• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ship hull optimization based on wave resistance using wavelet method*

    2015-04-20 05:52:25ZHAOYong趙勇ZONGZhi宗智ZOULi鄒麗
    關(guān)鍵詞:趙勇

    ZHAO Yong (趙勇), ZONG Zhi (宗智), ZOU Li (鄒麗)

    1. Transportation Equipment and Ocean Engineering College, Dalian Maritime University, Dalian 116026, China 2. State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China,E-mail: fluid@126.com 3. State Key Laboratory of Structural Analysis for Industrial Equipment; School of Naval Architecture, Dalian University of Technology, Dalian 116024, China

    Introduction

    The wave resistance is very sensitive to the ship hull surface, which might be reduced by a large proportion through the hull optimization in a high-speed situation[1-3]. Therefore, the ship hull optimization is of a very important engineering significance. The ship hull surface must be expressed in a form, which is a prerequisite in the optimization. Normally, the hull surface or its derivative function is expressed by the non-uniform rational B-spline (NURBS) in many blocks due to complexity of the hull surface as in Refs.[4-6]. In this paper, we express the whole hull surface by a wavelet expression and then derive a wave resistance formula in the wavelet space and optimize the hull surface aiming to reduce the wave resistance, as a new approach for the hull optimization.

    Since the 1980s, the study of the wavelet has made a great progress, especially by the work of Grossmann and Morlet, Dauberchies[7]and Taswell[8].Since then, the wavelet method has found many applications in the field of signal and image processing.Due to wavelet bases’ unique properties, such as the compact support, the multi-scale resolution and the fast decomposition algorithm, the wavelet analysis enjoys great potential advantages in the numerical calculations as compared to the Fourier analysis. By expressing functions into the wavelet series, the information of the multi-resolution and the localization of the function can be easily identified, thus the wavelet can serve as a mathematical microscope. By setting a threshold for the wavelet coefficients, the local structure can be captured, while the global error is controlled by this threshold. The wavelet method is well suitable in solving those problems with its multi-scale propertyand local structure[9-11]. As a preliminary study, we firstly utilize the wavelet method to solve the wave resistance problem based on the Michel theory for a Wigley model and then to optimize the hull in this paper.

    1. An outline of wavelet

    The wavelet method enjoys such properties as the compact support, the symmetry, the orthogonality, and the bi-orthogonality. Compared to the Fourier transform, the compact supported bases in the wavelet is a significant improvement. The wavelet transformation of a function converts the function into a series of small wave-like bases, allowing the function to be stored in an efficient way. The wavelet method has great advantages in solving the problems characterized by multi-scale and local structures, such as the turbulence and wave resistance problems. Here we will discuss some basic properties of the wavelet bases.

    For a given functionf(x), we can measure the component with a scaleaaround the positionbby the following process

    where

    Cψ<∞ is called the admissibility condition. The vanishing moment is an important index. The wavelet has anNorder vanishing moment under the condition that

    For example, if a polynomial is less thanNorder, its wavelet coefficients are zero if we choose a particular wavelet with anNorder vanishing moment. This property leads to an effective compression in the wavelet method.

    In the practical numerical method, we often use discrete wavelet transformations. The bases of the wavelet are formed by dilation and translation of a mother wavelet functionψ(x) as

    wherej,k∈Z,jis the scale index,kis the location index. The functionψ(x) has a companion, the scaling functionφ(x), and these functions satisfy the following relations:

    Similarly, the bases of the scale function are formed by dilation and translation of a mother scale functionφ(x)

    Two-dimensional bases can be formed by the tensor product of one dimensional bases in the following way,

    The Dauberchies wavelet does not have an explicit expression, but can be generated at any scale using the scale formula in an iterative manner.

