• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical simulation of turbulent flow behind sluice gate under submerged discharge conditions*

    2015-04-20 05:52:46LIUShihe劉士和LIAOTingting廖庭庭LUOQiushi羅秋實
    水動力學研究與進展 B輯 2015年2期

    LIU Shi-he (劉士和), LIAO Ting-ting (廖庭庭), LUO Qiu-shi (羅秋實)

    1. State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China, E-mail: shihe3086@163.com 2. Yellow River Engineering Consulting Co., Ltd, Zhengzhou 450003, China

    Introduction

    The sluice gate is a facility to control the discharge and the water level in hydraulic and hydroelectric engineering. The hydraulic characteristics of the turbulent flow discharging under a sluice gate are important for the optimal design and construction of sluice gates and the management of downstream river beds and banks. Fig.1 shows a schematic diagram of the flow behind a sluice gate under the submerged discharging condition. As can be seen from the figure, at the river bed, the scour hole and its subsequent accumulation body might be formed under continuous scouring,at the water-air interface, a hydraulic jump would be formed to connect the supercritical flow with the subcritical flow downstream, and in the longitudinal direction, the unsteady turbulent flow just under the sluice gate would be adjusted gradually to the steady uniform flow downstream. Therefore, the turbulent flow behind a sluice gate under the submerged discharge condition is very complicated and can be divided approximately into the rapidly varied flow region and the gradually varied flow region. The former is the region from the contraction section CS2 to CS4, which is behind the accumulation body, and the latter is the region from CS4 to CS5 as shown in Fig.1. The flow behind CS5 is a steady uniform flow. In Fig.1,t1,t2,…,t8represent the river bed topographies at the corresponding instants.

    From the point of view of engineering hydraulics,more attentions should be paid to the discharge capacity and the local scour in studying this typical flow.There were many studies in this regard. Lozano etal.[1]measured the discharge capacity under a sluice gate with different water heads and sluice gate openings. Kim[2]studied the contraction coefficient, the discharge coefficient and the mean pressure on the wall by numerical simulations. For different bed gradation compositions and sluice gate openings, Dey and Westrich[3]and Chatterjee et al.[4]studied the local scour of the bed behind a sluice gate by experiments.On the other hand, the turbulent flow behind a sluice gate is also one kind of typical flows with complicated boundaries and was studied from the hydrodynamic perspectives. Among experimental studies, Dey et al.[5,6]measured the mean velocity and the turbulent kinetic energy by the acoustic Doppler velocimetry(ADV), Dey and Sarkar[7]measured the mean velocity and the Reynolds stress in the scour hole by the ADV.Cassan and Belaud[8]studied the turbulent flow near a sluice gate on smooth and rigid beds experimentally and numerically, and special attention was paid to large opening and submergence. Erdbrink et al.[9]investigated the mean pressure and the turbulent kinetic energy near the sluice gate by numerical simulations.Karim and Ali[10]studied the mean velocity in the scour hole by experiments and numerical simulations.

    Fig.1 Schematic diagram of turbulent flow behind sluice gate

    Although the turbulent flow behind a sluice gate was studied from various perspectives, the following two aspects were not adequately covered so far. (1) In the discharging process the river bed is scoured continuously, and the hydraulic jump at the water-air surface is adjusted accordingly. How do the mechanical energy and the flow discharge vary with time? (2) In the connection process between the flows in the rapidly varied region and thoser in the gradually varied region downstream, how do the turbulent kinetic energy and the mean wall shear stress vary in the longitudinal direction? and how does the mechanical energy change? The above issues will be addressed in this paper by theoretical analyses and numerical simulations.

    1. Analyses of mechanical energy loss of turbulent flow behind sluice gate

    The continuity equation, the momentum equation and the mechanical energy equation of the total flow are the basis of the 1-D flow description in Hydraulics and Engineering Fluid Mechanics[11-15]. The determination of the mechanical energy loss is essential for describing the flow by a 1-D mathematical model in hydraulics. Currently, the energy equation for the total flow in hydraulics is based on the Bernoulli’s equation in the streamline for incompressible steady flows of ideal fluid in the gravitational field, and is obtained by making some corrections and simplifications. As far as hydrodynamics is concerned in describing the viscous flow, the energy equation is not rigorous theoretically and cannot describe the variation of the turbulent kinetic energy. Meanwhile, it can not be used to obtain an expression for the mechanical energy loss directly. The author obtained a new energy equation for the open channel flow, which is derived from the Navier-Stokes equation directly[16], and this energy equation for the total flow can be used to analyze the transformation and the loss of the mechanical energy(hereinafter referred to as the mechanical energy loss)of the turbulent flow behind the sluice gate by simplifying the unsteady flow in the scouring process into a cascade steady flow in the sense of ensemble average.

