• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Improvement of predictions of petrophysical transport behavior using three-dimensional finite volume element model with micro-CT images*

    2015-04-20 05:52:35LIUJianjun劉建軍SONGRui宋睿CUIMengmeng崔夢夢
    關(guān)鍵詞:劉建軍夢夢不合理

    LIU Jian-jun (劉建軍), SONG Rui (宋睿), CUI Meng-meng (崔夢夢)

    1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University,Chengdu 610500, China 2. School of Geoscience and Technology, Southwest Petroleum University, Chengdu 610500, China,E-mail: liujj0906@sina.com 3. School of Petroleum and Natural Gas Engineering, Southwest Petroleum University, Chengdu 610500, China

    Introduction

    An accurate prediction of the material parameters for disordered systems such as rocks, soils, micro emulsions, composites, ceramics, papers, or complex fluids, requires the identification of the pore-scale geometries of these porous media[1-3]. Thus, the multiscale modeling was regarded as a starting point, as emphasized by many scholars[4,5]. Meanwhile, it is possible to conduct experiments to obtain such macroscopic properties. However, the full range of the displacement process is difficult to be determined. For example, experiments on three-phase flow at laboratory scale usually cost much energy and time, but the results are not reliable in the low saturation region.

    The pore-scale modeling refers to a numerical simulation method representing the pore space with parameterized geometries, through which the multi flow can be simulated. In 1956, Fatt firstly proposed a twodimensinal regular lattice model and applied it to the prediction of the capillary pressure and the relative permeability of drainage in porous media. After that,many realistic models of porous media were proposed by assuming that the pore space is composed of tube bundles or the solid particles are represented by spheres[6]. These models can reproduce the spatial interconnectivity of pore systems, but cannot reflect the real shapes and distributions of natural porous media.

    Developments of the imaging technology help to advance the modeling of porous media greatly, in providing two-dimensinal and three-dimensional imagesof porous media at the resolution of several micrometers. Many algorithms were developed for extracting the pore network from these images, such as the multi-orientation scanning method, the medial axis based method, the Voronoi diagram based method, the maximal ball method and the dual pore network approach[6-13]to construct pore-scale models. In addition,the lattice Boltzmann method is used to simulate the multiphase for predictions of the flow properties. Regular geometries (such as spheres and cylinders) are used to represent pores and throats, therefore, the complex shapes of micro structures in porous media can not be reproduced. In some cases, the pore-scale models were constructed through segmenting the images and extracting the outlines of pore spaces[14,15].These models can reflect the origin porous media images properly and can be used in the commercial simulation code after meshing. But most of these models are two-dimensinal, and can not reflect the spatial interconnectivity of the natural porous media.

    To better understand the fundamentals of the multiphase flow in porous media, this paper proposes a novel approach of reconstructing the three-dimensional finite volume elements model from natural porous media images using the commercial software Mimics and ICEM, prior to the pore network model based on some basic assumptions. The tetra finite volume elements of different sizes are employed to represent the origin micro structures of porous media instead of some regular shapes (sphere or cylinder, etc.). The model is tested on two Berea sandstones, four sandstone samples, two carbonate samples, and one Synthetic Silica, which are generated on the micro-CT images scanned by the State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation in the Southwest Petroleum University. Furthermore, single–and two phase flow simulations are conducted based on the Navier-Stokes equations in the Fluent software. Considering that the almost universal practice in the oil industry is to measure the relative permeability for the flow of only two-phases at one initial condition and to use empirical models of limited accuracy to predict the behavior in other cases[16], absolute and relative permeabilities of the models are predicted in the simulation for oil/gas reservoir engineering applications.

    1. Pore scale finite volume element modeling

    1.1 Micro-CT images preparation

    Nine micro-CT images are used in this paper.Considering that the resolution of the Micro-CT images is dependent on the pixel size of the detector and the sample size, the mounted core sample must be small and well-shaped to make the best use of the detector and to acquire the highest possible resolution.Thus the small cylinder samples are drilled out from the core samples to acquire a better resolution, some images of which are shown in the Fig.1. However, it is difficult to construct the surface finite volume element for a cylinder with a complex micro structure. A cube of voxels is extracted from the origin micro-CT images. For example, 450×450×450 pixels of the synthe-tic Silica are selected and used to construct the pore scale model. The basic parameters of the selected micro-CT images used to construct the finite volume element model are listed in the Table 1.

    Fig.1 Comparison of the denoised and segmented images

    Table 1 Scaled Micro-CT images of core sample

    Since the scaled images should be segmented to distinguish the pore space and the matrix in the images, the smoothing and denoising processes are usually employed to reduce sharp angles and small holes in the finite volume element model. As a cornerstone of the modern image processing, the median filter is used here to replace the gray scale value of a voxel with the median value of the nearest 26 surrounding cells. In this way, the images are despeckled from the gray scales without introducing new gray values into the origin. In Fig.1, it is evident that the small holes can be removed effectively by the median filter processing,as witnessed by a comparison between (c) to (d). A larger value of the median filter threshold will remove larger miscellaneous point sets.