    The wavelet bases provide us a multi-scale resolution to express a function. It is assumed that the functionf(x) can be well approached on the finest scaling indexJ, i.e.,, and then it can be decomposed in terms of the sum of a series of wavelet base functions

    The coefficients are obtained by the wavelet decomposition formula:

    For functions that contain isolated small scales on a large scale background, most wavelet coefficients are small, thus we can retain a good approximation even after discarding a large number of wavelets with small coefficients. This situation can be explained by the wavelet’s vanishing moment. More precisely, if we rewrite the approximation as a sum of two terms composed, respectively, of wavelets with absolutely value beyond and below a prescribed particular thresholdε,

    where

    According to Vasilyev and Kevlahan[12], the approximation error by the significant wavelets whose coefficient amplitude is above the thresholdεis bounded by the following restriction:

    And the number of the significant wavelet coefficientsKis bound byεand the wavelet’s vanishing momentNas

    The coefficients in Eqs.(14) and (15) depend on the wavelet vanishing moment and the functionf(x).The threshold plays two roles: making the approximation adaptive, and controlling the approximation error globally. The similar situation can be simply extended to the multi-dimensional space by the tensor product.In the next section, we will have the ship hull surface’s wavelet expression and verify the accuracy by the Wigley model.

    2. Hull surface’s wavelet expression

    Assume that the smallest scale information of the hull surface can be identified on scaleJ, denoted byfJ(x,y), with the initial scale coefficients=, we might do the decomposition until the largest scale is reached, which can be expressed by the following multi-scale wavelet expression

    Here we chooseB=0.2m,L=2m,H=0.125 m. We approximate it in the finest scaleJ=6,repeating the decomposition at the coarsest scaleJ0=2 with the Db2 wavelet. We choose the thresholdε=1.0 × 10-3, the resulting 436 wavelet coefficients are kept instead of 4 096, which means that with less then 10% of the coefficients, the complete information can be captured in the finest scaleJ=6 at an accuracy loss in the order ofε=1.0× 10-3, which can be verified by the error distribution as shown in Fig.1.

    Fig.1 Error distribution of reconstructed Wigley model

    3. Hull optimization based on Michel theory in wavelet expression

    Based on the linear theory, the wave resistance can be calculated by the Michel formula in Gotman[13]

    Using the orthogonal property of the wavelet bases of the same scale, we have

    And the wavelet space orthogonal property says

    The integral calculation can be simplified as the product of the corresponding wavelet coefficients,

    The ship hull surface’s wavelet coefficients are used as the optimization variables, according to the property that the wavelet function’s integral is equal to zero

    It is concluded that the volume does not change with the optimization variables. Denoting the change of the ship hull surface’s wavelet coefficients as, we obtain the target function

    where

    In summary, we need to find the optimal solutionto make the following expression minimum if.

    Furthermore, we use the wavelet method’s features of the multi-scale resolution and the spatial localization to analyze each optimization variable’s contribution in the resistance, and then choose those with a significant contribution, thus reducing a large number of optimization variables.

    Fig.2 Wave resistance coefficient for Wigley reconstruction at several scales

    Fig.3 Wave resistance coefficient by wavelet coefficients on separated scales

    Fig.4 The distributions of the quadratic sums of Wigley ship’s wavelet coefficients at j=5,4,3,2

    In what follows, we analyze the wave resistance distribution on scales and locations. For the scale indexj, we reconstruct the ship surface on various scales, from the coarsest to the scalej,Substituting it into the wave resistance formula (21),we obtain the relation of the resistance coefficient versus the Froude number, as shown in Fig.2.

    Fig.5 Molded lines of Wigley ship after optimization

    To observe the resistance on a separated scale,we can consider the difference between the resistances of adjacent scales, for example, if we want to see the resistance due to the wavelet coefficients on the scalej=2, we might consider the difference between the resistances on the scalesj=3 andj=2. Figure 3 shows the wave resistance on each scale. It is shown that the wavelet coefficients on the scalej=2 play an important role, thus we choose them as the optimization variables.

    Next we analyze the wave resistance’s spatial distribution by the wavelet coefficients’ spatial distribution. Figure 4 shows the sum of the squares of the wavelet coefficients in three directions, i.e., the horizontal, the vertical, and the diagonal directions, and it is found that the large values are localized near the ship head and the waterline, as is consistent with the real situation. Moreover, at the scalej=2, the amplitude is much larger than at other scales, and they are uniformly distributed. Based on the above observation,we select the wavelet coefficients on the scalej=2,totally 48 variables, to be the final optimization variables.

