• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Three-dimensional prediction of reservoir water temperature by the lattice Boltzmann method: Validation*

    2015-04-20 05:52:41DIAOWei刁偉CHENGYongguang程永光ZHANGChunze張春澤WUJiayang吳家陽
    關(guān)鍵詞:永光

    DIAO Wei (刁偉), CHENG Yong-guang (程永光), ZHANG Chun-ze (張春澤), WU Jia-yang (吳家陽)

    State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China, E-mail: wdiao@whu.edu.cn

    Introduction

    Quite a number of high dams and large reservoirs were built in China. By 2013, more than 150 dams higher than 100 m were erected and over 750 large reservoirs built, with a total water capacity of 7×1011cubic meters. These reservoirs play important roles in the flood control, the power generation, the navigation,the irrigation, and the tourism. In these scenarios, the thermal stratification in high-dam reservoirs is an important issue. The temperature of a large deep reservoir usually varies by more than 10oC, and the temperature in the middle and bottom regions remain at the level of about 12oC-13oC. The stratification may cause physical and chemical changes in the properties of the water, affect the ecological balance of the environment, hamper the growth of irrigated plants, and even have impacts on the normal life of local residents[1]. Therefore, an effective and efficient simulation and prediction of the reservoir water temperature is important for promoting a harmonious hydraulic development and an ecological protection.

    Currently, the basic methods for studying the water temperature distribution in reservoirs include the empirical/analogical methods[1,2], the physical model tests[3,4], and the numerical models[5,6]. Of these,the empirical/analogical method can provide only an approximate 1-D vertical distribution, and the physical model tests are costly, time consuming, and restrictive in the assessment of physical phenomena. Only the numerical method can strike a balance between accuracy, efficiency, economy, and applicability, which makes it the most suitable approach for predicting the temperature distribution. Of the numerical methods available, the 3-D model is the most powerful and promising because it can provide detailed temporal and spatial patterns of temperature and flow, although the 1-D and 2-D methods are still dominant in use[7].

    The lattice Boltzmann method (LBM), based on the kinetic theory, is a newly developed computing technique for simulating complex fluid flows. It hasbeen applied successfully to the simulations of the large-scale flow, the multi-phase flow, the multi-component flow, the porous media flow, and other flows.Because of its many advantages, including its simple algorithm, the intrinsic parallelism, and the simple implementation of boundary conditions, the LBM has shown greater development prospects than the traditional numerical methods for fluid mechanics[8]. The LBM models for thermal fluid flows can be classified in three categories: the multi-speed approach[9], the multi-distribution function approach[10], and the combined approach[11]. These thermal models were used successfully to simulate practical heat transfer problems[12], but their applications to the predictions of the water temperature distributions in reservoirs or lakes are few.

    This paper presents simulations of the process of the water temperature variation in a model reservoir,in a benchmark test by the US Army Corps of Engineers Waterways Experiment Station[4]. An LBM model, based on the large-eddy simulation for thermal buoyancy flows, is adopted to simulate and analyze the temporal and spatial variations of the reservoir water temperature, to validate the method, and to analyze the mechanism of the gravity sinking current.

    1. Computational models for reservoir water temperature

    1.1 Double distribution function LBM model based on Boussinesq assumption

    The reservoir water is normally considered as incompressible, with the density, the viscosity, and the thermal diffusivity being also assumed to be constant except for the buoyant body force. Therefore, the governing equations for the model of the reservoir water flow can be expressed with the Boussinesq assumption[13]as:

    wherepis the pressure,Dis the diffusivity,νis the viscosity,βis the thermal expansion coefficient,andT0is the average temperature.

    To solve Eq.(1), the double-distribution-functionbased LBM (DDF-LBM) model may be used. The DDF-LBM, first developed by Bartoloni in 1993[14],models the velocity and temperature fields by two respective distribution functions and the two fields are coupled by a body forcing term in the flow field. Here,based on the improved 2-D DDF-LBM of Guo at al.[10], we extend the model to the 3-D form using the D3Q19 model for the velocity field simulation and the D3Q6 model for the temperature field simulation. The LBM equations for these two fields may be expressed as follows:

    in whichfiandgiare the distribution functions for the water flow and the temperature field, respectively,andare the corresponding equilibrium distribution functions,τ1andτ2are the relaxation factors, andHiis the buoyant forcing term.

    The equilibrium distribution functions can be expressed as:

    whereuis the velocity vector,Tis the temperature,σ,λandγare the parameters satisfyingλ+2γ=σandλ+2γ=1/3, and chosen as 1/3, 1/6, and 1/12 in this work, respectively.si(u) can be expressed as a function of the macroscopic velocityuand the discrete velocityei.

    whereiωis the weight coefficient in the D3Q19 model, andcsis the speed of sound.

    The macroscopic velocityu, the pressurep,and the temperatureTare expressed in the moments of the distribution functions as

    The viscosityν, the diffusivityD, and the Prandtl numberPrare determined by

    The coupling of the velocity field with the temperature field is realized by attaching an additional forcing termHito Eq.(2). The introduction of this forcing term is essential for the accuracy and the stability of the coupling scheme. We adopt the newly proposed approach by Cheng and Li[14]because it has been verified to be stable and accurate for treating non-uniform, unsteady forcing and source terms. According to the Ref.[15], the forcing termHican be expressed as

    in which

    whereAis the source term in the continuity equation andBis the forcing term in the momentum equation.Considering Eq.(1), we setA=0 andB=-gβ(TT0).