    1.2 Finite volume element reconstruction

    Just like (c) and (d) in Fig.1, the white part with the RGB value of 0 represents the rock matrix and the black part with the RGB value of 255 is the pore space.The rock matrix and the pore space can be distinguished by the threshold value after importing into the Mimics software. The reconstructed models of some samples are shown in Fig.2 (left part), in which the yellow part is the rock matrix and the green part is the pore space. However, these images are completed by a simple surface modeling, to provide only a visual perception and cannot be used in the simulation directly.Traditionally, these models will be transferred into polygon geometries, and then meshed to establish the finite volume elements model. Yet, this traditional process faces two big challenges:

    (1) The reconstructed polygon geometry model requires tremendously large storage space in the computer. Taking B2 as an example, the file of the reconstructed geometry is nearly 1GB in size, which will take a huge amount of computer memory and video memory to scan or edit.

    Fig.2 Images of reconstructed porous samples in Mimics and finite volume elements of pore space

    (2) The meshing process might fail under the existing conditions of the personal computers and the meshing method. The required computer memory for the meshing process will grow exponentially along with the file size, eventually, the existing meshing methods cannot handle the complex disorder microstructures of the porous media.

    In view of these difficulties, a new method is proposed, which is explained concisely as follows:

    (1) The surface finite mesh modeling is employed instead of the traditional surface geometry modeling, that is, the triangle surfaces meshes are used to reconstruct the surface geometry of the origin porous sample. And the total number of the elements in the models mainly depends on the complexity of the pore shape. Under the circumstance that the skewness (Sk)must not exceed the highest tolerance value of 0.95 for the Fluent software in the remesh process in the Mimics 10.0 software, it is possible to subdivide one triangle of bad quality into more and better triangles.Though unstructured meshes are used in this study,the skewness of these models, shown in Fig.3, is small enough to ensure the reliability for the convergence in the simulation.

    針對(duì)不合理信念的調(diào)查,本研究采用王玉(2009)[6]編制的大學(xué)生不合理信念問卷,共包括4個(gè)因子:絕對(duì)化要求、糟糕至極、概括化評(píng)價(jià)和低挫折忍耐;針對(duì)專業(yè)滿意度的調(diào)查,本研究采用柳會(huì)(2014)[7]編制的專業(yè)滿意度調(diào)查問卷,均采用Likert五級(jí)尺度。

    Fig.3 Mesh skewness of reconstructed FVM models

    Fig.4 Radial pore distribution of origin sandstone core and reconstructed finite volume models. So refers to the origin sandstone core sample

    (2) The tetrahedral volume mesh is generated from the original surface mesh by importing the surface meshes into the ICEM software. The volume mesh quality is ensured by a subdivision process. Meanwhile, the boundary meshes are selected to form various parts, preparing for applying the boundary conditions in the numerical simulation. Some of the completed volume meshes are shown in Fig.2 (right part). And the comparative curves of the radial distribution of pores between the reconstructed finite volume models of S1-S4 and the origin sandstone core sample (SO)are shown in Fig.4. It is found that the radius of the pores is close to that of the origin sample, which verifies the feasibility of this method.

    2. Numerical simulation

    2.1 Mathematical model

    For theithphase, the continuity equation is[17]

    whereαiis the volume fraction of theithfluid in the cell,ρiis theithfluid’s density,Sαiis the source item. Whenn=1, the equation is just the continuity equation for the single flow.

    Fig.5 Boundary conditions in the simulation when the pressure drop is imposed along z direction

    The phases volume fraction will be determined based on the following constraint[17]

    The properties in the transport equations are determined by the volume fraction of the component phases in each cell. In a multiphase system, the density of the fluid in each cell is given by[17]

    Table 2 Absolute permeability of simulation and experiment

    All other properties (e.g., viscosity) are computed in this manner.

    All phases will share a single momentum equation in the fluid domain, as the result, the velocity field is shared among all phases. The momentum equation, shown below, is dependent on the volume fractions of all phases through the properties contained in Eqs.(3) and (4)[17].

    The surface tension for two-phase flow can be regarded as volume force and added to the momentum equation. It has the following form[17]:

    Considering the wall adhesion effect, the contact angle between the solid surface and the fluid is adopted to modify the unit normalof phase interface nearby the surface.

    By the Fluent software, the outlet flow rate can be obtained. Then the absolute permeability can be calculated as[18]

    Then the relative permeability is[18]

    whereQiis the total single phase flow rate through the model,Qsiis the total flow rate of the phaseiunder multiphase conditions with the same imposed pressure drop. And bothQiandQsican be obtained by the Fluent software.

    2.2 Single-phase flow simulation for permeability prediction

    In the single-phase simulation, the pressure drop is imposed on the inlet and the outlet. Taking thezdirection as an example, the top is defined as the inlet and the bottom is the outlet. The other surrounding four faces are defined as impermeable boundaries.The same definitions are in thexandydirections.Since the origin core sample is cylindrical, the experimental permeability data are just acquired along thezdirection. Figure 5 shows the sketch of the boundary conditions in the simulation when the pressure drop is imposed along thezdirection.

