在线观看| 91aial.com中文字幕在线观看| 国产在线精品亚洲第一网站| 一夜夜www| 成人毛片60女人毛片免费| 成熟少妇高潮喷水视频| 亚洲国产欧美人成| 免费av不卡在线播放| 欧美xxxx性猛交bbbb| 久久这里只有精品中国| kizo精华| 免费观看的影片在线观看| 精品人妻视频免费看| 国产色婷婷99| 丝袜美腿在线中文| 亚洲精品亚洲一区二区| 一本精品99久久精品77| 观看美女的网站| 永久网站在线| 老司机福利观看| 成年女人永久免费观看视频| 网址你懂的国产日韩在线| 一级黄片播放器| 国产精品免费一区二区三区在线| 国产伦在线观看视频一区| 午夜福利视频1000在线观看| 亚洲自拍偷在线| 啦啦啦观看免费观看视频高清| 欧美zozozo另类| 亚洲精品乱码久久久久久按摩| 99久久人妻综合| 99九九线精品视频在线观看视频| 永久网站在线| 99热这里只有精品一区| 国产一区二区三区在线臀色熟女| 欧美三级亚洲精品| 中文字幕制服av| 亚洲精品国产成人久久av| 在线天堂最新版资源| 亚洲精品456在线播放app| 有码 亚洲区| 三级男女做爰猛烈吃奶摸视频| 国产亚洲欧美98| 又粗又硬又长又爽又黄的视频 | 精品午夜福利在线看| 久久久欧美国产精品| 两个人视频免费观看高清| 亚洲国产高清在线一区二区三| 少妇人妻精品综合一区二区 | 亚洲国产精品成人久久小说 | 欧美变态另类bdsm刘玥| 亚洲va在线va天堂va国产| 97人妻精品一区二区三区麻豆| 国产精品野战在线观看| 日韩高清综合在线| 亚洲精品日韩av片在线观看| 国产伦精品一区二区三区四那| 日韩欧美精品免费久久| 美女大奶头视频| 亚洲av中文字字幕乱码综合| 午夜免费激情av| 久久精品国产自在天天线| 午夜免费男女啪啪视频观看| 亚洲精品久久国产高清桃花| 亚洲国产精品sss在线观看| 精品国内亚洲2022精品成人| 欧美成人一区二区免费高清观看| 国产真实伦视频高清在线观看| 日韩一区二区视频免费看| 国产精品久久视频播放| 精品人妻视频免费看| 免费一级毛片在线播放高清视频| 99riav亚洲国产免费| 看非洲黑人一级黄片| 国产亚洲精品av在线| av女优亚洲男人天堂| 91麻豆精品激情在线观看国产|