    It should be noted that using the D3Q6 model for the 3-D temperature field can save the computer memory usage and increase the speed of the calculation.However, when treating complex boundary problems,the number of discrete particle velocities should be increased to retain good accuracy and stability.

    1.2 Large eddy simulation based on LBM

    When a subgrid-scale model is used in the large eddy simulation, the physical quantities of the fluid flow can be divided into two parts: the large-scale and small-scale quantities[16]. Taking′, for example.is the filtered largescale quantities ofφusing the filter functionGandrepresents the small-scale fluctuations being modeled.

    in which the distribution functions are all filtered quantities. The relaxation timeis not a constant but is a variable that changes with time and space, which can be calculated by the total viscosity=, whereνandare the molecular and eddy viscosities, respectively. According to the Smagorinsky model[13],can be obtained by=, whereC, Δ andare the Smagorinsky constant, the filter width, and the strain-rate tensor, respectively. The strain-rate tensor can be calculated easily by using the second order moments of the filtered particle distributions[16].

    Fig.1 Isothermal surfaces for natural convection in a cubic cavity

    Table 1 Comparison of representative field values

    2. Model verification

    2.1 Natural convection in a cubic cavity

    Initially, the natural convection in a cubic cavity ofL×L×Lis simulated. The hot wall ofTh=1oC is on the right-hand side and the cold wall ofTc=?1oC is on the left[16]. The initial temperature is set asT0=(Th+Tc)/2. The Rayleigh and Prandtl numbers are defined byandPr=ν/D,respectively. A lattice ofNx×Ny×Nz=81× 81× 81 is applied, andPr=0.71 andRa=103, 104, and 105are given.

    The simulated isothermal surfaces for the natural convection flows at different Rayleigh numbers are shown in Fig.1.

    Table 1 lists some representative results of the flow field in the symmetry plane (y=Ny/2) for comparison with those in the literature[16,17]. These representative results include the maximum horizontal velocityon the vertical mid-line and its correspondingZcoordinate, the maximum vertical velocityon the horizontal mid-line and its correspondingXcoordinate, the maximum Nusselt numbersat the vertical boundary (x=0) and its locationZNu, and the average Nusselt numberTable 1 shows that the results obtained in this paper agree well with those in Ref.[17].

    2.2 3-D Rayleigh-Bénardconvection

    The Rayleigh-Bénard convection is another benchmark that generates regular flow and temperature patterns in a cavity with a heated bottom and a cooled top.

    The initial temperature of the flow isTc=?1oC.The hot wall ofTh=1oC is on the bottom and the cold wall ofTc=?1oC is on the top. The Rayleigh and Prandtl numbers are defined by/(νD) andPr=ν/D, respectively. This simulation is carried out with a lattice ofNx×Ny×Nz=201×201×51, andPr=0.71 andRa=10000 are applied.

    Fig.2 Simulated 3-D Rayleigh-Bénard convection

    Fig.3 Schematic diagram and dimensions of model reservoir

    Fig.4 Isothermal surfaces of reservoir water at different times

    Figure 2(a) shows the temperature distributions and the velocity vectors of the 3-D Rayleigh-Bénard convection at different planes, includingx=0 and 0.5,y=0 and 0.5, andz=0. The isothermal surfaces where the temperature is above 0oC are shown in Fig.2(b). The good pattern symmetry and the stable cell rotation can be observed in Fig.2, which shows the basic feature of the Rayleigh-Bénard convection and demonstrates the modeling capability of the present model.

    3. Temporal and spatial variations of temperature in a reservoir

    3.1 Test of gravity sinking current in a model reservoir

    The experimental data of the gravity sinking current in a model reservoir, tested by the US Army Corps of Engineers Waterways Experiment Station,are used to validate further the LBM model. As shown in Fig.3, the geometry of the model reservoir can be divided into two parts: a horizontally expanding channel of 6.1 m in length, and 0.3 m in initial depth,which increases linearly from 0.3 m to 0.91 m, and a vertically deepening channel of 18.29 m in length, and 0.91 m in initial width, which increases linearly from 0.3 m to 0.91 m. The inlet, located at the bottom of the left-hand wall, is an orifice of 0.15 m in height. The outlet, located at the right-hand wall, is a narrow rectangular hole of 0.04m in height situated 0.15 m above the bottom. Initially, the reservoir water is stationary with a uniform temperature of 21.44oC. When the test begins, the cold water with a temperature of 16.67oC flows into the reservoir at a rate of 0.00063 m3/s, and the outlet is drained at the same flow rate to maintain a constant water surface level[5].

    3.2 Simulation conditions

    Considering the geometry and the flow symmetry,only half the flow domain is simulated by the DDFLBM model to reduce the memory requirement and improve the speed. The slip boundary condition and the symmetric boundary condition are imposed at the top and symmetric planes of the reservoir, respectively. A uniform water velocity of 0.014 m/s is imposed at the inlet, while the outflow boundary, by extrapolation, is specified at the outlet. Other boundaries are treated as non-slip walls. For the thermal boundary conditions, the temperatures of 21.44oC and 16.67oC are maintained at the top and the inlet, respectively,and all other boundaries are set as adiabatic. The Prandtl numberPris 7 when the temperature of the water is around 20oC. The kinematic viscosityν=0.003021m2/s and the diffusivityD=0.000431are specified. The simulation is conducted on a 2 440×46×92 lattice.