    By Eq.(9), the absolute permeability along thex,y,zdirections can be calculated. The experiment and simulation results are listed in Table 2. Though there are some differences between the simulation and experiment results for the same type porous sample,they are acceptable for the simulation model is just a part of the origin core sample. Meanwhile, the permeability differs from the simulated direction, which verifies the heterogeneity of the natural porous media.The fitting curves shown in Fig.6 are found to pass though the origin point, which verifies the classic Darcy’s law. The pressure field and the velocity field of the models B1, S1, C2 and SS along thezdirection are shown in Fig.7. It can be seen that the fluid flows mainly along some channels of good connectivity. This phenomenon is verified by the classical micro fluid experiment in porous media.

    Fig.6 The variation of volume flow rate with the applied pressure gradient. Linear relationship observed in the graph verifies the Darcy’s law

    2.3 Two-phase flow simulation

    Based on the finite volume models and the volume of fraction (VOF) model in the Fluent software,the water flooding process is simulated. Here, only the top and bottom faces along thezdirection are selected as the fluid import and export boundaries. The other surrounding four faces are defined as impermeable boundaries. The gradient of 5 MPa/m is imposed between the inlet and outlet boundaries. The Fluid Physical Parameters in the simulation study are listed in Table 3. In the two-phase flow simulation, we choose the models S1, S2, S3 and S4 for the experimental benchmark data of the water flooding in these origin sandstone samples.

    The oil volume fraction for different time steps in the water flooding process can be acquired by the Fluent software. The volume fraction images of the model S1 for four different time steps are shown in Fig.8, in which the water moves along the main channels shown in the velocity field of the single-flow simulation. Meanwhile, one may obviously see the viscous fingering phenomenon when the water invades the oil, which causes a hysteresis in the displacement process and some residual oil in some narrow pore spaces. And the oil in the micro fractures of the pore space is impossible to be displaced by the water because of the tremendously large capillary force.

    Fig.7 Velocity and pressure fields of four samples along z direction (B1, S1, C2, and Silica)

    The oil/water volume fraction and the flow rate can be obtained in every time step, as well as the water saturation and the relative permeability by Eq.(10). The traditional long core-flooding experimentis conducted for the origin sandstone sample in the laboratory. The permeability saturation curves of the simulation and experiment results are shown in Fig.9.Though different contact angles are applied to different models, it is found that the relative permeability of S4 is close to the experimental results of the origin sandstone sample, from which the sample is taken when the contact angle iso90. And the simulation results show that the water saturation of the relative permeability curve intersection changes from <0.5 to> 0.5 when the sandstone wettability changes from the water-wet to the oil-wet. It is consistent to the qualitative analysis of theory and experiment. All these verify the feasibility and applicability of the reconstructed finite volume model of the porous media and the numerical simulation.

    Table 3 Fluid Physical Parameters in the simulation study

    Fig.8 Oil volume fraction of model S1 for different steps. From left-top to right-bottom the time steps are 1, 22, 40 and 60

    Fig.9 Relative permeability curves of models S1, S2 S3, S4 and experiment

    3. Conclusions

    In this paper, a novel approach of reconstructing the three-dimensional finite volume elements model from natural porous media images is proposed. This model can reproduce the real shape of pores in porous media, which will better promote the prediction of the petrophysical transport behavior as compared to other equivalent pore network models. The model is tested on two Berea sandstones, four sandstone samples, two carbonate samples, and one Synthetic Silica, which are generated on micro-CT images. With the volume mesh reconstruction process in the Mimics and ICEM software, the mesh qualities of these models are well enough for numerical simulations. In order to validate the efficiency, the models are employed to study the single- and two- phase flows in the Fluent software.The absolute permeability and the relative permeability curve are predicted in the simulation study, which agree well with the experimental results.

    It should be noted that this study provides some preliminary results for micro-fluids in porous media using finite volume methods. Though examples used in this study mainly come from the petroleum industry,it can be widely applied to micro fluid and structural analyses in other related areas.

    [1] ZHOU Xiao-jun, YU Min-chao. The structural flow in pipe containing porous medium saturated with powerlaw fluid[J]. Journal of Hydrodynamics, 2012, 24(1):138-144.

    [2] LI Pei-chao, KONG Xiang-yan and LU De-tang. Mathematical modeling of flow in saturated porous media[J]. Journal of Hydrodynamics, Ser. A, 2003,18(4): 419-426(in Chinese).

    [3] SILIN D., TOMUTSA L. and BENSON S. M. et al. Microtomography and pore-scale modeling of two-phase fluid distribution[J]. Transport in Porous Media, 2011,86(2): 495-515.

    [4] GRUCELSKI A., POZORSKI J. Lattice Boltzmann simulations of flow past a circular cylinder and in simple porous media[J]. Computers and Fluids, 2013, 71:406-416.