    1.1 Rapidly varied flow region

    As can be seen from Ref.[16], the mechanical energy losshw0in the rapidly varied flow region per unit weight in unit time is

    where the subscriptscand 2 are the corresponding numbers at the beginning (CS2) and the end (CS4) of the rapidly varied flow region,U,kare the mean velocity and the mean turbulent kinetic energy in the section, andzandpsare the vertical position and the corresponding mean hydrostatic pressure,αandβare the coefficients. Usingzbc,Hcandtorepresent the bed elevation, the effective water depth and the mean pressure at the separation stream line in CS2, and usingzb2andH2to represent the bed elevation and the water depth in CS4, we have

    Due to the complexity of the flow boundaries and the flow fields in the rapidly varied flow region,hw0is expressed in the dimensionless form of the mean velocity head at the contraction section per unit weight in unit time, i.e.,

    whereζis the coefficient of the mechanical energy loss, which is expressed as

    1.2 Gradually varied flow region

    The mechanical energy losshwbetween any two cross sections in the gradually varied flow region is

    where the subscripts 6 and 7 are the corresponding numbers of any upstream and downstream sections with longitudinal distanceL. In the gradually varied flow region, the mean pressure at the water-air interface is just the atmospheric pressure, and similar to Eq.(2) we have

    To describe the variation of the mechanical energy loss in the longitudinal direction and the process of the gradually varied flow approaching to the uniform flow,hwis divided further into the mechanical energy loss corresponding to the uniform flow and the deviation from it. In addition, the Darcy-Weisbach formula is used to calculate the coefficient of the mechanical energy lossλ, andτw=λ1/8ρ[(U6+U7)/2]2is used to calculateλ1, which is the coefficient of the mechanical energy loss corresponding to the uniform flow. Then we have

    wherewτis the mean wall shear stress, and 2λis the coefficient of the mechanical energy loss deviating from that of the uniform flow.

    2. Mathematical model for the flow behind sluice gate and numerical methods

    2.1 Mathematical model

    2.1.1 Governing equations

    The vertically 2-D mathematical model of Reynolds averaged equations is adopted to study the turbulent flow behind a sluice gate as shown in Fig.1,and the governing equations are as follows:

    2.1.2 Boundary conditions

    (1) Water-sediment boundary

    The boundary corresponding to the scour hole and its subsequent accumulation body behind the sluice gate is the water-sediment boundary. Similar to Ref.[17], the revised wall function is used to reflect the effect of the bed material with median diameterd50on the mean flow. Meanwhile, the zero location of the bed is taken as 0.75d50, and the mean velocityat distancex2pabove the wall is

    (2) Rigid boundary

    The interfaces between the water and the other river bed except the water-sediment boundary are rigid boundaries, and the corresponding boundary condition is the no-slip condition.

    (3) Water-air interface

    The boundary condition of the water-air interface is treated by using the VOF method.

    2.2 Numerical method

    In the numerical simulation, triangular grids are used and the near-wall grids are refined. The finite volume method (FVM) is used to discretize the governing equations over the control volume, and the PISO algorithm is used to handle the coupling between the mean pressure and the mean velocity in the numerical simulation.

    The algebraic equations after discretization are

    The algebraic equations are solved by the Gauss-Seidel iteration method. The result converges when the unit mass flow residual is less than 0.01% of the inflow and the overall mass flow residual is less than 0.5% of the inflow.

    Fig.2 Comparison of the measured and simulated results(smooth bed)

    Fig.3 Comparison of the measured and simulated results (rough bed)

    2.3 Verification

    Dey et al.[18]conducted experiments for the turbulent flow behind a sluice gate with fixed flat beds,and the mean velocity was measured with the ADV.The comparisons of the simulated results with the experimental ones for the longitudinal mean velocity are shown in Figs.2 and 3 for a smooth bed and a rough bed withd50=0.0041m , respectively, whereis the maximum mean velocity in the cross section at a distance ofx1from the sluice gate in the longitudinal direction,U0is the mean velocity at the sluice gate section,Lis a characteristic length, see Ref.[18]. As can be seen from these figures, the simulated results are in good agreement with the experimental ones.

    3. Numerical simulation of water flow under sluice gate

    3.1 Simulated conditions

    Strictly speaking, the actual turbulent flow behind the sluice gate is unsteady even from the point ofview of ensemble average because of the bed local scour. Chatterjee et al.[4]conducted systematic experiments on this flow, and the bed topographies at eight instants were obtained as shown in Fig.1. The bed topographies in this paper are based on his experimental results and the actual unsteady flow is simplified into nine corresponding cascade steady flow states including the initial state, and the simulated conditions are the same as the experimental ones (the upstream water depth is 0.409 m, the downstream water depthHis 0.291 m, the opening of the sluice gate is 0.02 m). For the gradually varied flow region, the bed slope is taken as 1/100000, and the longitudinal length is 120H.

