• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Three-dimensional prediction of reservoir water temperature by the lattice Boltzmann method: Validation*

    2015-04-20 05:52:41DIAOWei刁偉CHENGYongguang程永光ZHANGChunze張春澤WUJiayang吳家陽
    關(guān)鍵詞:永光

    DIAO Wei (刁偉), CHENG Yong-guang (程永光), ZHANG Chun-ze (張春澤), WU Jia-yang (吳家陽)

    State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China, E-mail: wdiao@whu.edu.cn

    Introduction

    Quite a number of high dams and large reservoirs were built in China. By 2013, more than 150 dams higher than 100 m were erected and over 750 large reservoirs built, with a total water capacity of 7×1011cubic meters. These reservoirs play important roles in the flood control, the power generation, the navigation,the irrigation, and the tourism. In these scenarios, the thermal stratification in high-dam reservoirs is an important issue. The temperature of a large deep reservoir usually varies by more than 10oC, and the temperature in the middle and bottom regions remain at the level of about 12oC-13oC. The stratification may cause physical and chemical changes in the properties of the water, affect the ecological balance of the environment, hamper the growth of irrigated plants, and even have impacts on the normal life of local residents[1]. Therefore, an effective and efficient simulation and prediction of the reservoir water temperature is important for promoting a harmonious hydraulic development and an ecological protection.

    Currently, the basic methods for studying the water temperature distribution in reservoirs include the empirical/analogical methods[1,2], the physical model tests[3,4], and the numerical models[5,6]. Of these,the empirical/analogical method can provide only an approximate 1-D vertical distribution, and the physical model tests are costly, time consuming, and restrictive in the assessment of physical phenomena. Only the numerical method can strike a balance between accuracy, efficiency, economy, and applicability, which makes it the most suitable approach for predicting the temperature distribution. Of the numerical methods available, the 3-D model is the most powerful and promising because it can provide detailed temporal and spatial patterns of temperature and flow, although the 1-D and 2-D methods are still dominant in use[7].

    The lattice Boltzmann method (LBM), based on the kinetic theory, is a newly developed computing technique for simulating complex fluid flows. It hasbeen applied successfully to the simulations of the large-scale flow, the multi-phase flow, the multi-component flow, the porous media flow, and other flows.Because of its many advantages, including its simple algorithm, the intrinsic parallelism, and the simple implementation of boundary conditions, the LBM has shown greater development prospects than the traditional numerical methods for fluid mechanics[8]. The LBM models for thermal fluid flows can be classified in three categories: the multi-speed approach[9], the multi-distribution function approach[10], and the combined approach[11]. These thermal models were used successfully to simulate practical heat transfer problems[12], but their applications to the predictions of the water temperature distributions in reservoirs or lakes are few.

    This paper presents simulations of the process of the water temperature variation in a model reservoir,in a benchmark test by the US Army Corps of Engineers Waterways Experiment Station[4]. An LBM model, based on the large-eddy simulation for thermal buoyancy flows, is adopted to simulate and analyze the temporal and spatial variations of the reservoir water temperature, to validate the method, and to analyze the mechanism of the gravity sinking current.

    1. Computational models for reservoir water temperature

    1.1 Double distribution function LBM model based on Boussinesq assumption

    The reservoir water is normally considered as incompressible, with the density, the viscosity, and the thermal diffusivity being also assumed to be constant except for the buoyant body force. Therefore, the governing equations for the model of the reservoir water flow can be expressed with the Boussinesq assumption[13]as:

    wherepis the pressure,Dis the diffusivity,νis the viscosity,βis the thermal expansion coefficient,andT0is the average temperature.

    To solve Eq.(1), the double-distribution-functionbased LBM (DDF-LBM) model may be used. The DDF-LBM, first developed by Bartoloni in 1993[14],models the velocity and temperature fields by two respective distribution functions and the two fields are coupled by a body forcing term in the flow field. Here,based on the improved 2-D DDF-LBM of Guo at al.[10], we extend the model to the 3-D form using the D3Q19 model for the velocity field simulation and the D3Q6 model for the temperature field simulation. The LBM equations for these two fields may be expressed as follows:

    in whichfiandgiare the distribution functions for the water flow and the temperature field, respectively,andare the corresponding equilibrium distribution functions,τ1andτ2are the relaxation factors, andHiis the buoyant forcing term.

    The equilibrium distribution functions can be expressed as:

    whereuis the velocity vector,Tis the temperature,σ,λandγare the parameters satisfyingλ+2γ=σandλ+2γ=1/3, and chosen as 1/3, 1/6, and 1/12 in this work, respectively.si(u) can be expressed as a function of the macroscopic velocityuand the discrete velocityei.

    whereiωis the weight coefficient in the D3Q19 model, andcsis the speed of sound.

    The macroscopic velocityu, the pressurep,and the temperatureTare expressed in the moments of the distribution functions as

    The viscosityν, the diffusivityD, and the Prandtl numberPrare determined by

    The coupling of the velocity field with the temperature field is realized by attaching an additional forcing termHito Eq.(2). The introduction of this forcing term is essential for the accuracy and the stability of the coupling scheme. We adopt the newly proposed approach by Cheng and Li[14]because it has been verified to be stable and accurate for treating non-uniform, unsteady forcing and source terms. According to the Ref.[15], the forcing termHican be expressed as

    in which

    whereAis the source term in the continuity equation andBis the forcing term in the momentum equation.Considering Eq.(1), we setA=0 andB=-gβ(TT0).