    [5] JAMSHIDZADEH Z., TSAI F. T. C. and MIRBAGHERI S. A. et al. Fluid dispersion effects on density-driven thermohaline flow and transport in porous media[J].Advances in Water Resources, 2013, 61: 12-28.

    [6] BAUER D., YOUSSEF S. and HAN M. et al. From computed microtomography images to resistivity index calculations of heterogeneous carbonates using a dualporosity pore-network approach: Influence of percolation on the electrical transport properties[J]. Physical Review E, 2011, 84(1): 011133.

    [7] LIANG Z., IOANNIDIS M. A. and CHATZIS I. Geometric and topological analysis of three-dimensional porous media: Pore space partitioning based on morphological skeletonization[J]. Journal of Colloid and Interface Science, 2000, 221(1): 13-24.

    [8] SHIN H., LINDQUIST W. B. and SAHAGIAN D. L. et al. Analysis of the vesicular structure of basalts[J].Computers and geosciences, 2005, 31(4): 473-487.

    [9] BRYANT S., BLUNT M. Prediction of relative permeability in simple porous media[J]. Physical Review A,1992, 46(4): 2004-2011.

    [10] ?REN P. E., BAKKE S. Process based reconstruction of sandstones and prediction of transport properties[J].Transport in Porous Media, 2002, 46(2-3): 311-343.

    [11] ?REN P. E., BAKKE S. Reconstruction of Berea sandstone and pore-scale modelling of wettability effects[J].Journal of Petroleum Science and Engineering, 2003,39(3): 177-199.

    [12] SILIN D., PATZEK T. Pore space morphology analysis using maximal inscribed spheres[J]. Physica A: Statistical Mechanics and its Applications, 2006, 371(2):336-360.

    [13] SILIN D., JIN G. and PATZEK T. Robust determination of the pore space morphology in sedimentary rocks[C]. SPE Annual Technical Conference and Exhibition. Houston, USA, 2003.

    [14] GUNDE A. C., BERA B. and MITRA S. K. Investigation of water and CO2(carbon dioxide) flooding using micro-CT (micro-computed tomography) images of Berea sandstone core using finite element simulations[J]. Energy, 2010, 35(12): 5209-5216.

    [15] LIU J., SONG R. and ZHAO J. Numerical simulation research on seepage mechanism in pore-scale deformable porous media[J]. Disaster Advances, 2013, 6(S1):49-58.

    [16] BLUNT M. J. Flow in porous media-pore-network models and multiphase flow[J]. Current Opinion in Colloid and Interface Science, 2001, 6(3): 197-207.

    [17] YANG Z., PENG X. F. and YE P. Numerical and experimental investigation of two phase flow during boiling in a coiled tube[J]. International Journal of Heat and Mass Transfer, 2008, 51(5): 1003-1016.

    [18] VALVATNE P. H., BLUNT M. J. Predictive pore-scale modeling of two-phase flow in mixed wet media[J].Water Resources Research, 2004, 40(7): 1-21.