    3.2 Analysis of the simulation results in rapidly varied flow region

    3.2.1 Vertical distribution of mean pressure

    Consider the contraction section CS2, the section CS3 which is at the crest of the accumulation body,and the initial section CS4 of the gradually varied flow region. For convenience, only the mean pressurecorresponding to the bed topography att2is discussed andis also non-dimensionalized by its maximum valuepmaxin the section. The simulation results are shown in Fig.4. It can be seen that: (1) the vertical distributions of the mean pressure at CS3 and CS4 are very close to the hydrostatic pressure distribution, (2) in the effective flow region of CS2, the vertical distribution of the mean pressure also obeys the hydrostatic pressure distribution except that the mean pressure at the separation lineis not equal to zero since there exists a hydraulic jump there.

    Fig.4 Variation of /p max with x2/H

    3.2.2 Variation of discharge with time

    In the discharging process, the hydraulic jump at the water-air interface is adjusted with the river bed deformation, which makes the dischargequnder the sluice gate vary with time. The simulation results ofqat different instants are shown in Fig.5, in whichqis non-dimensionalized by its final stable valueq0,and the timetis also non-dimensionalized asU1t/H.As can be seen from Fig.5, the extent of the variation of the discharge is very small and is less than 4% in the discharging process.

    Fig.5 Variation of q against U1t/H

    3.2.3 Variation of the coefficient for mechanical energy loss with time

    In the discharging process, the flow boundary is being adjusted continuously with the bed local scour,and the mechanical energy of the water flow in the rapidly varied flow region is varying correspondingly.The variation of the coefficientζfor the mechanical energy loss againstU1t/His given in Fig.6. As can be seen from this figure, the deformation of the river bed tends to decrease the total mechanical energy of the flow sinceζis larger than zero, and the mechanical energy loss also decreases with the increase of the time.

    Fig.6 Variation of ζ against U1t/H

    3.3 Analysis of the simulation results in gradually varied flow region

    Due to the space limitation of the paper, only the mean wall shear stress, the turbulent kinetic energy and the mechanical energy loss corresponding to the bed topography att2are analyzed. In the simulation results shown below, the zero position ofx1is also the coordinate origin in Fig.1, and the initial section CS4 of the gradually varied flow region is selected at the location of 8.6Hdownstream from the origin.

    3.3.1 Variation of mean wall shear stress

    The variation of the mean wall shear stresswτin the longitudinal direction is given in Fig.7, in whichwτis non-dimensionalized by the mean wall shear stress0τof the uniform flow downstream. As can be seen from Fig.7 that (1) the mean wall shear stress in the gradually varied flow region is always larger than that in the uniform flow downstream, (2) the mean wall shear stress in the gradually varied flow region decreases in the longitudinal direction, and approaches the mean wall shear stress of the uniform flow at about 65Hdownstream.

    Fig.7 Variation of τw/τ0 against x1/H

    Fig.8 Variation of k/km ax against x2/H

    3.3.2 Variation of turbulent kinetic energy

    (1) Variation of turbulent kinetic energy in vertical direction

    The variations of the turbulent kinetic energy in the vertical direction at three different sections are given in Fig.8, from which we can see that (1) in the vertical direction, the position of the maximum turbulent kinetic energy is always near the bed, (2) the decay of the turbulent kinetic energy near the free surface is much more significant than that near the bed in the longitudinal direction.

    (2) Variation of mean turbulent kinetic energy in section

    The variation of the mean turbulent kinetic energy in section along the longitudinal direction is given in Fig. 9, in whichis non-dimensionalized by the mean turbulent kinetic energy in the section of the uniform flowk0. As can be seen from Fig.9 that (1)decreases in the longitudinal direction, and approaches the mean turbulent kinetic energy in the section of the uniform flow at about 75Hdownstream,(2) the decrease ofin the longitudinal direction is slower than that ofwτ.

    Fig.9 Variation of /k0 against x1/H

    Fig.10 Variations of λ, λ1/λ and λ2/λ against x1/H

    3.3.3 Variation of the coefficient for mechanical energy loss

    The variations of the mechanical energy loss coefficientsλ,1λand2λin the longitudinal direction are shown in Fig.10. It can be seen from these figures that (1)λapproaches the coefficient of the mechanical energy loss corresponding to the uniform flow at about 80Hdownstream, (2) the ratio of 2λtoλdecreases sharply in the longitudinal direction prior to 15Hdownstream, and the mechanical energy losscan be calculated approximately by the formula of the uniform flow after that.

    4. Conclusions

    Based on the theoretical analysis and the numerical simulation of the turbulent flow discharging behind a sluice gate under submerged conditions, the following conclusions are drawn:

    (1) In the discharging process of the turbulent flow under a sluice gate, the river bed is scoured continuously and the water–air interface is adjusted accordingly, which leads to the decrease of the mechanical energy of the total flow in the rapidly varied flow region, and the mechanical energy loss also decreases with the increase of the time, yet the variation of the flow discharge under the sluice gate is very small.