    We use the genetic algorithm to optimize these 48 variables on the designedFr=0.3, and the results are shown in Fig.5. The wave resistance is reduced by 49.6%. The resulting hull is flatter near the hull’s bow and stern, convex under the waterline, and then contracted sharply near the the waterline. The bottom is a clear plate and then a sharply inward contraction. The optimized hull transfers a partial volume from the water surface nearby to a certain distance below the waterline. However, this hull does not meet the smoothness requirement in real engineering sense. Also, the frictional resistance should be increased for this kind hull. It should be noticed that we obtain this optimal hull mainly based on the mathematical consideration by the wavelet method.

    Fig.6 Comparison of wave resistance coefficients of Wigley hull and its optimal hull using wavelet approach by Michel theory calculating by Noblesse theory

    In order to check the drag’s reduction, the wave resistance after optimization using the wavelet approach by the Michell theory is calculated by the Noblessewave resistance theory for a slender ship[14], as shown in Fig.6.

    In the Noblesse theory, the original hull’s wave resistance coefficient is 1.8×10-4, while the optimized hull’s coefficient is reduced to 1.2×10-4, one third wave drag reduction at the designedFr=0.3. The drag reduction proportion is less than the previous calculation. This result is reasonable due to the different features of the Michel and Noblesse theories. From these consistent results, we may see that the proposed model is rational and the calculation is accurate.

    4. Conclusions

    Utilizing the excellent mathematical properties of the wavelet, such as the compact bases, the orthogonal subspace partition and the fast algorithm for decomposition and reconstruction[15,16], we find its application in the ship hull surface optimization by reducing the wave resistance in this paper. Firstly, the hull surface is expressed by the wavelets with a fine enough scale,secondly, the expression is approximated by introducing a threshold for the wavelet coefficients, thus a very concise approximate expression is obtained with an error of the order of the threshold, thirdly, the wave resistance formula is derived in the wavelet form, and fourthly, the wavelet coefficients of the hull surface are chosen as the optimization variables, while the hull volume keeps constant. A good understanding of the wave resistance’s distribution is obtained in terms of scales and locations in the wavelet language. The wavelet method provides a new approach for the hull optimization.

    As a preliminary study, we adopt the linear wave resistance theory and a simple hull model. The smoothness constraint is not included in the optimization process, so the optimal hull may not meet the actual requirements in ship engineering. We are considering a further research in terms of the non-linear wave resistance theory as in Refs.[17,18], and the practical hull surface and smoothness requirements.

    Acknowledgement

    This work was supported by the Open Research Fund of State Key Laboratory of Ocean Engineering,Shanghai Jiao Tong University (Grant No. 1402).

    [1] ZHANG Bao-ji, MA Kun and JI Zuo-shang. The Optimization of the hull form with the minimum wave making resistance based on Rankine source method[J].Journal of Hydrodynamics, 2009, 21(2): 277-284.

    [2] WANG Yan-ying. Fine optimization of ship hull lines in resistance performance by using CFD approach[J].Journal of Dalian University of Technology, 2002,42(2): 127-133(in Chinese).

    [3] WANG Zheng, LU Xiao-ping. Research on high speed surface warship with bulbous bow[J]. Journal of Hydrodynamics, Ser. A, 2006, 21(6): 789-795(in Chinese).

    [4] KOELMAN H. J., BASTIAAN N. A technical note on the geometric representation of a ship hull form[J].Computer-Aided Design, 2013, 45(11): 1378-1381.

    [5] SHAMSUDDIN S. M., AHMED M. A. and SMIAN Y.NURBS skinning surface for ship hull design based on new parameterization method[J]. International Journal of Advanced Manufacturing Technology, 2006,28(9): 936-941.

    [6] SHI G., LIU S. and CHEN P. A fast NURBS interpolation method for 3D ship hull surface[J]. Journal of Applied Sciences, 2013, 13(12): 2139-2145.

    [7] DAUBECHIES I. Orthonormal bases of compactly supported wavelets[J]. Communications on Pure and Appllied Mathmatics, 1988, 41(7): 909-996.