    Fig.5 Velocity vectors of reservoir flow at different times

    3.3 Temporal and spatial variations of reservoir water temperature

    Figure 4 shows the isothermal surfaces of the reservoir water temperature at timet=2 min, 8 min,12 min, 16 min, 20 min and 50 min and Fig.5 shows the velocity field at the corresponding times.

    The entire process of the thermal stratification falls into four stages. (1) When the cold water flows as a jet from the inlet into the warmer reservoir, the front,characterized with a large temperature gradient,moves forwards along the bottom, as shown in Fig.4(a). However, no strong vertical convection occurs because of the sinking force from the density difference, although a weak recirculation flow is causedin the upper region, as shown in Fig.5(a). This process may be denoted as the jet penetrating stage. (2) As the cold current front reaches the vertically deepening section of the reservoir, the current accelerates owing to the gravity effect and it moves with transversally nonuniform velocities along the bottom slope, forming a tongue-shaped front, as shown in Fig.4(b). The temperature difference between the cold current and the upper warm water restrains the vertical momentum transfer and generates a sharp vertical velocity gradient, as shown in Fig.5(b). With the further advance of the cold current into the deeper water along the reservoir bottom slope, the current tongue grows thicker and the recirculation region becomes larger, as shown in Fig.4(c) and Fig.5(c). At this moment, the stage of the tongue-like isothermal surface is completed. (3)Subsequently, the temperature within the tongue reduces slowly, while the temperature gradient between the cold current and the warm water remains. The large temperature gradient also restrains the vertical momentum and energy transfers, and causes an obvious thermal stratification of the reservoir water, as shown in Fig.4(d). Corresponding to the temperature distribution, the velocity field also maintains a sharp gradient across the interface of the cold and warm water. The water in the upper region flows in the reverse direction and the water ahead of the tongue flows vertically, forming an expanding recirculation flow region, as shown in Fig.5(d). This is the stage of forming the thermal stratification. (4) When the tongue front of the cold current reaches the right boundary or the dam wall, the stage of forming the horizontal temperature layers begins. In this stage, the cold water begins to accumulate in front of the dam and the isothermal surface of 21oC becomes flat, as shown in Fig.4(e). The recirculation region becomes the longest with the velocity in the front rising along the vertical dam wall, as shown in Fig.5(e). Gradually, the cold water occupies more of the lower space within the reservoir, the isothermal surface of 21oC becomes flat across a broad region, whereas the isothermal surfaces of 18 and 19oC remain parallel with the bottom slope,as shown in Fig.4(e) and Fig.4(f). The entire reservoir is dominated by a recirculation flow, in which the strong cold current gradually expands in the thickness direction as it flows along the bottom slope, while the water in the other region flows in the opposite direction, as shown in Fig.5(e) and Fig.5(f).

    During the above processes, the temperature difference between the inflow water and the still water restricts the vertical convection and the turbulent fluctuation. A stable cold sinking current causes the formation and the development of the thermal stratification in the entire reservoir. This strong coupling phenomenon of the velocity and temperature fields indicates that the correct simulation of the turbulent and buoyant flows is an important factor for predicting the thermal stratification of the reservoir water.

    The above characteristics of the temperature and the flow agree well with the results calculated by using the Fluent commercial software by Tang et al.[19].

    Fig.6 Comparison of velocityuxprofiles at x =11.43m and t =11min on the symmetric plane

    Fig.7 Comparison of the histories of drained water temperature

    3.4 Velocity profiles and drained water temperature

    Figure 6 compares the velocity profiles along a vertical line 11.43 m from the inlet of the reservoir at the time of 11 min. The RNG, RSM, and Realizable curves are obtained from the Fluent software[19], and the measured data are from the original test[4]. The present results show that the peak velocity of the cold current is about 0.023 m/s and that the peak reversal flow velocity in the upper water is about 0.005 m/s,they are smaller than the measured data and the current thickness is larger than the measured data. This is because the present simulation is performed with a uniform cubic lattice with a grid that is too coarse to reflect properly the sharp velocity gradient of the boundary layer. This can be proved by the comparison of the simulation results on different meshes in the subsection 4.5. On the other hand, no turbulent boundary layer function is applied in the simulation with the subgrid-scale model, which may affect the velocity profiles near the solid boundary. Figure 7 shows the histories of the drained water temperature at the outlet of the reservoir by different methods. Among the four numerical results, those from the present work agreebest with the measured data.

    This simulation is run on a PC with 4 cores of 2.66 GHz CPU in MATLAB codes. The number of lattices in this simulation is about 5.5×106, and it takes about 170 h to complete the 50 min process. Obvious speedup may be achieved in the future GPU parallelization.

    Fig.8 Comparison of profiles of velocity ux atx=11.43m and t=11min on the symmetric plane by different meshes

    Fig.9 Comparison of the temperature histories of the drained water by different meshes

    3.5 Comparison of results by different meshes

    To examine the lattice dependence of the solutions, simulations on three different meshes are conducted. Figure 8 shows the profiles of the velocityuxand Fig.9 shows the temperature histories of the drained water by lattice sizes Δx= Δy=0.0125 m, 0.01 m and 0.008 m. It is evident that the results by the coarse lattice of Δx= Δy=0.0125m show larger relative error than those by the fine lattice of Δx= Δy=0.01 m. But the differences of relative errors between the lattice 0.01 m and 0.008 m are not significant. This suggests that the results in the last section are obtained on a convergent grid.