    (2) In the connection between the rapidly varied flow and the uniform flow downstream, the mean wall shear stress and the coefficient for the mechanical energy loss decrease in the longitudinal direction; the decay of the turbulent kinetic energy near the free surface is much more significant than that near the bed in the longitudinal direction, and the mean turbulent kinetic energy in section decreases in the longitudinal direction and the decreasing rate is slower than that of the mean wall shear stress.

    [1] LOZANO D., MATEOS L. and MERKLEY G. P. et al.Field calibration of submerged sluice gates in irrigation canals[J]. Journal of Irrigation and Drainage Engi- neering, 2009,135(6): 763-772.

    [2] KIM D. G. Numerical analysis of free flow past a sluice gate[J]. KSCE Journal of Civil Engineering, 2007, 11(2): 127-132.

    [3] DEY S., WESTRICH B. Hydraulics of submerged Jet subject to change in cohesive bed geometry[J]. Journal of Hydraulic Engineering, ASCE, 2003, 129(1): 44-53.

    [4] CHATTERJEE S. S., GHOSH S. N. and CHATTERJEE M. Local scour due to submerged horizontal jet[J].Journal of Hydraulic Engineering, ASCE, 1994,120(8): 973-992.

    [5] DEY S., SARKAR A. Response of velocity and turbulence in submerged wall jets to abrupt changes from smooth to rough beds and its application to scour downstream of an apron[J]. Journal of Fluid Mechanics, 2006, 556: 387-419.

    [6] DEY S., NATH T. K. and BOSE S. K. Submerged wall jets subjected to injection and suction from the wall[J].Journal of Mathematical Fluid Mechanics, 2010, 653: 57-97.

    [7] DEY S., SARKAR A. Characteristics of submerged jets in evolving scour hole downstream of an apron[J].Journal of Engineering Mechanics, ASCE, 2008, 134(11): 927-936.

    [8] CASSAN L., BELAUD G. Experimental and numerical investigation of flow under sluice gates[J]. Journal of Hydraulic Engineering, ASCE, 2012, 138(4): 367- 373.

    [9] ERDBRINK C. D., KRZHIZHANOVSKAYA V. V.and SLOOT P. M. A. Free-surface flow simulations for discharge-based operation of hydraulic structure gates[J]. Journal of Hydroinformatics, 2014, 16(1): 189-206.

    [10] KARIM O. A., ALI K. H. M. Prediction of flow patterns in local scour holes caused by turbulent water jets[J]. Journal of Hydraulic Research, 2010, 38(4): 279-287.

    [11] ZHANG Zhao-shun, CUI Gui-xiang. Fluid mechanics[M]. Second Edition, Beijing, China: Tsinghua Uni- versity Press, 2006(in Chinese).

    [12] CHEN Mao-zhang. Fundamentals of viscous fluid dynamics[M]. Beijing, China: Higher Education Press, 2002(in Chinese).

    [13] LIU Shi-he. High speed flow[M]. Beijing, China: Science Press, 2005(in Chinese).

    [14] POPE S. B. Turbulent flows[M]. London, UK: Cambridge University Press, 2000.

    [15] GOTOH T., FUKAYAMA D. and NAKANO T. Velocity field statistics in homogeneous steady turbulence obtained using a high-resolution direct numerical simu- lation[J]. Physics of Fluids, 2002, 14(3): 1065-1081.

    [16] LIU Shi-he, FAN Min and XUE Jiao. The mechanical energy equation for total flow in open channels[J]. Journal of Hydrodynamics, 2014, 26(3): 416-423.

    [17] LIU Shi-he, LIU Jiang and LUO Qiu-shi et al. Engineering turbulence[M]. Beijing, China: Science Press, 2011(in Chinese).

    [18] DEY S., NATH T. K. and BOSE S. K. Fully rough submerged plane wall-jets[J]. Journal of Hydro-Environment Research, 2010, 4(4): 301-316.