    猜你喜歡
    劉建軍夢夢不合理
    全球2%頂尖科學(xué)家入選者劉建軍
    Design of Thomson scattering diagnostic system on linear magnetized plasma device
    劉建軍
    夢夢的尋味之旅
    我院2018年抗生素不合理處方分析
    多倫縣長:我不介意變成“網(wǎng)紅”
    小康(2019年28期)2019-10-18 01:23:17
    An Analysis of Main Difficulties Chinese Learners Experience in English Writing and Some Suggested Solutions for Teachers
    “夢夢”“嬌慶”德國行
    向“不合理用藥”宣戰(zhàn)
    不合理上訪與信訪體制改革研究
    国产亚洲一区二区精品| 99国产综合亚洲精品| 欧美黄色片欧美黄色片| 一本一本久久a久久精品综合妖精| 国产探花极品一区二区| 久久久久精品人妻al黑| 免费高清在线观看日韩| 成年美女黄网站色视频大全免费| 夫妻性生交免费视频一级片| 免费高清在线观看视频在线观看| 男的添女的下面高潮视频| 婷婷色麻豆天堂久久| 欧美日韩福利视频一区二区| 日韩大片免费观看网站| www.熟女人妻精品国产| 国精品久久久久久国模美| 91精品伊人久久大香线蕉| 婷婷色综合www| 免费黄色在线免费观看| 亚洲国产成人一精品久久久| 国产亚洲av片在线观看秒播厂| 久久婷婷青草| 不卡视频在线观看欧美| 精品国产一区二区三区久久久樱花| 国产女主播在线喷水免费视频网站| 只有这里有精品99| 日韩制服骚丝袜av| 午夜久久久在线观看| 丰满迷人的少妇在线观看| 久久韩国三级中文字幕| a 毛片基地| 中文字幕亚洲精品专区| 天天躁狠狠躁夜夜躁狠狠躁| 日韩一区二区视频免费看| 午夜福利,免费看| 老司机影院毛片| 久久天躁狠狠躁夜夜2o2o | 免费在线观看完整版高清| 十八禁高潮呻吟视频| av在线老鸭窝| 巨乳人妻的诱惑在线观看| 国产av一区二区精品久久| 在线精品无人区一区二区三| 国产av一区二区精品久久| 亚洲中文av在线| 不卡视频在线观看欧美| 90打野战视频偷拍视频| 少妇被粗大的猛进出69影院| 日韩欧美一区视频在线观看| 99久久人妻综合| tube8黄色片| 十八禁网站网址无遮挡| 女性生殖器流出的白浆| 99国产精品免费福利视频| 成人亚洲精品一区在线观看| 老鸭窝网址在线观看| 人成视频在线观看免费观看| 波多野结衣一区麻豆| 亚洲精品乱久久久久久| 熟女少妇亚洲综合色aaa.| 菩萨蛮人人尽说江南好唐韦庄| 又粗又硬又长又爽又黄的视频| 国产av国产精品国产| 热re99久久国产66热| 国产激情久久老熟女| 亚洲成国产人片在线观看| 国产精品三级大全| 人人澡人人妻人| 久久国产亚洲av麻豆专区| 精品久久久精品久久久| 国产亚洲av高清不卡| 黄色视频在线播放观看不卡| 男人爽女人下面视频在线观看| 在线 av 中文字幕| 曰老女人黄片| 97人妻天天添夜夜摸| 高清欧美精品videossex| 国产乱来视频区| 免费黄频网站在线观看国产| 伊人久久大香线蕉亚洲五| 伊人久久大香线蕉亚洲五| 日韩精品免费视频一区二区三区| 老司机影院毛片| av免费观看日本| 国产97色在线日韩免费| 精品少妇内射三级| 婷婷色av中文字幕| 欧美日韩综合久久久久久| 国产精品秋霞免费鲁丝片| 卡戴珊不雅视频在线播放| 嫩草影视91久久| 国产精品国产av在线观看| 亚洲精华国产精华液的使用体验| 黄色一级大片看看| 18在线观看网站| 久久免费观看电影| 考比视频在线观看| 亚洲国产成人一精品久久久| 免费在线观看完整版高清| 欧美日韩一区二区视频在线观看视频在线| 超色免费av| 男女边吃奶边做爰视频| 99久久综合免费| 中文字幕亚洲精品专区| 99re6热这里在线精品视频| 你懂的网址亚洲精品在线观看| 1024视频免费在线观看| 国产av精品麻豆| 高清黄色对白视频在线免费看| 亚洲天堂av无毛| av网站在线播放免费| 国产男女内射视频| 亚洲精品日本国产第一区| 久久久久久免费高清国产稀缺| 成年av动漫网址| 无遮挡黄片免费观看| 男人舔女人的私密视频| 赤兔流量卡办理| 啦啦啦 在线观看视频| 永久免费av网站大全| av免费观看日本| 在线观看国产h片| 2021少妇久久久久久久久久久| 亚洲欧美日韩另类电影网站| 国产精品蜜桃在线观看| 亚洲成人国产一区在线观看 | 又黄又粗又硬又大视频| 国产 一区精品| 