    4. Conclusion

    A double-distribution-function LBM model is proposed for the 3-D prediction of the reservoir water temperature. This Boussinesq-assumption-based buoyant flow model is verified by two benchmarks: the natural convection in a cubic cavity and the Rayleigh-Bénard convection instability. The temporal and spatial variations of the temperature and the flow in a model reservoir are simulated to validate the method.The general agreement between the measured data and other numerical results demonstrates the accuracy and the efficiency of the present method. The method to treat the turbulent boundary layer and a locally refined grid might be adopted to improve the present model.Implementing the method on GPU chips to improve the simulation efficiency and applying it to flow and temperature predictions of actual reservoirs and lakes will be conducted in the future.

    [1] ZHANG Xian-E, ZHOU Xiao-de and ZANG Lin. Discussion on research methods for the water temperature in reservoir[J]. Journal of Water Resources and Water Engineering, 2006, 17(3): 1-4(in Chinese).

    [2] ZHANG Shi-jie, PENG Wen-qi. Water temperature structure and influencing factors in Ertan Reservoir[J].Journal of Hydraulic Engineering, 2009, 40(10):1254-1258(in Chinese).

    [3] LIU L., LIU D. and JOHNSON D. M. et al. Effects of vertical mixing on phytoplankton blooms in Xiangxi Bay of Three Gorges Reservoir: Implications for management[J]. Water Research, 2012, 46(7): 2121-2130.

    [4] TEETER A. M., JOHNSON B. H. and BERGER C. et al. Hydrodynamic and sediment transport modeling with emphasis on shallow-water, vegetated areas (lakes,reservoirs, estuaries and lagoons)[J]. Hydrobiologia,2001, 444: 1-23.

    [5] DENG Yun, LI Jia and LUO Lin. Temperature prediction model for reservoirs[J]. Journal of Hydraulic Engineering, 2003, (7): 7-11(in Chinese).

    [6] BL?CHER M. G., ZIMMERMANN G. and MOECK I.et al. 3D numerical modeling of hydrothermal processes during the lifetime of a deep geothermal reservoir[J].Geofluids, 2010, 10(3): 406-421.

    [7] LI Lan, WU Jian. The three-dimensional environmental fluid dynamics code model for research of reservoir water temperature law[J]. Chinese Journal of Hydrodynamics, 2010, 25(2): 155-164(in Chinese).

    [8] LALLEMAND P., LUO L. Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy,Galilean invariance, and stability[J]. Physical Review E, 2000, 61(6): 6546-6562.

    [9] SHAN X., YUAN X. and CHEN H. Kinetic theory representation of hydrodynamics: A way beyond the Navier-Stokes equation[J]. Fluid Mechanics, 2006, 550:413-441.

    [10] GUO Z., SHI B. and ZHENG C. A coupled lattice BGK model for the Bouessinesq equations[J]. International Journal for Numerical Methods in Fluids, 2002.39(4): 325-342.

    [11] VERHAEGHE F., BLANPAIN B. and WOLLANTS P.Lattice Boltzmann method for double-diffusive natural convection[J]. Physical Review E, 2007, 75(4): 4-10.

    [12] AIDUN C., CLAUSEN J. Lattice Boltzmann methodfor complex flows[J]. Annual Review of Fluid Mechanics, 2010, 42: 439-472.

    [13] MAYER G., PALES J. and HáZI G. Large eddy simulation of subchannels using the lattice Boltzmann method[J]. Annals of Nuclear Energy, 2007, 34(1): 140-149.

    [14] CHENG Y., LI J. Introducing unsteady non-uniform source terms into the lattice Boltzmann model[J]. International Journal for Numerical Methods in Fluids,2007, 56(6): 629-641.

    [15] PENG Y., SHU C. and CHEW Y. T. A 3D incompressible thermal lattice Boltzmann model and its application to simulate natural convection in a cubic cavity[J].Journal of Computational Physics, 2004, 193(1): 260-274.

    [16] FUSEGI T., HYUN J. M. and KUWAHARA K. et al. A numerical study of three-dimensional natural convection in a differentially heated cubical enclosure[J]. International Journal of Heat and Mass Transfer, 1991,34(6): 1543-1557.

    [17] TANG Xiao, CHENG Yong-guang. Multidimensional prediction of reservoir water temperature based on FLUENT[J]. Engineering Journal of Wuhan University, 2010, 43(1): 59-63(in Chinese).