    久久久色成人| 亚洲av成人av| 身体一侧抽搐| 国产亚洲精品av在线| 欧洲精品卡2卡3卡4卡5卡区| 操出白浆在线播放| 国产成人精品无人区| 91麻豆精品激情在线观看国产| 亚洲国产精品sss在线观看| 欧美日韩综合久久久久久 | 97超视频在线观看视频| 成人av一区二区三区在线看| 麻豆一二三区av精品| xxxwww97欧美| 禁无遮挡网站| 极品教师在线免费播放| 精品国产美女av久久久久小说| av天堂中文字幕网| 午夜日韩欧美国产| 色av中文字幕| 国产麻豆成人av免费视频| 香蕉国产在线看| 成年人黄色毛片网站| 欧美xxxx黑人xx丫x性爽| 哪里可以看免费的av片| 亚洲,欧美精品.| 一区福利在线观看| 日本成人三级电影网站| 欧美一级a爱片免费观看看| 亚洲人与动物交配视频| 欧美激情在线99| 国产精品一及| 国产高潮美女av| 免费在线观看视频国产中文字幕亚洲| 国产久久久一区二区三区| 亚洲五月婷婷丁香| 国产精品日韩av在线免费观看| 宅男免费午夜| 两性午夜刺激爽爽歪歪视频在线观看| 看片在线看免费视频| 一本精品99久久精品77| 欧美黄色淫秽网站| 香蕉国产在线看| 久久久国产成人免费| 日本a在线网址| 欧美av亚洲av综合av国产av| 又粗又爽又猛毛片免费看| 欧美日韩综合久久久久久 | 99国产极品粉嫩在线观看| 白带黄色成豆腐渣| 国产av麻豆久久久久久久| 欧美极品一区二区三区四区| 亚洲国产色片| 国产成人精品无人区| 成人特级av手机在线观看| 美女免费视频网站| 欧美不卡视频在线免费观看| 精品一区二区三区av网在线观看| 久久久久久大精品| 午夜免费成人在线视频| 午夜精品一区二区三区免费看| 色视频www国产| 日本 欧美在线| 国产高清有码在线观看视频| 88av欧美| 久久人人精品亚洲av| 国内精品一区二区在线观看| 搡老熟女国产l中国老女人| 免费看日本二区| 首页视频小说图片口味搜索| 国产美女午夜福利| 亚洲av第一区精品v没综合| 国产私拍福利视频在线观看| 最好的美女福利视频网| 午夜福利高清视频| 免费看光身美女| 精品国产乱子伦一区二区三区| 欧美色欧美亚洲另类二区| 一本久久中文字幕| 91av网站免费观看| 午夜福利成人在线免费观看| a级毛片在线看网站| 久久精品综合一区二区三区| 九九久久精品国产亚洲av麻豆 | 日韩成人在线观看一区二区三区| www.自偷自拍.com| 免费看a级黄色片| 神马国产精品三级电影在线观看| 亚洲精品在线美女| 亚洲国产高清在线一区二区三| 一二三四在线观看免费中文在| 亚洲国产精品合色在线| 搡老熟女国产l中国老女人| 成人欧美大片| 日本一本二区三区精品| 婷婷丁香在线五月| 国产视频内射| 美女cb高潮喷水在线观看 | 亚洲在线自拍视频| 欧美色视频一区免费| 久久亚洲真实| 久久久久国内视频| 免费电影在线观看免费观看| 亚洲乱码一区二区免费版| 一区二区三区激情视频| 国产精品98久久久久久宅男小说| 亚洲av片天天在线观看| 国产aⅴ精品一区二区三区波| www国产在线视频色| 国产成人一区二区三区免费视频网站| 午夜福利视频1000在线观看| а√天堂www在线а√下载| 免费观看人在逋| 久久久国产精品麻豆| 免费高清视频大片| 免费av毛片视频| 国产精品一及| www.999成人在线观看| 波多野结衣高清作品| 久久久久久久午夜电影| 免费看十八禁软件| 青草久久国产| 亚洲欧美精品综合久久99| 久久草成人影院| www.www免费av| a在线观看视频网站| 黄色片一级片一级黄色片| 性色av乱码一区二区三区2| 视频区欧美日本亚洲| 日韩欧美三级三区| 黄色女人牲交| 午夜福利欧美成人| 午夜福利18| 男人舔奶头视频| 村上凉子中文字幕在线| 色在线成人网| 国产精品久久久av美女十八| 999久久久国产精品视频| 三级国产精品欧美在线观看 | 久久精品综合一区二区三区| 变态另类丝袜制服| 999久久久国产精品视频| 波多野结衣高清无吗| 婷婷精品国产亚洲av在线| 国产精品乱码一区二三区的特点| 中文资源天堂在线| 亚洲国产欧美网| 国产欧美日韩精品一区二区| 两个人看的免费小视频| 美女扒开内裤让男人捅视频| 免费在线观看成人毛片| 18美女黄网站色大片免费观看| 91av网站免费观看| 国产一区二区三区在线臀色熟女| 亚洲熟妇熟女久久| 久久精品国产清高在天天线| 欧美+亚洲+日韩+国产| 香蕉国产在线看| 这个男人来自地球电影免费观看| 嫩草影院入口| 18禁美女被吸乳视频| 91在线精品国自产拍蜜月 | 国产精品综合久久久久久久免费| 麻豆成人av在线观看| 婷婷亚洲欧美| av福利片在线观看| 国产精品1区2区在线观看.