亚洲情色 制服丝袜| 久久久精品区二区三区| 久热这里只有精品99| 久久久久久久久久久免费av| av福利片在线| 久久久久久久久免费视频了| 亚洲精品国产av成人精品| 欧美亚洲日本最大视频资源| 久久精品aⅴ一区二区三区四区| 人人妻人人澡人人爽人人夜夜| 国产一区二区三区av在线| 免费在线观看黄色视频的| 精品一区在线观看国产| 欧美久久黑人一区二区| 毛片一级片免费看久久久久| 日韩中文字幕视频在线看片| 国产男人的电影天堂91| 又黄又粗又硬又大视频| 婷婷色av中文字幕| 一区福利在线观看| 夫妻性生交免费视频一级片| 婷婷色综合大香蕉| 国产精品 欧美亚洲| 99久久99久久久精品蜜桃| 秋霞在线观看毛片| 日本欧美视频一区| 久久国产精品大桥未久av| 国产精品无大码| 91老司机精品| 人人妻,人人澡人人爽秒播 | 国产一区二区三区av在线| 中文字幕高清在线视频| 赤兔流量卡办理| 国产 一区精品| 精品久久久精品久久久| 美女中出高潮动态图| 亚洲av日韩精品久久久久久密 | 又大又爽又粗| 亚洲天堂av无毛| 亚洲一级一片aⅴ在线观看| 黄色毛片三级朝国网站| 一级黄片播放器| 女的被弄到高潮叫床怎么办| 午夜免费男女啪啪视频观看| 国产成人精品无人区| 各种免费的搞黄视频| av电影中文网址| 美女福利国产在线| 男女高潮啪啪啪动态图| 欧美 亚洲 国产 日韩一| 国产成人欧美| 国产精品二区激情视频| 汤姆久久久久久久影院中文字幕| 菩萨蛮人人尽说江南好唐韦庄| 精品第一国产精品| 国产精品久久久久成人av| 亚洲精品国产av蜜桃| 亚洲精品一二三| 最近最新中文字幕大全免费视频 | 亚洲一区二区三区欧美精品| 菩萨蛮人人尽说江南好唐韦庄| 久久影院123| 最近2019中文字幕mv第一页| 国产一区有黄有色的免费视频| 性高湖久久久久久久久免费观看| 丝袜人妻中文字幕| 少妇的丰满在线观看| 丝袜美足系列| 欧美日韩亚洲高清精品| 亚洲久久久国产精品| 色精品久久人妻99蜜桃| 少妇猛男粗大的猛烈进出视频| 国产精品麻豆人妻色哟哟久久| 最新的欧美精品一区二区| av卡一久久| h视频一区二区三区| 观看av在线不卡| 亚洲欧美一区二区三区久久| 免费黄网站久久成人精品| 一区二区三区激情视频| 国产精品秋霞免费鲁丝片| 综合色丁香网| 亚洲一区中文字幕在线| 午夜激情av网站| 久久精品aⅴ一区二区三区四区| 成人毛片60女人毛片免费| 女人精品久久久久毛片| 日韩欧美精品免费久久| 婷婷成人精品国产| 一区二区日韩欧美中文字幕| 男女之事视频高清在线观看 | 欧美日本中文国产一区发布| 操出白浆在线播放| 亚洲精品av麻豆狂野| 亚洲国产精品成人久久小说| 精品视频人人做人人爽| 欧美精品人与动牲交sv欧美| 日韩av免费高清视频| 下体分泌物呈黄色| 一区福利在线观看| 黄片无遮挡物在线观看| 日本av手机在线免费观看| 久久久久久人妻| 欧美av亚洲av综合av国产av | 国产欧美日韩一区二区三区在线| 啦啦啦 在线观看视频| 18禁裸乳无遮挡动漫免费视频| 国产1区2区3区精品| 欧美av亚洲av综合av国产av | 一级毛片我不卡| 一区福利在线观看| 国产精品成人在线| 国产日韩一区二区三区精品不卡| 中文字幕制服av| 精品酒店卫生间| 亚洲一卡2卡3卡4卡5卡精品中文| 久久人人爽av亚洲精品天堂| 天堂俺去俺来也www色官网| 亚洲精品久久成人aⅴ小说| 亚洲成色77777| 操出白浆在线播放| 久久久久久久久免费视频了| 一边摸一边做爽爽视频免费| 久久精品熟女亚洲av麻豆精品| 国产av精品麻豆| 亚洲欧洲国产日韩| 嫩草影院入口| 少妇精品久久久久久久| 午夜福利免费观看在线| 成人三级做爰电影| 久久精品国产综合久久久| 啦啦啦中文免费视频观看日本| 欧美国产精品va在线观看不卡| 国产淫语在线视频| 女人爽到高潮嗷嗷叫在线视频| 丁香六月天网| 最近最新中文字幕大全免费视频 | 如日韩欧美国产精品一区二区三区| 久久久久久久精品精品| 国产无遮挡羞羞视频在线观看| 女人久久www免费人成看片| 国产成人免费观看mmmm| 老司机深夜福利视频在线观看 | 久久久久国产一级毛片高清牌| 99九九在线精品视频| 国产野战对白在线观看| 欧美激情极品国产一区二区三区| 少妇人妻精品综合一区二区| 日韩视频在线欧美| 亚洲av欧美aⅴ国产| 久久久久久久久免费视频了| 国产乱人偷精品视频| 视频在线观看一区二区三区| 午夜日韩欧美国产| 国产成人系列免费观看| 男的添女的下面高潮视频| 亚洲情色 制服丝袜| 国产深夜福利视频在线观看| 精品国产露脸久久av麻豆| 欧美日韩亚洲国产一区二区在线观看 | 