    [8] TASWELL C. The what, how, and why of wavelet shrinkage denoising[J]. IEEE Computational Science and Engineering, 2003, 3(2): 12-19.

    [9] HUANG M. C. Wave parameters and functions in wavelet analysis[J]. Coastal Engineering, 2004, 31(1):111-125.

    [10] SCHNEIDER K., VASILYEV O. V. Wavelet methods in computational fluid dynamics[J]. Annual Review of Fluid Mechanics, 2009, 42: 473-503.

    [11] CAI Jun-meng, YI Wei-ming and HE Fang et al. Research on crude oil thixotropy based on discrete stationary wavelet transform[J]. Journal of Hydrodynamics, Ser.A, 2005, 20(6): 683-688(in Chinese).

    [12] VASILYEV O. V., KEVLAHAN N. K. R. An adaptive multilevel wavelet collocation method for elliptic problems[J]. Journal of Computational Physics, 2005,206(2): 412-431.

    [13] GOTMAN A. S. Study of Michell’s Integral and Influence of viscosity and ship hull form on wave resistance[J]. Oceanic Engineering International, 2002,6(2): 74-115.

    [14] NOBLESSE F. A slender-ship theory of wave resistance[J]. Journal of Ship Research, 1983, 271(1): 19-33.

    [15] ZHAO Yong, ZONG Zhi and ZOU Wen-nan. Numerical simulation of vortex evolution based on adaptive wavelet method[J]. Applied Mathematics and Mechanics (English Edition), 2011, 32(1): 33-44.

    [16] ZONG Zhi, ZHAO Yong and ZOU Wen-nan. Numerical solution for differential evolutional equation usingadaptive interpolation wavelet method[J]. Journal of Computational Mechanics, 2010, 27(1): 65-69(in Chinese).

    [17] YANG C., HUANG Fuxin. and NOBLESSE Francis.Practical evaluation of the drag of a ship for design and optimization[J]. Journal of Hydrodynamics, 2013,25(5): 645-654.

    [18] HUANG F., YANG C. and NOBLESSE F. Numerical implementation and validation of the Neumann-Michell theory of ship waves[J]. European Journal of Mechanics-B/Fluids, 2013, 42(1): 47-68.