    It should be noted that using the D3Q6 model for the 3-D temperature field can save the computer memory usage and increase the speed of the calculation.However, when treating complex boundary problems,the number of discrete particle velocities should be increased to retain good accuracy and stability.

    1.2 Large eddy simulation based on LBM

    When a subgrid-scale model is used in the large eddy simulation, the physical quantities of the fluid flow can be divided into two parts: the large-scale and small-scale quantities[16]. Taking′, for example.is the filtered largescale quantities ofφusing the filter functionGandrepresents the small-scale fluctuations being modeled.

    in which the distribution functions are all filtered quantities. The relaxation timeis not a constant but is a variable that changes with time and space, which can be calculated by the total viscosity=, whereνandare the molecular and eddy viscosities, respectively. According to the Smagorinsky model[13],can be obtained by=, whereC, Δ andare the Smagorinsky constant, the filter width, and the strain-rate tensor, respectively. The strain-rate tensor can be calculated easily by using the second order moments of the filtered particle distributions[16].

    Fig.1 Isothermal surfaces for natural convection in a cubic cavity

    Table 1 Comparison of representative field values

    2. Model verification

    2.1 Natural convection in a cubic cavity

    Initially, the natural convection in a cubic cavity ofL×L×Lis simulated. The hot wall ofTh=1oC is on the right-hand side and the cold wall ofTc=?1oC is on the left[16]. The initial temperature is set asT0=(Th+Tc)/2. The Rayleigh and Prandtl numbers are defined byandPr=ν/D,respectively. A lattice ofNx×Ny×Nz=81× 81× 81 is applied, andPr=0.71 andRa=103, 104, and 105are given.

    The simulated isothermal surfaces for the natural convection flows at different Rayleigh numbers are shown in Fig.1.

    Table 1 lists some representative results of the flow field in the symmetry plane (y=Ny/2) for comparison with those in the literature[16,17]. These representative results include the maximum horizontal velocityon the vertical mid-line and its correspondingZcoordinate, the maximum vertical velocityon the horizontal mid-line and its correspondingXcoordinate, the maximum Nusselt numbersat the vertical boundary (x=0) and its locationZNu, and the average Nusselt numberTable 1 shows that the results obtained in this paper agree well with those in Ref.[17].

    2.2 3-D Rayleigh-Bénardconvection

    The Rayleigh-Bénard convection is another benchmark that generates regular flow and temperature patterns in a cavity with a heated bottom and a cooled top.

    The initial temperature of the flow isTc=?1oC.The hot wall ofTh=1oC is on the bottom and the cold wall ofTc=?1oC is on the top. The Rayleigh and Prandtl numbers are defined by/(νD) andPr=ν/D, respectively. This simulation is carried out with a lattice ofNx×Ny×Nz=201×201×51, andPr=0.71 andRa=10000 are applied.

    Fig.2 Simulated 3-D Rayleigh-Bénard convection

    Fig.3 Schematic diagram and dimensions of model reservoir

    Fig.4 Isothermal surfaces of reservoir water at different times

    Figure 2(a) shows the temperature distributions and the velocity vectors of the 3-D Rayleigh-Bénard convection at different planes, includingx=0 and 0.5,y=0 and 0.5, andz=0. The isothermal surfaces where the temperature is above 0oC are shown in Fig.2(b). The good pattern symmetry and the stable cell rotation can be observed in Fig.2, which shows the basic feature of the Rayleigh-Bénard convection and demonstrates the modeling capability of the present model.

    3. Temporal and spatial variations of temperature in a reservoir

    3.1 Test of gravity sinking current in a model reservoir

    The experimental data of the gravity sinking current in a model reservoir, tested by the US Army Corps of Engineers Waterways Experiment Station,are used to validate further the LBM model. As shown in Fig.3, the geometry of the model reservoir can be divided into two parts: a horizontally expanding channel of 6.1 m in length, and 0.3 m in initial depth,which increases linearly from 0.3 m to 0.91 m, and a vertically deepening channel of 18.29 m in length, and 0.91 m in initial width, which increases linearly from 0.3 m to 0.91 m. The inlet, located at the bottom of the left-hand wall, is an orifice of 0.15 m in height. The outlet, located at the right-hand wall, is a narrow rectangular hole of 0.04m in height situated 0.15 m above the bottom. Initially, the reservoir water is stationary with a uniform temperature of 21.44oC. When the test begins, the cold water with a temperature of 16.67oC flows into the reservoir at a rate of 0.00063 m3/s, and the outlet is drained at the same flow rate to maintain a constant water surface level[5].

    3.2 Simulation conditions

    Considering the geometry and the flow symmetry,only half the flow domain is simulated by the DDFLBM model to reduce the memory requirement and improve the speed. The slip boundary condition and the symmetric boundary condition are imposed at the top and symmetric planes of the reservoir, respectively. A uniform water velocity of 0.014 m/s is imposed at the inlet, while the outflow boundary, by extrapolation, is specified at the outlet. Other boundaries are treated as non-slip walls. For the thermal boundary conditions, the temperatures of 21.44oC and 16.67oC are maintained at the top and the inlet, respectively,and all other boundaries are set as adiabatic. The Prandtl numberPris 7 when the temperature of the water is around 20oC. The kinematic viscosityν=0.003021m2/s and the diffusivityD=0.000431are specified. The simulation is conducted on a 2 440×46×92 lattice.