    猜你喜歡
    永光
    廣東永光刀剪集團(tuán)有限公司
    五金科技(2024年2期)2024-04-25 04:11:30
    廣東永光刀剪集團(tuán)有限公司
    五金科技(2024年1期)2024-03-05 01:34:44
    廣東永光刀剪集團(tuán)有限公司
    五金科技(2023年5期)2023-11-02 01:50:04
    廣東永光刀剪集團(tuán)有限公司
    五金科技(2022年1期)2022-03-02 02:12:52
    廣東永光刀剪集團(tuán)有限公司
    五金科技(2021年2期)2021-05-08 07:52:12
    廣東永光刀剪集團(tuán)有限公司
    五金科技(2020年4期)2020-09-23 08:54:10
    Mechanism of air-trapped vertical vortices in long-corridor-shaped surge tank of hydropower station and their elimination *
    Lattice Boltzmann simulation of the open channel flow connecting two cascaded hydropower stations*
    Hydraulic characteristics of a siphon-shaped overflow tower in a long water conveyance system: CFD simulation and analysis*
    在分離的那一瞬間
    遼河(2014年3期)2014-08-26 11:26:16
    国产精品98久久久久久宅男小说| 99国产精品99久久久久| 丰满人妻熟妇乱又伦精品不卡| 夜夜躁狠狠躁天天躁| 亚洲国产欧美网| 女人爽到高潮嗷嗷叫在线视频| 久久久久久人人人人人| 19禁男女啪啪无遮挡网站| 亚洲aⅴ乱码一区二区在线播放 | 久久中文字幕人妻熟女| 欧美色欧美亚洲另类二区 | 中文字幕另类日韩欧美亚洲嫩草| 国产精品秋霞免费鲁丝片| 免费在线观看日本一区| 亚洲专区中文字幕在线| 亚洲av日韩精品久久久久久密| 久久午夜亚洲精品久久| 午夜免费鲁丝| 激情视频va一区二区三区| 色综合亚洲欧美另类图片| 最近最新中文字幕大全免费视频| 久久精品国产99精品国产亚洲性色 | 女同久久另类99精品国产91| 国产91精品成人一区二区三区| 一级片免费观看大全| 色综合欧美亚洲国产小说| 久久精品亚洲精品国产色婷小说| 在线视频色国产色| 日本免费a在线| 桃色一区二区三区在线观看| 亚洲欧美精品综合久久99| 日韩欧美国产在线观看| 久久国产精品影院| 久久精品aⅴ一区二区三区四区| 亚洲七黄色美女视频| 欧美丝袜亚洲另类 | 51午夜福利影视在线观看| 热99re8久久精品国产| 亚洲国产中文字幕在线视频| av免费在线观看网站| 国产精品香港三级国产av潘金莲| cao死你这个sao货| 丰满人妻熟妇乱又伦精品不卡| 国产乱人伦免费视频| 久久国产精品男人的天堂亚洲| 日韩欧美免费精品| 日韩一卡2卡3卡4卡2021年| 欧美另类亚洲清纯唯美| 伊人久久大香线蕉亚洲五| 欧美性长视频在线观看| 国产免费男女视频| av免费在线观看网站| 午夜福利高清视频| 精品人妻1区二区| av中文乱码字幕在线| 97人妻精品一区二区三区麻豆 | 日本三级黄在线观看| 在线av久久热| 操出白浆在线播放| 国产亚洲欧美98| 在线播放国产精品三级| 国内精品久久久久精免费| 午夜福利影视在线免费观看| 国产精品98久久久久久宅男小说| 999久久久国产精品视频| av在线播放免费不卡| 国产午夜精品久久久久久| 啪啪无遮挡十八禁网站| 中文字幕人妻熟女乱码| 校园春色视频在线观看| 两个人看的免费小视频| 老汉色∧v一级毛片| 国产一区二区三区综合在线观看| 日韩一卡2卡3卡4卡2021年| 精品久久久精品久久久| 日韩精品免费视频一区二区三区| 国产精品久久视频播放| 高潮久久久久久久久久久不卡| 亚洲国产高清在线一区二区三 | 国产成人精品在线电影| 婷婷丁香在线五月| 激情在线观看视频在线高清| 成人国产一区最新在线观看| 少妇被粗大的猛进出69影院| 叶爱在线成人免费视频播放| 午夜精品久久久久久毛片777| 久久这里只有精品19| 校园春色视频在线观看| 高潮久久久久久久久久久不卡| 不卡av一区二区三区| 亚洲国产欧美日韩在线播放| 午夜福利欧美成人| 日韩三级视频一区二区三区| 两个人视频免费观看高清| 无人区码免费观看不卡| 伦理电影免费视频| 成人永久免费在线观看视频| 黄色 视频免费看| 巨乳人妻的诱惑在线观看| 色综合站精品国产| 国产熟女午夜一区二区三区| 午夜福利影视在线免费观看| 日韩欧美一区二区三区在线观看| 99香蕉大伊视频| 精品国产乱子伦一区二区三区| 亚洲国产精品合色在线| 男女之事视频高清在线观看| 