| 无限看片的www在线观看| 亚洲成av人片在线播放无| 中文资源天堂在线| 在线观看舔阴道视频| 日韩欧美在线乱码| 91老司机精品| 91老司机精品| 高潮久久久久久久久久久不卡| 亚洲人成网站高清观看| 国产久久久一区二区三区| 老司机福利观看| 国内久久婷婷六月综合欲色啪| 黄色丝袜av网址大全| 制服人妻中文乱码| 啦啦啦观看免费观看视频高清| 免费在线观看日本一区| 日日夜夜操网爽| 欧美激情久久久久久爽电影| 黄色日韩在线| 18禁观看日本| 欧美av亚洲av综合av国产av| 香蕉av资源在线| 麻豆国产97在线/欧美| 免费看美女性在线毛片视频| 欧美成人性av电影在线观看| 1024手机看黄色片| 少妇的丰满在线观看| 国产 一区 欧美 日韩| 亚洲中文日韩欧美视频| 日韩国内少妇激情av| 夜夜看夜夜爽夜夜摸| 成人av一区二区三区在线看| 丁香欧美五月| 香蕉av资源在线| 久久中文字幕人妻熟女| 国产一区二区三区在线臀色熟女| 成在线人永久免费视频| 亚洲av第一区精品v没综合| 国产成人影院久久av| 国产单亲对白刺激| 日韩欧美国产在线观看| 午夜日韩欧美国产| 国语自产精品视频在线第100页| 91字幕亚洲| 村上凉子中文字幕在线| 日韩三级视频一区二区三区| 国产欧美日韩精品亚洲av| 日韩三级视频一区二区三区| 最近视频中文字幕2019在线8| 一个人免费在线观看的高清视频| 国产黄色小视频在线观看| 国产精品久久久久久精品电影| 午夜a级毛片| 国内少妇人妻偷人精品xxx网站 | 日日干狠狠操夜夜爽| 啪啪无遮挡十八禁网站| 亚洲人成伊人成综合网2020| 黄色丝袜av网址大全| 免费看光身美女| 亚洲 国产 在线| 免费av毛片视频| 我要搜黄色片| 久久午夜亚洲精品久久| 麻豆国产av国片精品| 男女视频在线观看网站免费| 后天国语完整版免费观看| 亚洲精品456在线播放app | 国产成人福利小说| 99国产综合亚洲精品| 日本免费a在线| 嫩草影院入口| 操出白浆在线播放| 国产v大片淫在线免费观看| 午夜成年电影在线免费观看| 真实男女啪啪啪动态图| 久久久精品大字幕| 午夜久久久久精精品| 欧美一级a爱片免费观看看| 国产熟女xx| 在线a可以看的网站| 久久精品人妻少妇| 午夜a级毛片| 亚洲精品美女久久av网站| 亚洲av电影在线进入| 免费看美女性在线毛片视频| 亚洲国产精品成人综合色| tocl精华| 两人在一起打扑克的视频| 亚洲在线自拍视频| 在线国产一区二区在线| 天天一区二区日本电影三级| 国产午夜福利久久久久久| 国产爱豆传媒在线观看| 88av欧美| 亚洲成av人片免费观看| svipshipincom国产片| 搡老熟女国产l中国老女人| 日韩欧美 国产精品| 91av网一区二区| 国产午夜精品久久久久久| 亚洲精品久久国产高清桃花| 色综合欧美亚洲国产小说| 精品国内亚洲2022精品成人| 亚洲最大成人中文| 国产成人系列免费观看| 国产成人福利小说| 亚洲欧美日韩高清专用| 精品日产1卡2卡| 一区二区三区国产精品乱码| 日本黄色视频三级网站网址| 精华霜和精华液先用哪个| 九九热线精品视视频播放| 国产亚洲精品久久久com| 欧洲精品卡2卡3卡4卡5卡区| 岛国在线观看网站| 大型黄色视频在线免费观看| 88av欧美| 在线观看午夜福利视频| 国产精品永久免费网站| 香蕉久久夜色| 国产极品精品免费视频能看的| 午夜a级毛片| 俄罗斯特黄特色一大片| 国产麻豆成人av免费视频| 91老司机精品| 亚洲成人免费电影在线观看| 他把我摸到了高潮在线观看| 国产美女午夜福利| 国产单亲对白刺激| 免费观看精品视频网站| 成年版毛片免费区| 成年人黄色毛片网站| 免费看日本二区| 国产精品一区二区免费欧美| 亚洲国产精品合色在线| 国产精品综合久久久久久久免费| 国产蜜桃级精品一区二区三区| 久久久国产精品麻豆| 久久久久九九精品影院| 老司机午夜福利在线观看视频| 久久精品亚洲精品国产色婷小说| 精品不卡国产一区二区三区| 少妇丰满av| 97超视频在线观看视频| 欧美在线一区亚洲| 国产日本99.