    Fig.5 Velocity vectors of reservoir flow at different times

    3.3 Temporal and spatial variations of reservoir water temperature

    Figure 4 shows the isothermal surfaces of the reservoir water temperature at timet=2 min, 8 min,12 min, 16 min, 20 min and 50 min and Fig.5 shows the velocity field at the corresponding times.

    The entire process of the thermal stratification falls into four stages. (1) When the cold water flows as a jet from the inlet into the warmer reservoir, the front,characterized with a large temperature gradient,moves forwards along the bottom, as shown in Fig.4(a). However, no strong vertical convection occurs because of the sinking force from the density difference, although a weak recirculation flow is causedin the upper region, as shown in Fig.5(a). This process may be denoted as the jet penetrating stage. (2) As the cold current front reaches the vertically deepening section of the reservoir, the current accelerates owing to the gravity effect and it moves with transversally nonuniform velocities along the bottom slope, forming a tongue-shaped front, as shown in Fig.4(b). The temperature difference between the cold current and the upper warm water restrains the vertical momentum transfer and generates a sharp vertical velocity gradient, as shown in Fig.5(b). With the further advance of the cold current into the deeper water along the reservoir bottom slope, the current tongue grows thicker and the recirculation region becomes larger, as shown in Fig.4(c) and Fig.5(c). At this moment, the stage of the tongue-like isothermal surface is completed. (3)Subsequently, the temperature within the tongue reduces slowly, while the temperature gradient between the cold current and the warm water remains. The large temperature gradient also restrains the vertical momentum and energy transfers, and causes an obvious thermal stratification of the reservoir water, as shown in Fig.4(d). Corresponding to the temperature distribution, the velocity field also maintains a sharp gradient across the interface of the cold and warm water. The water in the upper region flows in the reverse direction and the water ahead of the tongue flows vertically, forming an expanding recirculation flow region, as shown in Fig.5(d). This is the stage of forming the thermal stratification. (4) When the tongue front of the cold current reaches the right boundary or the dam wall, the stage of forming the horizontal temperature layers begins. In this stage, the cold water begins to accumulate in front of the dam and the isothermal surface of 21oC becomes flat, as shown in Fig.4(e). The recirculation region becomes the longest with the velocity in the front rising along the vertical dam wall, as shown in Fig.5(e). Gradually, the cold water occupies more of the lower space within the reservoir, the isothermal surface of 21oC becomes flat across a broad region, whereas the isothermal surfaces of 18 and 19oC remain parallel with the bottom slope,as shown in Fig.4(e) and Fig.4(f). The entire reservoir is dominated by a recirculation flow, in which the strong cold current gradually expands in the thickness direction as it flows along the bottom slope, while the water in the other region flows in the opposite direction, as shown in Fig.5(e) and Fig.5(f).

    During the above processes, the temperature difference between the inflow water and the still water restricts the vertical convection and the turbulent fluctuation. A stable cold sinking current causes the formation and the development of the thermal stratification in the entire reservoir. This strong coupling phenomenon of the velocity and temperature fields indicates that the correct simulation of the turbulent and buoyant flows is an important factor for predicting the thermal stratification of the reservoir water.

    The above characteristics of the temperature and the flow agree well with the results calculated by using the Fluent commercial software by Tang et al.[19].

    Fig.6 Comparison of velocityuxprofiles at x =11.43m and t =11min on the symmetric plane

    Fig.7 Comparison of the histories of drained water temperature

    3.4 Velocity profiles and drained water temperature

    Figure 6 compares the velocity profiles along a vertical line 11.43 m from the inlet of the reservoir at the time of 11 min. The RNG, RSM, and Realizable curves are obtained from the Fluent software[19], and the measured data are from the original test[4]. The present results show that the peak velocity of the cold current is about 0.023 m/s and that the peak reversal flow velocity in the upper water is about 0.005 m/s,they are smaller than the measured data and the current thickness is larger than the measured data. This is because the present simulation is performed with a uniform cubic lattice with a grid that is too coarse to reflect properly the sharp velocity gradient of the boundary layer. This can be proved by the comparison of the simulation results on different meshes in the subsection 4.5. On the other hand, no turbulent boundary layer function is applied in the simulation with the subgrid-scale model, which may affect the velocity profiles near the solid boundary. Figure 7 shows the histories of the drained water temperature at the outlet of the reservoir by different methods. Among the four numerical results, those from the present work agreebest with the measured data.

    This simulation is run on a PC with 4 cores of 2.66 GHz CPU in MATLAB codes. The number of lattices in this simulation is about 5.5×106, and it takes about 170 h to complete the 50 min process. Obvious speedup may be achieved in the future GPU parallelization.

    Fig.8 Comparison of profiles of velocity ux atx=11.43m and t=11min on the symmetric plane by different meshes

    Fig.9 Comparison of the temperature histories of the drained water by different meshes

    3.5 Comparison of results by different meshes

    To examine the lattice dependence of the solutions, simulations on three different meshes are conducted. Figure 8 shows the profiles of the velocityuxand Fig.9 shows the temperature histories of the drained water by lattice sizes Δx= Δy=0.0125 m, 0.01 m and 0.008 m. It is evident that the results by the coarse lattice of Δx= Δy=0.0125m show larger relative error than those by the fine lattice of Δx= Δy=0.01 m. But the differences of relative errors between the lattice 0.01 m and 0.008 m are not significant. This suggests that the results in the last section are obtained on a convergent grid.