黄网站色视频无遮挡免费观看| 日韩电影二区| 亚洲激情五月婷婷啪啪| 久久影院123| 亚洲成人一二三区av| 大陆偷拍与自拍| 色视频在线一区二区三区| 欧美97在线视频| 午夜老司机福利片| 亚洲国产欧美日韩在线播放| 欧美亚洲 丝袜 人妻 在线| 中文字幕精品免费在线观看视频| videosex国产| xxxhd国产人妻xxx| 久久亚洲国产成人精品v| av又黄又爽大尺度在线免费看| 国产爽快片一区二区三区| 欧美日韩成人在线一区二区| 亚洲欧美一区二区三区国产| 久久精品国产亚洲av高清一级| av国产精品久久久久影院| 国产精品国产av在线观看| 国产精品人妻久久久影院| 18禁观看日本| 成人手机av| 九色亚洲精品在线播放| 捣出白浆h1v1| 欧美亚洲 丝袜 人妻 在线| 中文字幕av电影在线播放| 国产野战对白在线观看| 别揉我奶头~嗯~啊~动态视频 | 精品一区在线观看国产| 久久精品aⅴ一区二区三区四区| 国产成人免费观看mmmm| 亚洲国产精品国产精品| 国产精品秋霞免费鲁丝片| 妹子高潮喷水视频| 久久精品亚洲av国产电影网| 欧美日韩精品网址| 中文天堂在线官网| 曰老女人黄片| 人成视频在线观看免费观看| 国产在视频线精品| 成人亚洲欧美一区二区av| 国产1区2区3区精品| 十八禁网站网址无遮挡| 久久综合国产亚洲精品| 人妻一区二区av| 久久午夜综合久久蜜桃| 一本一本久久a久久精品综合妖精| 欧美精品av麻豆av| 1024香蕉在线观看| 国产高清国产精品国产三级| 亚洲成人国产一区在线观看 | 麻豆精品久久久久久蜜桃| 男的添女的下面高潮视频| 亚洲一区中文字幕在线| 亚洲欧美一区二区三区黑人| 色婷婷久久久亚洲欧美| av网站免费在线观看视频| 国产片特级美女逼逼视频| 亚洲国产精品一区二区三区在线| 男人爽女人下面视频在线观看| 制服丝袜香蕉在线| 我要看黄色一级片免费的| 欧美日韩一区二区视频在线观看视频在线| 不卡av一区二区三区| 国产高清不卡午夜福利| 高清欧美精品videossex| 免费观看人在逋| 亚洲欧美清纯卡通| 制服丝袜香蕉在线| 老司机在亚洲福利影院| 国产黄色免费在线视频| 韩国高清视频一区二区三区| 免费人妻精品一区二区三区视频| 亚洲精品成人av观看孕妇| 在线看a的网站| 免费日韩欧美在线观看| 午夜福利免费观看在线| 久久ye,这里只有精品| 嫩草影院入口| 亚洲精品国产av成人精品| 午夜免费观看性视频| 国产欧美日韩综合在线一区二区| 午夜激情av网站| 亚洲成人av在线免费| 日韩成人av中文字幕在线观看| 午夜福利视频在线观看免费| 国产黄色免费在线视频| 午夜91福利影院| 久久天堂一区二区三区四区| 色吧在线观看| 婷婷色av中文字幕| 人成视频在线观看免费观看| 毛片一级片免费看久久久久| 亚洲欧美成人精品一区二区| 一本—道久久a久久精品蜜桃钙片| 亚洲国产欧美日韩在线播放| 青草久久国产| 婷婷成人精品国产| 精品国产一区二区久久| 新久久久久国产一级毛片| 成人国语在线视频| 亚洲国产看品久久| 免费久久久久久久精品成人欧美视频| 久久天堂一区二区三区四区| xxxhd国产人妻xxx| 久久精品国产亚洲av涩爱| 日本猛色少妇xxxxx猛交久久| 亚洲国产精品国产精品| av天堂久久9| 熟妇人妻不卡中文字幕| 国产精品亚洲av一区麻豆 | 国产国语露脸激情在线看| 久久久久久人妻| 精品一区二区免费观看| 亚洲国产毛片av蜜桃av| 午夜久久久在线观看| 国产又色又爽无遮挡免| 久久99热这里只频精品6学生| www.av在线官网国产| 精品少妇久久久久久888优播| 国产一区二区激情短视频 | 成人漫画全彩无遮挡| 中文字幕人妻丝袜一区二区 | 天堂中文最新版在线下载| a级毛片黄视频| 肉色欧美久久久久久久蜜桃| av女优亚洲男人天堂| 亚洲精品视频女| 丰满饥渴人妻一区二区三| 美女大奶头黄色视频| 欧美成人午夜精品| 欧美日韩福利视频一区二区| 日本91视频免费播放| 国产一区二区在线观看av| 另类精品久久| 婷婷色麻豆天堂久久| 日韩大片免费观看网站| 色播在线永久视频| kizo精华| 精品一区二区三区四区五区乱码 | 性少妇av在线| 飞空精品影院首页| 亚洲精品aⅴ在线观看| 最近手机中文字幕大全| 成年人免费黄色播放视频| 亚洲欧洲精品一区二区精品久久久 | 新久久久久国产一级毛片| 午夜老司机福利片| 久久精品国产a三级三级三级| 欧美日韩福利视频一区二区| 国产精品久久久久久精品古装| 免费在线观看黄色视频的| 极品少妇高潮喷水抽搐| √禁漫天堂资源中文www| 日本91视频免费播放| 午夜久久久在线观看| 久久av网站| 91精品国产国语对白视频| 