美女高潮到喷水免费观看| 国产精品一区二区三区四区久久 | 免费av毛片视频| 免费观看人在逋| 少妇裸体淫交视频免费看高清 | 9热在线视频观看99| 91成人精品电影| 国产91精品成人一区二区三区| 久久天躁狠狠躁夜夜2o2o| 国产精品秋霞免费鲁丝片| 大码成人一级视频| 美女扒开内裤让男人捅视频| 中出人妻视频一区二区| 黄片播放在线免费| 成人精品一区二区免费| 国产一区二区三区视频了| 欧美黑人精品巨大| 国产精品,欧美在线| 亚洲av成人av| 在线观看午夜福利视频| 首页视频小说图片口味搜索| 亚洲 欧美一区二区三区| 黄色成人免费大全| 国产真人三级小视频在线观看| 久久精品人人爽人人爽视色| 国产精华一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91| 国产亚洲精品av在线| 老司机靠b影院| 久久天堂一区二区三区四区| 一夜夜www| 国产精品亚洲av一区麻豆| 国内毛片毛片毛片毛片毛片| 国产精品久久久久久亚洲av鲁大| 国产一区在线观看成人免费| 亚洲精品粉嫩美女一区| 久久久水蜜桃国产精品网| 美女高潮到喷水免费观看| 美女午夜性视频免费| 亚洲,欧美精品.| 国产一区二区三区在线臀色熟女| 一个人观看的视频www高清免费观看 | 韩国av一区二区三区四区| 一级a爱视频在线免费观看| 嫩草影视91久久| 黄色女人牲交| 成人亚洲精品一区在线观看| 久久精品91无色码中文字幕| 日本撒尿小便嘘嘘汇集6| 欧美日本视频| 好男人电影高清在线观看| 两个人免费观看高清视频| 亚洲精品国产精品久久久不卡| 男女下面插进去视频免费观看| 青草久久国产| 国产97色在线日韩免费| 9色porny在线观看| 欧美精品亚洲一区二区| 免费在线观看影片大全网站| 欧美激情 高清一区二区三区| 久久久久久大精品| 91av网站免费观看| 国产精品久久视频播放| 欧美丝袜亚洲另类 | 一进一出抽搐动态| 免费在线观看黄色视频的| 亚洲第一电影网av| 中文字幕久久专区| 女警被强在线播放| 首页视频小说图片口味搜索| 99久久综合精品五月天人人| 中文字幕色久视频| 亚洲第一电影网av| 丝袜美足系列| 麻豆成人av在线观看| 一进一出抽搐gif免费好疼| 亚洲激情在线av| 国产一区二区三区在线臀色熟女| 精品欧美国产一区二区三| 欧洲精品卡2卡3卡4卡5卡区| 精品国产乱子伦一区二区三区| 国产伦一二天堂av在线观看| 国产视频一区二区在线看| 国产精品香港三级国产av潘金莲| 满18在线观看网站| 桃红色精品国产亚洲av| 麻豆av在线久日| 日本撒尿小便嘘嘘汇集6| 一级毛片女人18水好多| 女人被躁到高潮嗷嗷叫费观| 他把我摸到了高潮在线观看| 精品久久久久久久毛片微露脸| 18禁裸乳无遮挡免费网站照片 | 一个人观看的视频www高清免费观看 | 波多野结衣av一区二区av| 欧美激情极品国产一区二区三区| 好男人在线观看高清免费视频 | 久久精品国产99精品国产亚洲性色 | 欧洲精品卡2卡3卡4卡5卡区| 国产免费男女视频| 亚洲欧美激情在线| 日本 av在线| 亚洲av电影在线进入| 男人的好看免费观看在线视频 | 久久精品亚洲熟妇少妇任你| 在线观看www视频免费| 欧美av亚洲av综合av国产av| 成在线人永久免费视频| 亚洲国产欧美一区二区综合| 十分钟在线观看高清视频www| 亚洲欧洲精品一区二区精品久久久| 亚洲欧美精品综合一区二区三区| 99国产极品粉嫩在线观看| 久久香蕉国产精品| 高清毛片免费观看视频网站| 美女 人体艺术 gogo| 国产精品电影一区二区三区| 亚洲国产高清在线一区二区三 | 欧美激情久久久久久爽电影 | 精品国产一区二区久久| 婷婷丁香在线五月| av电影中文网址| 亚洲国产欧美日韩在线播放| 男女床上黄色一级片免费看| 欧美乱妇无乱码| 最近最新中文字幕大全电影3 | 国产成人av激情在线播放| 久久久久九九精品影院| 精品午夜福利视频在线观看一区| www日本在线高清视频| 男女下面进入的视频免费午夜 | 国产不卡一卡二| 狠狠狠狠99中文字幕| 两人在一起打扑克的视频| 美国免费a级毛片| 一区二区日韩欧美中文字幕| 亚洲精品久久国产高清桃花| 亚洲av电影不卡..在线观看| 国产成人精品久久二区二区免费| 韩国精品一区二区三区| 国产精品爽爽va在线观看网站 | 久久久国产成人免费| 国内精品久久久久精免费| 波多野结衣高清无吗| 久久久久久久久久久久大奶| 99国产精品一区二区三区| 日韩三级视频一区二区三区| 天堂影院成人在线观看| av欧美777| 国内精品久久久久久久电影| 日本黄色视频三级网站网址| 色精品久久人妻99蜜桃| 国产精品乱码一区二三区的特点 | 一边摸一边抽搐一进一出视频| 久久久久久久午夜电影| 怎么达到女性高潮| 久久天堂一区二区三区四区| 操美女的视频在线观看| 亚洲一区二区三区不卡视频| 亚洲欧美激情在线| av欧美777| 午夜福利在线观看吧| 黄色丝袜av网址大全| 国产一区二区三区视频了| 亚洲成人国产一区在线观看| 