    4. Conclusion

    A double-distribution-function LBM model is proposed for the 3-D prediction of the reservoir water temperature. This Boussinesq-assumption-based buoyant flow model is verified by two benchmarks: the natural convection in a cubic cavity and the Rayleigh-Bénard convection instability. The temporal and spatial variations of the temperature and the flow in a model reservoir are simulated to validate the method.The general agreement between the measured data and other numerical results demonstrates the accuracy and the efficiency of the present method. The method to treat the turbulent boundary layer and a locally refined grid might be adopted to improve the present model.Implementing the method on GPU chips to improve the simulation efficiency and applying it to flow and temperature predictions of actual reservoirs and lakes will be conducted in the future.

    [1] ZHANG Xian-E, ZHOU Xiao-de and ZANG Lin. Discussion on research methods for the water temperature in reservoir[J]. Journal of Water Resources and Water Engineering, 2006, 17(3): 1-4(in Chinese).

    [2] ZHANG Shi-jie, PENG Wen-qi. Water temperature structure and influencing factors in Ertan Reservoir[J].Journal of Hydraulic Engineering, 2009, 40(10):1254-1258(in Chinese).

    [3] LIU L., LIU D. and JOHNSON D. M. et al. Effects of vertical mixing on phytoplankton blooms in Xiangxi Bay of Three Gorges Reservoir: Implications for management[J]. Water Research, 2012, 46(7): 2121-2130.

    [4] TEETER A. M., JOHNSON B. H. and BERGER C. et al. Hydrodynamic and sediment transport modeling with emphasis on shallow-water, vegetated areas (lakes,reservoirs, estuaries and lagoons)[J]. Hydrobiologia,2001, 444: 1-23.

    [5] DENG Yun, LI Jia and LUO Lin. Temperature prediction model for reservoirs[J]. Journal of Hydraulic Engineering, 2003, (7): 7-11(in Chinese).

    [6] BL?CHER M. G., ZIMMERMANN G. and MOECK I.et al. 3D numerical modeling of hydrothermal processes during the lifetime of a deep geothermal reservoir[J].Geofluids, 2010, 10(3): 406-421.

    [7] LI Lan, WU Jian. The three-dimensional environmental fluid dynamics code model for research of reservoir water temperature law[J]. Chinese Journal of Hydrodynamics, 2010, 25(2): 155-164(in Chinese).

    [8] LALLEMAND P., LUO L. Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy,Galilean invariance, and stability[J]. Physical Review E, 2000, 61(6): 6546-6562.

    [9] SHAN X., YUAN X. and CHEN H. Kinetic theory representation of hydrodynamics: A way beyond the Navier-Stokes equation[J]. Fluid Mechanics, 2006, 550:413-441.

    [10] GUO Z., SHI B. and ZHENG C. A coupled lattice BGK model for the Bouessinesq equations[J]. International Journal for Numerical Methods in Fluids, 2002.39(4): 325-342.

    [11] VERHAEGHE F., BLANPAIN B. and WOLLANTS P.Lattice Boltzmann method for double-diffusive natural convection[J]. Physical Review E, 2007, 75(4): 4-10.

    [12] AIDUN C., CLAUSEN J. Lattice Boltzmann methodfor complex flows[J]. Annual Review of Fluid Mechanics, 2010, 42: 439-472.

    [13] MAYER G., PALES J. and HáZI G. Large eddy simulation of subchannels using the lattice Boltzmann method[J]. Annals of Nuclear Energy, 2007, 34(1): 140-149.

    [14] CHENG Y., LI J. Introducing unsteady non-uniform source terms into the lattice Boltzmann model[J]. International Journal for Numerical Methods in Fluids,2007, 56(6): 629-641.

    [15] PENG Y., SHU C. and CHEW Y. T. A 3D incompressible thermal lattice Boltzmann model and its application to simulate natural convection in a cubic cavity[J].Journal of Computational Physics, 2004, 193(1): 260-274.

    [16] FUSEGI T., HYUN J. M. and KUWAHARA K. et al. A numerical study of three-dimensional natural convection in a differentially heated cubical enclosure[J]. International Journal of Heat and Mass Transfer, 1991,34(6): 1543-1557.

    [17] TANG Xiao, CHENG Yong-guang. Multidimensional prediction of reservoir water temperature based on FLUENT[J]. Engineering Journal of Wuhan University, 2010, 43(1): 59-63(in Chinese).