    猜你喜歡
    趙勇
    時(shí)來(lái)運(yùn)轉(zhuǎn)
    《電訊技術(shù)》2020-2023年度“十佳通訊員”名單揭曉
    A study of the influence of different grid structures on plasma characteristics in the discharge chamber of an ion thruster
    800萬(wàn)“諜中諜”:贅婿詐死亢奮了一對(duì)在后黃雀
    Quantitative analysis and time-resolved characterization of simulated tokamak exhaust gas by laser-induced breakdown spectroscopy
    怪圖之謎
    故事會(huì)(2019年9期)2019-05-08 01:51:56
    被毒狗針戳殺的負(fù)心男
    趙勇:抓住脫貧突破口 實(shí)現(xiàn)老區(qū)又好又快發(fā)展
    Numerical Investigation on Drag Reduction Effect by Mass Injection from Porous Boundary Wall
    Investigation of non-cohesive levee breach by overtopping flow*
    偷拍熟女少妇极品色| 欧美+日韩+精品| 听说在线观看完整版免费高清| 亚洲精品,欧美精品| 九九在线视频观看精品| 黄色欧美视频在线观看| 国产精品伦人一区二区| 精品午夜福利在线看| 美女被艹到高潮喷水动态| 国产单亲对白刺激| 色尼玛亚洲综合影院| 91精品伊人久久大香线蕉| 最近视频中文字幕2019在线8| 国国产精品蜜臀av免费| 夫妻午夜视频| 亚洲av成人精品一二三区| 有码 亚洲区| 一级毛片我不卡| 成人鲁丝片一二三区免费| 日韩一区二区视频免费看| 熟女电影av网| 99久久中文字幕三级久久日本| 日韩成人av中文字幕在线观看| 精品人妻熟女av久视频| 免费观看精品视频网站| 在线观看av片永久免费下载| 国产精品国产三级国产av玫瑰| 91在线精品国自产拍蜜月| 一级黄片播放器| 亚洲在线自拍视频| 国产午夜福利久久久久久| 美女国产视频在线观看| 18禁在线无遮挡免费观看视频| 韩国高清视频一区二区三区| 内射极品少妇av片p| 亚洲精品自拍成人| 亚洲av免费在线观看| 边亲边吃奶的免费视频| 亚洲成人中文字幕在线播放| 人体艺术视频欧美日本| 在线a可以看的网站| 听说在线观看完整版免费高清| 国产在线男女| 国产69精品久久久久777片| 少妇人妻精品综合一区二区| 欧美xxxx性猛交bbbb| 非洲黑人性xxxx精品又粗又长| 免费黄色在线免费观看| 亚洲欧美一区二区三区国产| 亚洲精品成人av观看孕妇| a级毛色黄片| 成人二区视频| 如何舔出高潮| 特大巨黑吊av在线直播| 欧美激情国产日韩精品一区| 日韩精品有码人妻一区| 一区二区三区免费毛片| 在线观看人妻少妇| 大话2 男鬼变身卡| 国产成年人精品一区二区| 亚洲国产最新在线播放| 国产综合懂色| 亚洲av日韩在线播放| 日韩三级伦理在线观看| 亚洲成人久久爱视频| 成人综合一区亚洲| 亚洲精品日韩在线中文字幕| 在线观看美女被高潮喷水网站| 亚洲精品第二区| 亚洲丝袜综合中文字幕| 亚洲精品日韩在线中文字幕| 日本av手机在线免费观看| 又爽又黄无遮挡网站| 18+在线观看网站| 国产乱人视频| 午夜亚洲福利在线播放| 成人亚洲精品av一区二区| 十八禁网站网址无遮挡 | 最近中文字幕高清免费大全6| 一级黄片播放器| 精品久久久久久久人妻蜜臀av| 成人毛片60女人毛片免费| 爱豆传媒免费全集在线观看| 成年人午夜在线观看视频 | 黄片wwwwww| 校园人妻丝袜中文字幕| 欧美极品一区二区三区四区| 