久久久久国内视频| 九色国产91popny在线| 侵犯人妻中文字幕一二三四区| 亚洲美女黄片视频| 国产一区二区激情短视频| 别揉我奶头~嗯~啊~动态视频| 精品国内亚洲2022精品成人| 嫩草影视91久久| 欧美日韩亚洲综合一区二区三区_| aaaaa片日本免费| 国产乱人伦免费视频| 国产精品精品国产色婷婷| 日韩大尺度精品在线看网址 | 人人澡人人妻人| 日韩 欧美 亚洲 中文字幕| 国产麻豆69| 麻豆久久精品国产亚洲av| 一级,二级,三级黄色视频| 欧美绝顶高潮抽搐喷水| 中文字幕另类日韩欧美亚洲嫩草| 精品高清国产在线一区| 国产一区二区激情短视频| 欧美久久黑人一区二区| 亚洲激情在线av| 欧美日韩亚洲国产一区二区在线观看| 丁香欧美五月| x7x7x7水蜜桃| 午夜福利高清视频| 国产av又大| 精品少妇一区二区三区视频日本电影| 亚洲五月天丁香| 色综合婷婷激情| 日本精品一区二区三区蜜桃| 精品一区二区三区av网在线观看| 深夜精品福利| 日韩欧美国产在线观看| 国产蜜桃级精品一区二区三区| 亚洲欧美精品综合久久99| 午夜免费成人在线视频| 老司机午夜十八禁免费视频| 韩国精品一区二区三区| 人人妻人人澡人人看| 国产亚洲av高清不卡| 亚洲aⅴ乱码一区二区在线播放 | 亚洲av成人一区二区三| 国产成人精品在线电影| 午夜日韩欧美国产| videosex国产| 国产1区2区3区精品| 男女床上黄色一级片免费看| 最新美女视频免费是黄的| 久久精品aⅴ一区二区三区四区| 成年女人毛片免费观看观看9| 黑人巨大精品欧美一区二区蜜桃| 亚洲一卡2卡3卡4卡5卡精品中文| 少妇粗大呻吟视频| 久99久视频精品免费| 欧美日韩黄片免| 日韩高清综合在线| 黄色成人免费大全| 久久久久久久久久久久大奶| av免费在线观看网站| 久久久久久久精品吃奶| 亚洲午夜精品一区,二区,三区| 免费女性裸体啪啪无遮挡网站| 搡老熟女国产l中国老女人| 欧美日韩中文字幕国产精品一区二区三区 | 侵犯人妻中文字幕一二三四区| 人成视频在线观看免费观看| 国语自产精品视频在线第100页| 高清黄色对白视频在线免费看| 好看av亚洲va欧美ⅴa在| 亚洲无线在线观看| 91在线观看av| 嫩草影院精品99| 一级毛片女人18水好多| 国产主播在线观看一区二区| 99久久国产精品久久久| 久热爱精品视频在线9| 男女床上黄色一级片免费看| 最新在线观看一区二区三区| 国产精品1区2区在线观看.| 亚洲久久久国产精品| 欧美丝袜亚洲另类 | 国产高清激情床上av| 69精品国产乱码久久久| 老熟妇乱子伦视频在线观看| 一二三四在线观看免费中文在| 久久国产亚洲av麻豆专区| 在线观看免费视频网站a站| 国产精品秋霞免费鲁丝片| 国产精品一区二区精品视频观看| 久久久久久国产a免费观看| 成人18禁高潮啪啪吃奶动态图| 国产真人三级小视频在线观看| 日韩有码中文字幕| 午夜激情av网站| 久久久国产精品麻豆| 久久影院123| 国产野战对白在线观看| 中国美女看黄片| 法律面前人人平等表现在哪些方面| 天天一区二区日本电影三级 | 十八禁人妻一区二区| 我的亚洲天堂| 精品国产一区二区三区四区第35| 欧美黄色淫秽网站| 日韩 欧美 亚洲 中文字幕| 人妻久久中文字幕网| 午夜福利欧美成人| 伦理电影免费视频| 国产精品国产高清国产av| 成人亚洲精品一区在线观看| 韩国av一区二区三区四区| 欧美日韩亚洲综合一区二区三区_| 国产成+人综合+亚洲专区| 黄频高清免费视频| 国产精品99久久99久久久不卡| 久久精品91无色码中文字幕| 久久久久久免费高清国产稀缺| 亚洲成av人片免费观看| 国产午夜福利久久久久久| 日韩国内少妇激情av| 久久人人精品亚洲av| 欧美黄色片欧美黄色片| 精品久久蜜臀av无| 男人舔女人下体高潮全视频| 国产高清videossex| 国产精品,欧美在线| 久久人人爽av亚洲精品天堂| 美女高潮到喷水免费观看| 久久久久久久久中文| 露出奶头的视频| 91九色精品人成在线观看| 日本免费a在线| 又黄又爽又免费观看的视频| 久久久久国内视频| 成人av一区二区三区在线看| 精品一区二区三区四区五区乱码| 日韩成人在线观看一区二区三区| 午夜成年电影在线免费观看| 欧美黄色片欧美黄色片| 91精品国产国语对白视频| 淫秽高清视频在线观看| 亚洲最大成人中文| 午夜福利在线观看吧| 一区二区三区激情视频| 99香蕉大伊视频| 乱人伦中国视频| 亚洲一区高清亚洲精品| 男女做爰动态图高潮gif福利片 | 在线观看66精品国产| 国产精华一区二区三区| 久久人人97超碰香蕉20202| 亚洲成a人片在线一区二区| 亚洲国产精品999在线| 校园春色视频在线观看| 免费在线观看完整版高清| 日韩大尺度精品在线看网址 | 老司机在亚洲福利影院| 久久性视频一级片| www.