    猜你喜歡
    永光
    廣東永光刀剪集團(tuán)有限公司
    五金科技(2024年2期)2024-04-25 04:11:30
    廣東永光刀剪集團(tuán)有限公司
    五金科技(2024年1期)2024-03-05 01:34:44
    廣東永光刀剪集團(tuán)有限公司
    五金科技(2023年5期)2023-11-02 01:50:04
    廣東永光刀剪集團(tuán)有限公司
    五金科技(2022年1期)2022-03-02 02:12:52
    廣東永光刀剪集團(tuán)有限公司
    五金科技(2021年2期)2021-05-08 07:52:12
    廣東永光刀剪集團(tuán)有限公司
    五金科技(2020年4期)2020-09-23 08:54:10
    Mechanism of air-trapped vertical vortices in long-corridor-shaped surge tank of hydropower station and their elimination *
    Lattice Boltzmann simulation of the open channel flow connecting two cascaded hydropower stations*
    Hydraulic characteristics of a siphon-shaped overflow tower in a long water conveyance system: CFD simulation and analysis*
    在分離的那一瞬間
    遼河(2014年3期)2014-08-26 11:26:16
    看十八女毛片水多多多| 精品少妇内射三级| 亚洲成人一二三区av| 久久久精品免费免费高清| 亚洲人成77777在线视频| 最新的欧美精品一区二区| 777米奇影视久久| av国产久精品久网站免费入址| 在线观看www视频免费| 国产av一区二区精品久久| 欧美最新免费一区二区三区| 男女免费视频国产| av.在线天堂| 夜夜看夜夜爽夜夜摸| 亚洲av欧美aⅴ国产| 久久99蜜桃精品久久| 国产国语露脸激情在线看| 国内精品宾馆在线| 激情五月婷婷亚洲| 亚洲情色 制服丝袜| 欧美性感艳星| 99九九在线精品视频| 免费观看的影片在线观看| 熟女人妻精品中文字幕| 韩国高清视频一区二区三区| 女的被弄到高潮叫床怎么办| 国产亚洲精品第一综合不卡 | 一级爰片在线观看| 人妻 亚洲 视频| 日本黄色日本黄色录像| 日本免费在线观看一区| 亚洲精品乱码久久久久久按摩| 国产精品成人在线| 亚洲欧美成人综合另类久久久| 亚洲av福利一区| 人人澡人人妻人| 2021少妇久久久久久久久久久| 久久人人爽人人片av| 少妇精品久久久久久久| 免费看光身美女| a级毛片在线看网站| 97超视频在线观看视频| 狂野欧美激情性xxxx在线观看| av卡一久久| 久久精品夜色国产| 国产亚洲精品第一综合不卡 | 日本黄色日本黄色录像| 人妻夜夜爽99麻豆av| 日本午夜av视频| 午夜久久久在线观看| 亚洲高清免费不卡视频| 亚洲国产精品成人久久小说| 香蕉精品网在线| 亚洲三级黄色毛片| 少妇被粗大的猛进出69影院 | 大又大粗又爽又黄少妇毛片口| 国产精品99久久久久久久久| 熟女av电影| 九草在线视频观看| 午夜福利在线观看免费完整高清在| 国产黄频视频在线观看| 26uuu在线亚洲综合色| 国产亚洲欧美精品永久| 观看美女的网站| 夜夜骑夜夜射夜夜干| 婷婷色av中文字幕| 少妇精品久久久久久久| 久久毛片免费看一区二区三区| 女人久久www免费人成看片| 免费观看在线日韩| 日产精品乱码卡一卡2卡三| av福利片在线| 各种免费的搞黄视频| 国产片内射在线| 能在线免费看毛片的网站| 亚洲五月色婷婷综合| 蜜桃久久精品国产亚洲av| 一区二区日韩欧美中文字幕 | 国产欧美日韩一区二区三区在线 | 大片电影免费在线观看免费| 啦啦啦中文免费视频观看日本| 亚洲欧美中文字幕日韩二区| 两个人免费观看高清视频| 亚洲精品视频女| 一区二区av电影网| 最近手机中文字幕大全| 18+在线观看网站| 在线天堂最新版资源| 精品久久久久久久久亚洲| 亚洲,一卡二卡三卡| 中文字幕制服av| 亚洲中文av在线| 久久久亚洲精品成人影院| 欧美亚洲 丝袜 人妻 在线| 多毛熟女@视频| 一级黄片播放器| 日韩成人伦理影院| 日产精品乱码卡一卡2卡三| 又粗又硬又长又爽又黄的视频| 高清不卡的av网站| 丝瓜视频免费看黄片| 亚洲中文av在线| 国产熟女午夜一区二区三区 | av.