欧美最新免费一区二区三区| 五月玫瑰六月丁香| 少妇人妻精品综合一区二区| 人妻一区二区av| 日本与韩国留学比较| 91久久精品国产一区二区三区| 熟女人妻精品中文字幕| 天堂影院成人在线观看| 婷婷色av中文字幕| 最近最新中文字幕免费大全7| 性插视频无遮挡在线免费观看| 2021天堂中文幕一二区在线观| 永久网站在线| 99视频精品全部免费 在线| 日本熟妇午夜| 天天一区二区日本电影三级| 十八禁网站网址无遮挡 | 国产午夜精品论理片| 国产大屁股一区二区在线视频| 国产毛片a区久久久久| 国产 一区精品| 校园人妻丝袜中文字幕| 精品人妻一区二区三区麻豆| 三级国产精品欧美在线观看| 噜噜噜噜噜久久久久久91| 在线免费观看不下载黄p国产| 亚洲欧美成人精品一区二区| 日韩伦理黄色片| 嫩草影院入口| 一级爰片在线观看| 肉色欧美久久久久久久蜜桃 | 免费观看的影片在线观看| 国产乱人偷精品视频| 精品国产露脸久久av麻豆 | 九九爱精品视频在线观看| 老司机影院毛片| 久久久久久久久大av| 午夜老司机福利剧场| 国产亚洲av片在线观看秒播厂 | 亚洲欧美日韩卡通动漫| 午夜久久久久精精品| av.在线天堂| xxx大片免费视频| 精品人妻熟女av久视频| 人妻制服诱惑在线中文字幕| 日韩大片免费观看网站| 韩国av在线不卡| 91狼人影院| 免费播放大片免费观看视频在线观看| 在现免费观看毛片| 亚洲国产日韩欧美精品在线观看| 亚洲怡红院男人天堂| 成人无遮挡网站| 国产一区有黄有色的免费视频 | 一区二区三区乱码不卡18| 国产大屁股一区二区在线视频| 日本黄大片高清| 色综合站精品国产| 久热久热在线精品观看| 精品熟女少妇av免费看| 日韩强制内射视频| 蜜桃久久精品国产亚洲av| 久久久久久久久久人人人人人人| 国产成人福利小说| 午夜福利成人在线免费观看| 亚洲国产高清在线一区二区三| 亚洲av免费在线观看| 国产美女午夜福利| 天天一区二区日本电影三级| 亚洲av福利一区| 最近2019中文字幕mv第一页| 免费大片黄手机在线观看| 免费观看av网站的网址| 噜噜噜噜噜久久久久久91| 久热久热在线精品观看| 国产av码专区亚洲av| 五月玫瑰六月丁香| 又爽又黄无遮挡网站| 国产精品一区二区三区四区免费观看| 亚洲av免费在线观看| 欧美xxxx性猛交bbbb| 中文字幕久久专区| 久久国产乱子免费精品| 国产精品嫩草影院av在线观看| 99久久精品一区二区三区| 国产精品国产三级专区第一集| 观看美女的网站| 欧美日韩亚洲高清精品| 亚洲色图av天堂| 色吧在线观看| 国产精品一二三区在线看| 看免费成人av毛片| 国产亚洲91精品色在线| 一级av片app| 大陆偷拍与自拍| 久久人人爽人人爽人人片va| 国产单亲对白刺激| 1000部很黄的大片| 午夜福利视频精品| 日韩在线高清观看一区二区三区| 我的女老师完整版在线观看| 国产单亲对白刺激| 日韩欧美 国产精品| 乱人视频在线观看| 国产 一区 欧美 日韩| 午夜福利高清视频| 嫩草影院入口| 91狼人影院| 99热网站在线观看| 三级国产精品片| 国产精品.久久久| 亚洲18禁久久av| 非洲黑人性xxxx精品又粗又长| 精品酒店卫生间| 天堂√8在线中文| 亚洲精品中文字幕在线视频 | 国产高清有码在线观看视频| 啦啦啦韩国在线观看视频| 91aial.com中文字幕在线观看| 欧美成人一区二区免费高清观看| 少妇的逼水好多| 黄片wwwwww| 日韩亚洲欧美综合| 亚洲经典国产精华液单| 亚洲最大成人av| 99久久人妻综合| 日本黄大片高清| 中国国产av一级| 久久精品国产鲁丝片午夜精品| 国产爱豆传媒在线观看| 毛片一级片免费看久久久久| 欧美变态另类bdsm刘玥| 免费电影在线观看免费观看| 一级毛片电影观看| 国产乱人视频| 春色校园在线视频观看| 欧美极品一区二区三区四区| 老司机影院毛片| 国产 亚洲一区二区三区 | 国产一区亚洲一区在线观看| 亚洲高清免费不卡视频| 干丝袜人妻中文字幕| 