自偷自拍.com| 欧美一级毛片孕妇| 91麻豆精品激情在线观看国产| 国内精品久久久久精免费| videosex国产| 欧美日韩瑟瑟在线播放| www.www免费av| 悠悠久久av| 精品一区二区三区四区五区乱码| 国产真人三级小视频在线观看| 国产片内射在线| 亚洲精品美女久久av网站| 9191精品国产免费久久| 欧美在线一区亚洲| 少妇 在线观看| 国产欧美日韩一区二区精品| 午夜影院日韩av| 国产激情久久老熟女| 午夜福利,免费看| 精品久久久久久久人妻蜜臀av | 99国产精品99久久久久| 国产高清有码在线观看视频 | 国产成人av激情在线播放| 亚洲av日韩精品久久久久久密| 又黄又粗又硬又大视频| 久久精品成人免费网站| 国产欧美日韩一区二区三区在线| 成年女人毛片免费观看观看9| 国产免费av片在线观看野外av| 91老司机精品| 亚洲人成77777在线视频| 亚洲最大成人中文| 欧美乱妇无乱码| 久久欧美精品欧美久久欧美| 亚洲男人的天堂狠狠| 久久中文看片网| 一区二区三区国产精品乱码| 最近最新中文字幕大全免费视频| 动漫黄色视频在线观看| 97超级碰碰碰精品色视频在线观看| 日本欧美视频一区| 人人澡人人妻人| 亚洲狠狠婷婷综合久久图片| 亚洲色图av天堂| 制服诱惑二区| 亚洲美女黄片视频| 制服人妻中文乱码| 天天添夜夜摸| 久热爱精品视频在线9| 别揉我奶头~嗯~啊~动态视频| 无遮挡黄片免费观看| 国产高清videossex| 久久香蕉国产精品| 色老头精品视频在线观看| 成年人黄色毛片网站| 女人高潮潮喷娇喘18禁视频| 国产精品永久免费网站| 亚洲精品美女久久av网站| 无限看片的www在线观看| 中国美女看黄片| 91字幕亚洲| 国产亚洲欧美精品永久| 久久久水蜜桃国产精品网| 熟妇人妻久久中文字幕3abv| 在线观看免费日韩欧美大片| 最好的美女福利视频网| 正在播放国产对白刺激| 亚洲狠狠婷婷综合久久图片| 亚洲专区国产一区二区| 精品国产一区二区久久| 国产高清激情床上av| 亚洲色图综合在线观看| 国产成人精品久久二区二区91| 激情视频va一区二区三区| 操美女的视频在线观看| 国产91精品成人一区二区三区| 久久久久久久久中文| 电影成人av| 欧美一区二区精品小视频在线| 可以免费在线观看a视频的电影网站| 亚洲第一青青草原| 国产伦一二天堂av在线观看| 午夜福利视频1000在线观看 | 国产人伦9x9x在线观看| 久久久精品欧美日韩精品| 97人妻天天添夜夜摸| 日韩有码中文字幕| 国产高清激情床上av| 久久 成人 亚洲| 啪啪无遮挡十八禁网站| 日本免费一区二区三区高清不卡 | 天堂√8在线中文| 欧美国产精品va在线观看不卡| 欧美乱妇无乱码| 国产精品久久久av美女十八| 精品国产乱子伦一区二区三区| 亚洲av第一区精品v没综合| 亚洲精品国产区一区二| 亚洲欧美精品综合久久99| 一二三四社区在线视频社区8| 亚洲自偷自拍图片 自拍| 成年人黄色毛片网站| 美女大奶头视频| 日韩大尺度精品在线看网址 | 欧美亚洲日本最大视频资源| 精品午夜福利视频在线观看一区| 99在线人妻在线中文字幕| 成人国产综合亚洲| 国产国语露脸激情在线看| 亚洲片人在线观看| 波多野结衣巨乳人妻| 国产精品久久视频播放| 日本五十路高清| 久久午夜综合久久蜜桃| 久久人妻福利社区极品人妻图片| 亚洲三区欧美一区| 老司机午夜福利在线观看视频| 亚洲av成人av| 精品福利观看| 精品无人区乱码1区二区| 精品国产美女av久久久久小说| 在线国产一区二区在线| 黄片大片在线免费观看| 在线视频色国产色| 欧美最黄视频在线播放免费| 电影成人av| 精品人妻1区二区| 久久热在线av| 两个人视频免费观看高清| 一进一出抽搐gif免费好疼| 法律面前人人平等表现在哪些方面| 亚洲av日韩精品久久久久久密| 亚洲欧美日韩另类电影网站| 国产区一区二久久| 亚洲熟妇中文字幕五十中出| 亚洲av五月六月丁香网| 老司机午夜十八禁免费视频| 亚洲男人天堂网一区| 亚洲va日本ⅴa欧美va伊人久久| 午夜精品久久久久久毛片777| 欧美黑人精品巨大| 91九色精品人成在线观看| 成年人黄色毛片网站| av在线播放免费不卡| 看黄色毛片网站| 嫁个100分男人电影在线观看| 国产精品久久久av美女十八| 丁香六月欧美| 国产成人影院久久av| 波多野结衣av一区二区av| 99精品在免费线老司机午夜| 一级,二级,三级黄色视频| 久久人人精品亚洲av| 久久人妻av系列| 男女下面进入的视频免费午夜 | 亚洲五月天丁香| 久久伊人香网站| 1024香蕉在线观看| 丁香六月欧美| 国产精品av久久久久免费| 国产精品乱码一区二三区的特点 | 国产精品1区2区在线观看.| 香蕉国产在线看| 亚洲伊人色综图| 亚洲男人的天堂狠狠| 亚洲男人天堂网一区| 丝袜美足系列| a级毛片在线看网站| 12—13女人毛片做爰片一| e午夜精品久久久久久久| 亚洲精品久久成人aⅴ小说| 亚洲情色 制服丝袜| 精品久久久久久久毛片微露脸| 在线十欧美十亚洲十日本专区| 99riav亚洲国产免费| 久久人人97超碰香蕉20202| 亚洲欧美精品综合久久99| 国产精品免费一区二区三区在线| 真人做人爱边吃奶动态| 狠狠狠狠99中文字幕| 精品国产超薄肉色丝袜足j| 亚洲欧美激情综合另类|