在线天堂| 国产国拍精品亚洲av在线观看| 黄色视频在线播放观看不卡| 一个人看视频在线观看www免费| av在线观看视频网站免费| 精品久久蜜臀av无| 少妇猛男粗大的猛烈进出视频| 久久人人爽人人片av| 亚洲欧美色中文字幕在线| 久久久欧美国产精品| 国产男女超爽视频在线观看| 亚洲精品,欧美精品| 桃花免费在线播放| 天美传媒精品一区二区| 欧美日韩av久久| 自线自在国产av| 国产午夜精品一二区理论片| 大陆偷拍与自拍| 国产一区二区在线观看日韩| 久久久久人妻精品一区果冻| 美女国产高潮福利片在线看| 欧美成人午夜免费资源| 亚洲久久久国产精品| 色94色欧美一区二区| 22中文网久久字幕| 亚洲伊人久久精品综合| 欧美日韩视频高清一区二区三区二| 国产片特级美女逼逼视频| 国产色爽女视频免费观看| 午夜视频国产福利| 国产男女超爽视频在线观看| 一区在线观看完整版| √禁漫天堂资源中文www| 国模一区二区三区四区视频| 久久99热6这里只有精品| 日韩精品免费视频一区二区三区 | 十八禁高潮呻吟视频| 国产伦理片在线播放av一区| 国产熟女欧美一区二区| 九九久久精品国产亚洲av麻豆| av天堂久久9| 免费日韩欧美在线观看| 熟妇人妻不卡中文字幕| 亚洲无线观看免费| 亚洲av欧美aⅴ国产| 99热网站在线观看| 久久青草综合色| 人妻系列 视频| 大又大粗又爽又黄少妇毛片口| 欧美三级亚洲精品| 美女主播在线视频| 久久午夜综合久久蜜桃| 曰老女人黄片| 国产色婷婷99| 国产成人精品久久久久久| 免费久久久久久久精品成人欧美视频 | 欧美 日韩 精品 国产| 色网站视频免费| 国产精品免费大片| 乱人伦中国视频| 男女免费视频国产| 啦啦啦中文免费视频观看日本| 91成人精品电影| 一级,二级,三级黄色视频| 久久青草综合色| 国产高清三级在线| 欧美精品人与动牲交sv欧美| 久久人人爽人人爽人人片va| 啦啦啦啦在线视频资源| 日本黄大片高清| 美女xxoo啪啪120秒动态图| 老熟女久久久| 日韩人妻高清精品专区| 伦理电影免费视频| 一边摸一边做爽爽视频免费| av有码第一页| 久久久久人妻精品一区果冻| 少妇精品久久久久久久| 看非洲黑人一级黄片| 亚洲欧美清纯卡通| 涩涩av久久男人的天堂| 99精国产麻豆久久婷婷| 青春草亚洲视频在线观看| 丝瓜视频免费看黄片| 人成视频在线观看免费观看| av在线播放精品| 国产成人精品一,二区| 欧美亚洲 丝袜 人妻 在线| 久久午夜福利片| 赤兔流量卡办理| 少妇被粗大猛烈的视频| 日韩 亚洲 欧美在线| 精品酒店卫生间| 亚洲av福利一区| 婷婷成人精品国产| 国产精品 国内视频| 国精品久久久久久国模美| 黄色欧美视频在线观看| 精品久久久久久电影网| 人妻系列 视频| 十八禁网站网址无遮挡| 草草在线视频免费看| a 毛片基地| 成年人免费黄色播放视频| 成人国产麻豆网| av电影中文网址| 精品人妻一区二区三区麻豆| 男女免费视频国产| 18禁在线无遮挡免费观看视频| 一级毛片aaaaaa免费看小| 哪个播放器可以免费观看大片| 亚洲四区av| 麻豆成人av视频| 爱豆传媒免费全集在线观看| 亚洲美女搞黄在线观看| 日本av免费视频播放| 国产精品熟女久久久久浪| 国产成人freesex在线| 欧美日韩一区二区视频在线观看视频在线| 久久午夜综合久久蜜桃| 亚洲精品中文字幕在线视频| 国产免费福利视频在线观看| 天美传媒精品一区二区| 99久久人妻综合| 热99久久久久精品小说推荐| 成人二区视频| 亚洲三级黄色毛片| 九九在线视频观看精品| 国产精品人妻久久久影院| 最近手机中文字幕大全| 成年av动漫网址| 免费大片黄手机在线观看| 亚洲国产av影院在线观看| 啦啦啦中文免费视频观看日本| 免费观看的影片在线观看| 亚洲精品一区蜜桃| 狠狠婷婷综合久久久久久88av| 97超视频在线观看视频| 精品久久国产蜜桃| 国产精品久久久久久av不卡| 中文字幕人妻熟人妻熟丝袜美| 日韩av在线免费看完整版不卡| 99九九在线精品视频| 日日摸夜夜添夜夜添av毛片| 观看av在线不卡| 毛片一级片免费看久久久久| 91成人精品电影| 两个人的视频大全免费| 高清av免费在线| 成人手机av| 男女高潮啪啪啪动态图| 激情五月婷婷亚洲| 超碰97精品在线观看| 免费大片黄手机在线观看| 日本色播在线视频| 国产免费一区二区三区四区乱码| 十八禁高潮呻吟视频| av.在线天堂| 有码 亚洲区| 免费观看无遮挡的男女| 久久精品国产a三级三级三级| 久久人妻熟女aⅴ| 中文字幕最新亚洲高清| 婷婷成人精品国产| 九九在线视频观看精品| 极品人妻少妇av视频| 久久久久网色| 亚洲精华国产精华液的使用体验| 91aial.com中文字幕在线观看| 丰满乱子伦码专区| 午夜激情福利司机影院| 高清在线视频一区二区三区| 母亲3免费完整高清在线观看 | 美女cb高潮喷水在线观看| 亚洲人成网站在线播| 永久网站在线| 欧美日韩视频高清一区二区三区二| 久久精品国产a三级三级三级| 国产精品.