亚洲人成77777在线视频| 欧美人与性动交α欧美软件| 视频在线观看一区二区三区| 久久久久久久国产电影| 国产 精品1| 久久精品人人爽人人爽视色| 在现免费观看毛片| 电影成人av| 国产无遮挡羞羞视频在线观看| 又大又黄又爽视频免费| 午夜影院在线不卡| 丰满迷人的少妇在线观看| 五月开心婷婷网| 亚洲婷婷狠狠爱综合网| 亚洲av欧美aⅴ国产| 热re99久久精品国产66热6| 少妇人妻 视频| 国产成人系列免费观看| 在线观看国产h片| 亚洲中文av在线| 老司机深夜福利视频在线观看 | 免费观看av网站的网址| 亚洲婷婷狠狠爱综合网| 久久精品aⅴ一区二区三区四区| 欧美激情极品国产一区二区三区| 精品一区在线观看国产| 免费少妇av软件| 午夜老司机福利片| 欧美成人午夜精品| 欧美精品人与动牲交sv欧美| 在线 av 中文字幕| 满18在线观看网站| 国产在视频线精品| 国产av码专区亚洲av| 亚洲欧美一区二区三区久久| 欧美最新免费一区二区三区| 99久久综合免费| 亚洲av电影在线进入| 国产免费视频播放在线视频| 日韩精品免费视频一区二区三区| 大码成人一级视频| av视频免费观看在线观看| 天美传媒精品一区二区| 免费女性裸体啪啪无遮挡网站| 亚洲欧美一区二区三区国产| 美女大奶头黄色视频| 久久午夜综合久久蜜桃| 美女国产高潮福利片在线看| 成人免费观看视频高清| 丰满乱子伦码专区| 人人妻,人人澡人人爽秒播 | 九九爱精品视频在线观看| 亚洲精品自拍成人| 丝袜脚勾引网站| 人成视频在线观看免费观看| 亚洲精品日本国产第一区| 成年美女黄网站色视频大全免费| 夜夜骑夜夜射夜夜干| 天堂中文最新版在线下载| 高清欧美精品videossex| 肉色欧美久久久久久久蜜桃| 亚洲欧美清纯卡通| 欧美日韩一区二区视频在线观看视频在线| 午夜福利影视在线免费观看| 香蕉丝袜av| 一本大道久久a久久精品| 国产有黄有色有爽视频| 亚洲四区av| 亚洲精品aⅴ在线观看| 97人妻天天添夜夜摸| 男女边摸边吃奶| 亚洲三区欧美一区| 国产精品偷伦视频观看了| 欧美日韩亚洲高清精品| 亚洲美女视频黄频| 国产av一区二区精品久久| 久久韩国三级中文字幕| a级毛片在线看网站| 熟妇人妻不卡中文字幕| 黑人猛操日本美女一级片| 久久久久久久久久久免费av| 最近的中文字幕免费完整| 国产精品秋霞免费鲁丝片| av视频免费观看在线观看| 色播在线永久视频| 又大又爽又粗| 人人妻,人人澡人人爽秒播 | 亚洲成人手机| 亚洲av中文av极速乱| 久久久久久人妻| 一级毛片电影观看| 人人妻人人澡人人爽人人夜夜| 水蜜桃什么品种好| 亚洲国产av新网站| 亚洲成人国产一区在线观看 | 国产精品麻豆人妻色哟哟久久| 久久久久久久久免费视频了| 制服丝袜香蕉在线| 久久久久久久大尺度免费视频| 国产亚洲欧美精品永久| 女人久久www免费人成看片| 丝袜脚勾引网站| 亚洲av成人精品一二三区| 精品人妻在线不人妻| 嫩草影院入口| 十八禁人妻一区二区| 精品亚洲成国产av| 日韩成人av中文字幕在线观看| 在线看a的网站| 三上悠亚av全集在线观看| 男女边吃奶边做爰视频| 老司机影院毛片| 一区二区三区激情视频| 精品国产一区二区久久| 搡老岳熟女国产| 又粗又硬又长又爽又黄的视频| 国产欧美亚洲国产| 国产精品一区二区精品视频观看| 欧美日韩精品网址| 人人妻人人澡人人看| 久久久欧美国产精品| 一级毛片我不卡| 国产精品成人在线| 精品一区二区三卡| 中文字幕高清在线视频| 国产极品天堂在线| 天天躁狠狠躁夜夜躁狠狠躁| 我的亚洲天堂| 男的添女的下面高潮视频| 99久久人妻综合| 9色porny在线观看| 男女下面插进去视频免费观看| 自线自在国产av| 中国国产av一级| 久久精品国产亚洲av高清一级| 亚洲精品国产av蜜桃| 国产成人啪精品午夜网站| 成人亚洲欧美一区二区av| 超碰97精品在线观看| 久久久国产一区二区| 久久女婷五月综合色啪小说| 国产精品国产三级国产专区5o| 精品久久蜜臀av无| 大香蕉久久网| 国产精品免费视频内射| 亚洲一级一片aⅴ在线观看| 亚洲国产日韩一区二区| 777久久人妻少妇嫩草av网站| 国产麻豆69| 久久亚洲国产成人精品v| www日本在线高清视频| 午夜老司机福利片| 欧美黄色片欧美黄色片| 一边摸一边抽搐一进一出视频| 别揉我奶头~嗯~啊~动态视频 | 搡老岳熟女国产| 在线观看免费高清a一片| 美女大奶头黄色视频| 欧美 日韩 精品 国产| 国产97色在线日韩免费| 男女午夜视频在线观看| 久久av网站| 国产视频首页在线观看| 国产欧美亚洲国产| 2021少妇久久久久久久久久久| 男女边摸边吃奶|