国内精品一区二区在线观看| 3wmmmm亚洲av在线观看| 性插视频无遮挡在线免费观看| 成人美女网站在线观看视频| 国产白丝娇喘喷水9色精品| 久久亚洲国产成人精品v| 午夜福利高清视频| 免费看美女性在线毛片视频| 一级黄片播放器| 午夜视频国产福利| 国产真实伦视频高清在线观看| 成人午夜高清在线视频| 免费黄频网站在线观看国产| 国内精品美女久久久久久| 狂野欧美激情性xxxx在线观看| 久久久色成人| 特大巨黑吊av在线直播| 久久鲁丝午夜福利片| 色综合亚洲欧美另类图片| 欧美日韩国产mv在线观看视频 | 亚洲伊人久久精品综合| 一级毛片久久久久久久久女| 两个人视频免费观看高清| 春色校园在线视频观看| 午夜福利成人在线免费观看| 亚洲国产高清在线一区二区三| 91久久精品国产一区二区三区| 最近的中文字幕免费完整| 日韩欧美一区视频在线观看 | 最近最新中文字幕免费大全7| 久久国内精品自在自线图片| 国产日韩欧美在线精品| 天天躁夜夜躁狠狠久久av| 天堂√8在线中文| 男人和女人高潮做爰伦理| 亚洲精华国产精华液的使用体验| 亚洲精品成人久久久久久| 一级毛片我不卡| 人人妻人人看人人澡| 国产一区二区在线观看日韩| 性插视频无遮挡在线免费观看| 国产成人精品一,二区| 三级经典国产精品| 人妻夜夜爽99麻豆av| 美女黄网站色视频| 久久国内精品自在自线图片| 日韩欧美一区视频在线观看 | 九色成人免费人妻av| 午夜激情欧美在线| 国产伦在线观看视频一区| 日本色播在线视频| 欧美成人a在线观看| 99热这里只有是精品50| 国产女主播在线喷水免费视频网站 | 国产精品女同一区二区软件| 久久草成人影院| 国产乱人视频| 水蜜桃什么品种好| 91久久精品电影网| 99视频精品全部免费 在线| 国产视频首页在线观看| 国产一区有黄有色的免费视频 | 午夜激情欧美在线| 精品熟女少妇av免费看| 精品久久久精品久久久| 一个人看视频在线观看www免费| 国产亚洲91精品色在线| 亚洲人成网站高清观看| 美女黄网站色视频| 晚上一个人看的免费电影| 午夜日本视频在线| 97精品久久久久久久久久精品| 成年女人看的毛片在线观看| 日韩欧美精品免费久久| 亚洲经典国产精华液单| 天天躁日日操中文字幕| h日本视频在线播放| 深爱激情五月婷婷| 亚洲精品一二三| 欧美精品国产亚洲| 久久久久久久亚洲中文字幕| 美女国产视频在线观看| 极品少妇高潮喷水抽搐| 久久久久久伊人网av| 欧美 日韩 精品 国产| 自拍偷自拍亚洲精品老妇| 国产精品久久久久久精品电影小说 | 精品99又大又爽又粗少妇毛片| 亚洲欧美精品专区久久| 99热这里只有是精品在线观看| 22中文网久久字幕| 国产黄色视频一区二区在线观看| ponron亚洲| 国模一区二区三区四区视频| 国产精品一区二区在线观看99 | 中国美白少妇内射xxxbb| 麻豆国产97在线/欧美| 最近最新中文字幕大全电影3| 精华霜和精华液先用哪个| 麻豆乱淫一区二区| 日韩av不卡免费在线播放| 2021少妇久久久久久久久久久| 久久久久久久久久人人人人人人| 国模一区二区三区四区视频| 九九在线视频观看精品| 99久久精品国产国产毛片| 精品不卡国产一区二区三区| 午夜免费激情av| 三级男女做爰猛烈吃奶摸视频| av在线播放精品| 日日摸夜夜添夜夜添av毛片| 国产综合精华液| 国产又色又爽无遮挡免| 成人漫画全彩无遮挡| 看黄色毛片网站| 有码 亚洲区| 中文字幕久久专区| 亚洲av成人av| 青春草视频在线免费观看| 免费电影在线观看免费观看| 亚洲av成人精品一区久久| 精品久久久久久电影网| 老女人水多毛片| 亚洲欧洲国产日韩| 亚洲精品国产av蜜桃| 3wmmmm亚洲av在线观看| 免费黄网站久久成人精品| av免费观看日本| 一级av片app| 亚洲国产精品sss在线观看| 亚洲欧美中文字幕日韩二区| 男女边摸边吃奶| 亚洲国产精品成人久久小说| 男女边摸边吃奶| 51国产日韩欧美| 男女啪啪激烈高潮av片| 国产视频内射| 