久久久| 国产一区亚洲一区在线观看| 午夜激情福利司机影院| 成人午夜精彩视频在线观看| 国产精品国产三级专区第一集| 91在线精品国自产拍蜜月| 国产午夜精品一二区理论片| 男女边吃奶边做爰视频| 精品视频人人做人人爽| 美女国产视频在线观看| 亚洲国产欧美日韩在线播放| 国产精品一国产av| 黄色视频在线播放观看不卡| 女人久久www免费人成看片| 丰满乱子伦码专区| 两个人免费观看高清视频| 黑人高潮一二区| 久久精品国产亚洲av天美| 亚洲美女黄色视频免费看| 久久久久国产精品人妻一区二区| 成人毛片60女人毛片免费| 亚洲情色 制服丝袜| 久久久a久久爽久久v久久| 国产国语露脸激情在线看| 国产无遮挡羞羞视频在线观看| 国产高清不卡午夜福利| 卡戴珊不雅视频在线播放| 久久精品国产亚洲av涩爱| 亚洲欧洲精品一区二区精品久久久 | 久久精品国产a三级三级三级| 欧美日韩视频精品一区| 婷婷成人精品国产| av免费观看日本| 丰满饥渴人妻一区二区三| 亚洲精品乱码久久久久久按摩| 国产老妇伦熟女老妇高清| 一级毛片黄色毛片免费观看视频| 插阴视频在线观看视频| av.在线天堂| 日日摸夜夜添夜夜爱| 久久狼人影院| 国产男人的电影天堂91| 国产色婷婷99| 有码 亚洲区| 国产免费又黄又爽又色| 久久精品国产自在天天线| 人妻少妇偷人精品九色| 久久热精品热| 下体分泌物呈黄色| 老司机影院毛片| 国产日韩一区二区三区精品不卡 | 高清黄色对白视频在线免费看| av在线播放精品| av专区在线播放| 九九久久精品国产亚洲av麻豆| 性色av一级| 国产极品天堂在线| 人妻系列 视频| 亚洲精品日韩在线中文字幕| 国产日韩欧美视频二区| av在线观看视频网站免费| 亚洲五月色婷婷综合| 日韩人妻高清精品专区| 韩国av在线不卡| 久久免费观看电影| 秋霞在线观看毛片| 黄片无遮挡物在线观看| 狂野欧美白嫩少妇大欣赏| 波野结衣二区三区在线| 久久ye,这里只有精品| 老女人水多毛片| 精品久久久久久电影网| 乱码一卡2卡4卡精品| 亚洲av男天堂| 国产一区有黄有色的免费视频| 欧美日韩精品成人综合77777| 国产精品久久久久成人av| 看免费成人av毛片| 久久国产亚洲av麻豆专区| 九草在线视频观看| 久久午夜福利片| 大香蕉久久网| 成人漫画全彩无遮挡| av专区在线播放| 亚洲欧洲日产国产| 欧美老熟妇乱子伦牲交| 女人精品久久久久毛片| 视频中文字幕在线观看| 日韩一区二区视频免费看| 69精品国产乱码久久久| 老司机影院成人| 国产精品.久久久| 在线观看国产h片| 日日啪夜夜爽| 一区二区三区精品91| 王馨瑶露胸无遮挡在线观看| 精品久久久噜噜| 婷婷色综合大香蕉| 成年人午夜在线观看视频| 午夜免费男女啪啪视频观看| 国产精品秋霞免费鲁丝片| 建设人人有责人人尽责人人享有的| 亚洲av中文av极速乱| 久久人人爽人人片av| 免费人妻精品一区二区三区视频| 欧美3d第一页| 视频区图区小说| 亚洲美女搞黄在线观看| 又大又黄又爽视频免费| 建设人人有责人人尽责人人享有的| 伊人亚洲综合成人网| 黄色视频在线播放观看不卡| 久久99精品国语久久久| 亚洲av不卡在线观看| 欧美bdsm另类| videos熟女内射| 国产一区亚洲一区在线观看| 亚洲av在线观看美女高潮| 欧美精品一区二区免费开放| 免费黄色在线免费观看| 视频在线观看一区二区三区| 亚洲av综合色区一区| 欧美日韩精品成人综合77777| 亚洲精品国产av蜜桃| 亚洲怡红院男人天堂| 新久久久久国产一级毛片| 免费不卡的大黄色大毛片视频在线观看| 国产爽快片一区二区三区| 欧美日韩在线观看h| 欧美成人精品欧美一级黄| 日韩中字成人| 精品亚洲成国产av| 91精品一卡2卡3卡4卡| 成人漫画全彩无遮挡| 精品人妻熟女毛片av久久网站| 一级二级三级毛片免费看| 欧美人与善性xxx| 日日爽夜夜爽网站| 99精国产麻豆久久婷婷| 亚洲欧美中文字幕日韩二区| 日本与韩国留学比较| 国产一级毛片在线| 精品国产一区二区久久| 亚洲第一av免费看| 国产高清国产精品国产三级| 岛国毛片在线播放| 日韩免费高清中文字幕av| 制服丝袜香蕉在线| 久久精品国产亚洲网站| 久久久久精品久久久久真实原创| 一个人免费看片子| 国产男人的电影天堂91| 国产精品不卡视频一区二区| 国产成人免费无遮挡视频| 最近中文字幕2019免费版| 一区二区三区乱码不卡18| 色94色欧美一区二区| 美女内射精品一级片tv| 在线看a的网站| 亚洲精品第二区| 亚洲天堂av无毛| 亚洲不卡免费看| 亚洲av.av天堂| 日韩精品免费视频一区二区三区 | xxxhd国产人妻xxx| 国产高清不卡午夜福利| 