免费观看| svipshipincom国产片| 91九色精品人成在线观看| 午夜福利在线观看免费完整高清在 | 哪里可以看免费的av片| 日韩av在线大香蕉| 在线看三级毛片| 成人一区二区视频在线观看| 久久香蕉精品热| 亚洲av美国av| 欧美一区二区国产精品久久精品| 男人和女人高潮做爰伦理| 国产精品 欧美亚洲| 特级一级黄色大片| 大型黄色视频在线免费观看| 国产av不卡久久| 高清毛片免费观看视频网站| 欧美中文综合在线视频| 欧美乱色亚洲激情| 日韩精品青青久久久久久| 亚洲av免费在线观看| 男女视频在线观看网站免费| 国产美女午夜福利| 美女被艹到高潮喷水动态| 亚洲精品在线美女| avwww免费| а√天堂www在线а√下载| 欧美色欧美亚洲另类二区| 人人妻人人看人人澡| 老熟妇仑乱视频hdxx| 香蕉av资源在线| 午夜福利视频1000在线观看| 久久午夜综合久久蜜桃| 国产黄片美女视频| 日韩成人在线观看一区二区三区| 丰满人妻一区二区三区视频av | 色在线成人网| 免费看美女性在线毛片视频| 精品日产1卡2卡| 搞女人的毛片| 搡老岳熟女国产| 免费搜索国产男女视频| 欧美中文综合在线视频| 亚洲欧美精品综合一区二区三区| 精品国产美女av久久久久小说| 色精品久久人妻99蜜桃| 日韩欧美在线二视频| 亚洲av五月六月丁香网| 精品国产三级普通话版| 男插女下体视频免费在线播放| 黄色丝袜av网址大全| 一级黄色大片毛片| 宅男免费午夜| 久久性视频一级片| 人妻丰满熟妇av一区二区三区| 亚洲专区中文字幕在线| 久久久久久国产a免费观看| 热99re8久久精品国产| 搡老熟女国产l中国老女人| 国产精品香港三级国产av潘金莲| 观看美女的网站| 亚洲国产精品久久男人天堂| 午夜两性在线视频| 亚洲熟妇熟女久久| 国产精品美女特级片免费视频播放器 | 美女 人体艺术 gogo| netflix在线观看网站| 亚洲成人精品中文字幕电影| 亚洲欧美一区二区三区黑人| 蜜桃久久精品国产亚洲av| 精品一区二区三区视频在线观看免费| or卡值多少钱| 婷婷丁香在线五月| 精品国产超薄肉色丝袜足j| 亚洲av第一区精品v没综合| 亚洲在线观看片| 久久精品人妻少妇| 欧美日韩中文字幕国产精品一区二区三区| 亚洲色图 男人天堂 中文字幕| 看片在线看免费视频| 欧美又色又爽又黄视频| 亚洲av日韩精品久久久久久密| 99热6这里只有精品| 亚洲专区字幕在线| www.自偷自拍.com| av在线天堂中文字幕| 97超级碰碰碰精品色视频在线观看| 在线国产一区二区在线| 男女午夜视频在线观看| 极品教师在线免费播放| 狂野欧美激情性xxxx| 熟妇人妻久久中文字幕3abv| 午夜影院日韩av| 岛国在线免费视频观看| 亚洲国产精品久久男人天堂| 一级黄色大片毛片| 美女黄网站色视频| 在线观看免费午夜福利视频| 又黄又粗又硬又大视频| 国产精品av视频在线免费观看| 男女视频在线观看网站免费| 久久久久精品国产欧美久久久| 日本黄大片高清| 亚洲狠狠婷婷综合久久图片| 亚洲第一欧美日韩一区二区三区| 国产黄片美女视频| 色吧在线观看| 午夜福利视频1000在线观看| 亚洲中文日韩欧美视频| 精华霜和精华液先用哪个| 性色avwww在线观看| 91九色精品人成在线观看| 91麻豆精品激情在线观看国产| 熟女人妻精品中文字幕| 亚洲国产日韩欧美精品在线观看 | 日本成人三级电影网站| 九色成人免费人妻av| 亚洲人与动物交配视频| 9191精品国产免费久久| 国产精品久久久av美女十八| 亚洲欧美日韩卡通动漫| svipshipincom国产片| 国产精品亚洲一级av第二区| 欧美黄色片欧美黄色片| 亚洲人与动物交配视频| 日韩国内少妇激情av| 亚洲18禁久久av| 性欧美人与动物交配| 亚洲成人免费电影在线观看| 国产一区二区激情短视频| 中文字幕最新亚洲高清| 又粗又爽又猛毛片免费看| 欧美成人性av电影在线观看| 天堂网av新在线| 精品人妻1区二区| 午夜免费激情av| 啦啦啦观看免费观看视频高清| 精品人妻1区二区| 夜夜爽天天搞| 啦啦啦观看免费观看视频高清| 日本免费一区二区三区高清不卡| 久久久国产精品麻豆| 成人鲁丝片一二三区免费| 精品国产超薄肉色丝袜足j| 久久中文字幕一级| av黄色大香蕉| 国产三级中文精品| 香蕉丝袜av| 亚洲人成网站高清观看| 久久精品综合一区二区三区| 日韩有码中文字幕| 