亚洲欧美中文字幕日韩二区| 如日韩欧美国产精品一区二区三区 | 伊人久久精品亚洲午夜| 午夜老司机福利剧场| 亚洲精品aⅴ在线观看| 三级国产精品片| 少妇丰满av| 一个人免费看片子| 久久ye,这里只有精品| 免费大片黄手机在线观看| 一区二区三区乱码不卡18| 国产精品国产三级专区第一集| 97精品久久久久久久久久精品| 久久热精品热| 男人爽女人下面视频在线观看| 制服丝袜香蕉在线| 少妇 在线观看| 亚洲色图 男人天堂 中文字幕 | 日韩一区二区视频免费看| 国产精品女同一区二区软件| 老司机影院毛片| 在现免费观看毛片| 国产免费一级a男人的天堂| 亚洲av免费高清在线观看| 永久网站在线| 亚洲五月色婷婷综合| 69精品国产乱码久久久| 亚洲国产毛片av蜜桃av| 成人漫画全彩无遮挡| 久久精品人人爽人人爽视色| 毛片一级片免费看久久久久| 久久精品人人爽人人爽视色| 久久国内精品自在自线图片| 日产精品乱码卡一卡2卡三| 99热这里只有精品一区| 2018国产大陆天天弄谢| 亚洲久久久国产精品| 午夜老司机福利剧场| 一级,二级,三级黄色视频| 另类精品久久| 69精品国产乱码久久久| av女优亚洲男人天堂| 99热这里只有精品一区| 哪个播放器可以免费观看大片| 三级国产精品片| 一级,二级,三级黄色视频| 久久久久网色| 亚洲欧美一区二区三区黑人 | 最近中文字幕2019免费版| 午夜老司机福利剧场| 成人毛片a级毛片在线播放| 嘟嘟电影网在线观看| 一本色道久久久久久精品综合| kizo精华| 日韩欧美精品免费久久| 在线天堂最新版资源| 日本欧美国产在线视频| 亚洲精品自拍成人| 国产爽快片一区二区三区| 一级片'在线观看视频| 久久精品国产亚洲av涩爱| 春色校园在线视频观看| av在线观看视频网站免费| 亚洲国产精品国产精品| 日韩强制内射视频| 国产精品.久久久| 下体分泌物呈黄色| 日韩精品有码人妻一区| 日韩精品免费视频一区二区三区 | 在现免费观看毛片| 成人黄色视频免费在线看| 欧美精品高潮呻吟av久久| 黄片播放在线免费| 亚洲第一区二区三区不卡| 99热这里只有是精品在线观看| 久久久久精品久久久久真实原创| av专区在线播放| 一二三四中文在线观看免费高清| 成人毛片60女人毛片免费| 如何舔出高潮| 国产精品免费大片| videosex国产| 亚洲五月色婷婷综合| 日韩制服骚丝袜av| 91精品一卡2卡3卡4卡| 午夜91福利影院| 亚洲精品自拍成人| 国产日韩欧美亚洲二区| 99九九线精品视频在线观看视频| 你懂的网址亚洲精品在线观看| 性色av一级| 色婷婷av一区二区三区视频| 又黄又爽又刺激的免费视频.| 国产男女内射视频| 亚洲经典国产精华液单| 一边摸一边做爽爽视频免费| 我的女老师完整版在线观看| 亚洲性久久影院| 亚洲四区av| 五月伊人婷婷丁香| 秋霞伦理黄片| 91久久精品国产一区二区成人| 国产永久视频网站| 亚洲精品一区蜜桃| 18禁在线播放成人免费| 欧美xxⅹ黑人| 在线亚洲精品国产二区图片欧美 | 男女无遮挡免费网站观看| 视频中文字幕在线观看| 国产免费一级a男人的天堂| 午夜精品国产一区二区电影| 黑人猛操日本美女一级片| 免费av不卡在线播放| 麻豆精品久久久久久蜜桃| 我的女老师完整版在线观看| 国产黄色视频一区二区在线观看| 26uuu在线亚洲综合色| 两个人免费观看高清视频| 午夜91福利影院| 街头女战士在线观看网站| 亚洲第一av免费看| 少妇猛男粗大的猛烈进出视频| 亚洲一区二区三区欧美精品| 免费黄频网站在线观看国产| 男女边吃奶边做爰视频| 日韩成人伦理影院| 哪个播放器可以免费观看大片| 午夜91福利影院| 亚洲第一区二区三区不卡| 亚洲国产色片| 国产精品国产三级专区第一集| 国产精品久久久久久精品古装| 99热国产这里只有精品6| 久久精品国产a三级三级三级| 国产精品人妻久久久影院| 18+在线观看网站| 国精品久久久久久国模美| 国产av码专区亚洲av| a级毛片黄视频| 一区二区三区精品91| 精品99又大又爽又粗少妇毛片| 中国三级夫妇交换| 人妻 亚洲 视频| 亚洲精品久久午夜乱码| 色网站视频免费| 熟女人妻精品中文字幕| 国产一区二区三区av在线| 熟妇人妻不卡中文字幕| 在线观看三级黄色| 午夜视频国产福利| 久久精品久久精品一区二区三区| 精品国产一区二区三区久久久樱花| 下体分泌物呈黄色| 午夜av观看不卡| 国产亚洲精品第一综合不卡 | 国产精品人妻久久久影院| 亚洲精品一二三| 嫩草影院入口| 国产精品一国产av| 久久婷婷青草| 国产免费一区二区三区四区乱码| 一级,二级,三级黄色视频| 中文字幕免费在线视频6| 大码成人一级视频| 欧美+日韩+精品| 一本大道久久a久久精品| 国产精品国产三级专区第一集| 蜜桃久久精品国产亚洲av|