国产一级毛片七仙女欲春2| 18禁裸乳无遮挡免费网站照片| 三级男女做爰猛烈吃奶摸视频| 久久亚洲真实| 欧美绝顶高潮抽搐喷水| 免费大片18禁| 一区二区三区国产精品乱码| 床上黄色一级片| 男插女下体视频免费在线播放| 在线观看66精品国产| 99国产精品一区二区蜜桃av| 9191精品国产免费久久| 波多野结衣高清作品| 狂野欧美激情性xxxx| 国产一级毛片七仙女欲春2| 18禁美女被吸乳视频| 亚洲中文日韩欧美视频| 老汉色av国产亚洲站长工具| 精品日产1卡2卡| 亚洲真实伦在线观看| 日本一二三区视频观看| 亚洲国产精品合色在线| 亚洲中文av在线| 国产综合懂色| 亚洲国产精品999在线| 欧美日韩福利视频一区二区| 国产一级毛片七仙女欲春2| 久久久久久久精品吃奶| 一级毛片高清免费大全| 一进一出好大好爽视频| 熟女少妇亚洲综合色aaa.| av中文乱码字幕在线| 国产精品美女特级片免费视频播放器 | 成人av一区二区三区在线看| 亚洲五月婷婷丁香| 国产精品99久久99久久久不卡| cao死你这个sao货| 国产午夜精品论理片| 观看美女的网站| 免费在线观看视频国产中文字幕亚洲| 最近视频中文字幕2019在线8| 国产aⅴ精品一区二区三区波| 国产一区二区在线观看日韩 | 色播亚洲综合网| 特级一级黄色大片| or卡值多少钱| 欧美一级a爱片免费观看看| 久久精品国产清高在天天线| 国产久久久一区二区三区| 日本 av在线| 国产精品 欧美亚洲| 色综合亚洲欧美另类图片| 99久国产av精品| 久久亚洲精品不卡| 亚洲第一欧美日韩一区二区三区| 亚洲美女黄片视频| 在线看三级毛片| 好男人电影高清在线观看| 99riav亚洲国产免费| 国产黄片美女视频| cao死你这个sao货| 白带黄色成豆腐渣| 亚洲欧美一区二区三区黑人| 91在线观看av| 国产成人福利小说| 国产在线精品亚洲第一网站| 国产精品香港三级国产av潘金莲| 亚洲成a人片在线一区二区| 男人舔女人的私密视频| 一进一出抽搐动态| 熟女电影av网| 天天躁日日操中文字幕| 麻豆一二三区av精品| 在线免费观看的www视频| 欧美成人免费av一区二区三区| 神马国产精品三级电影在线观看| 禁无遮挡网站| 少妇熟女aⅴ在线视频| 国内毛片毛片毛片毛片毛片| 日韩大尺度精品在线看网址| 国产精品久久久久久精品电影| 色视频www国产| 此物有八面人人有两片| 国产成人影院久久av| 白带黄色成豆腐渣| 黄频高清免费视频| 日日摸夜夜添夜夜添小说| 在线永久观看黄色视频| 久久久久国产一级毛片高清牌| 18禁观看日本| 亚洲人成电影免费在线| 日韩欧美国产一区二区入口| 女警被强在线播放| 国产高清视频在线播放一区| 欧美成狂野欧美在线观看| 亚洲国产高清在线一区二区三| 在线观看美女被高潮喷水网站 | 日本免费一区二区三区高清不卡| 欧美成狂野欧美在线观看| 熟女电影av网| 两性夫妻黄色片| 老司机在亚洲福利影院| 免费看美女性在线毛片视频| 欧美乱码精品一区二区三区| 成在线人永久免费视频| 国产伦一二天堂av在线观看| 久久中文字幕人妻熟女| 欧美乱色亚洲激情| 搡老妇女老女人老熟妇| 国产精品亚洲美女久久久| 欧美zozozo另类| 国产精品98久久久久久宅男小说| 久久亚洲真实| 亚洲人成网站在线播放欧美日韩| 中国美女看黄片| 日本黄色视频三级网站网址| 桃红色精品国产亚洲av| 老汉色∧v一级毛片| 亚洲国产色片| 悠悠久久av| 熟女人妻精品中文字幕| ponron亚洲| 欧美日韩一级在线毛片| 国产精品综合久久久久久久免费| bbb黄色大片| 日韩欧美国产一区二区入口| 久99久视频精品免费| 大型黄色视频在线免费观看| 很黄的视频免费| 久久精品夜夜夜夜夜久久蜜豆| 99热6这里只有精品| 久久人人精品亚洲av| 桃色一区二区三区在线观看| 久久国产乱子伦精品免费另类| 桃色一区二区三区在线观看| 精品久久久久久,| 国产单亲对白刺激| 草草在线视频免费看| 日本三级黄在线观看| 91麻豆精品激情在线观看国产| 欧美大码av| www.999成人在线观看| 日韩大尺度精品在线看网址| 久久久久久国产a免费观看| 国产激情偷乱视频一区二区| 一个人免费在线观看的高清视频| 国产成人精品久久二区二区免费| 国产精品女同一区二区软件 | 国语自产精品视频在线第100页| 欧美成人一区二区免费高清观看 | 99精品久久久久人妻精品| 村上凉子中文字幕在线|