亚洲成人精品中文字幕电影| 国产单亲对白刺激| 国产 一区精品| 亚洲成人一二三区av| av在线观看视频网站免费| 人妻系列 视频| 亚洲真实伦在线观看| 建设人人有责人人尽责人人享有的 | 又爽又黄无遮挡网站| 亚洲成人精品中文字幕电影| 欧美成人精品欧美一级黄| 少妇人妻一区二区三区视频| 亚洲精品456在线播放app| 久久99精品国语久久久| 少妇熟女欧美另类| 国产 一区精品| 欧美成人精品欧美一级黄| 3wmmmm亚洲av在线观看| 精品亚洲乱码少妇综合久久| 免费电影在线观看免费观看| 亚洲三级黄色毛片| 夫妻午夜视频| 久久这里有精品视频免费| 九色成人免费人妻av| 天堂av国产一区二区熟女人妻| 久久久精品94久久精品| 国产精品不卡视频一区二区| 免费观看性生交大片5| 少妇高潮的动态图| 一级毛片我不卡| 肉色欧美久久久久久久蜜桃 | 可以在线观看毛片的网站| 亚洲av成人av| kizo精华| 欧美日韩视频高清一区二区三区二| 一个人看视频在线观看www免费| av在线播放精品| 看十八女毛片水多多多| 午夜老司机福利剧场| av.在线天堂| 精品一区二区三区视频在线| 汤姆久久久久久久影院中文字幕 | 国产精品一区二区性色av| 亚洲欧美中文字幕日韩二区| av在线观看视频网站免费| 婷婷色av中文字幕| 热99在线观看视频| 国产亚洲av片在线观看秒播厂 | 精品久久久久久久久久久久久| 久久久久久久久大av| 一级爰片在线观看| 亚洲精品国产成人久久av| 91狼人影院| 91在线精品国自产拍蜜月| 成人亚洲精品一区在线观看 | 爱豆传媒免费全集在线观看| 秋霞伦理黄片| av在线天堂中文字幕| 亚洲人成网站在线观看播放| 久久精品久久精品一区二区三区| 网址你懂的国产日韩在线| 18禁在线无遮挡免费观看视频| 国产精品久久久久久久电影| 亚洲人与动物交配视频| 亚洲成人精品中文字幕电影| 色尼玛亚洲综合影院| 丰满人妻一区二区三区视频av| 国产成人a区在线观看| 久久久久久国产a免费观看| 中文字幕av在线有码专区| 在线观看美女被高潮喷水网站| 国产成人精品福利久久| 一级毛片我不卡| 纵有疾风起免费观看全集完整版 | 国产免费一级a男人的天堂| 日韩亚洲欧美综合| 免费看a级黄色片| 久久草成人影院| 久久久成人免费电影| 十八禁国产超污无遮挡网站| 男女边吃奶边做爰视频| 国产伦在线观看视频一区| 欧美激情在线99| 少妇人妻一区二区三区视频| 国产v大片淫在线免费观看| 亚洲国产av新网站| 中文字幕久久专区| 一级毛片久久久久久久久女| av福利片在线观看| 久久久久精品性色| 自拍偷自拍亚洲精品老妇| 亚洲精品国产av蜜桃| 最近最新中文字幕免费大全7| av专区在线播放| 亚洲av一区综合| 国产毛片a区久久久久| 亚洲精品国产av成人精品| 久久久久久九九精品二区国产| 国产69精品久久久久777片| 男人和女人高潮做爰伦理| 国内精品美女久久久久久| 亚洲欧美一区二区三区国产| 日韩中字成人| 十八禁国产超污无遮挡网站| 嫩草影院精品99| 少妇熟女aⅴ在线视频| 一本久久精品| 日日啪夜夜撸| 久久精品国产亚洲av天美| 亚洲av成人av| 一个人看视频在线观看www免费| 成人无遮挡网站| 国产av码专区亚洲av| 国产黄色视频一区二区在线观看| 婷婷色综合大香蕉| 国产成人a区在线观看| 嫩草影院精品99| 久久久久久久久久久免费av| 国产精品熟女久久久久浪| 亚洲精品亚洲一区二区| 亚洲av不卡在线观看| 国产欧美另类精品又又久久亚洲欧美| 中国美白少妇内射xxxbb| 嫩草影院入口| 日韩一本色道免费dvd| 麻豆精品久久久久久蜜桃| 久久这里只有精品中国| 国产伦精品一区二区三区四那| 国产精品女同一区二区软件| 九九在线视频观看精品| 久久久久性生活片| 日韩不卡一区二区三区视频在线| 国产欧美日韩精品一区二区| 嫩草影院精品99| h日本视频在线播放| 亚洲欧美中文字幕日韩二区| 黄片wwwwww| 黄色欧美视频在线观看| 亚洲精品久久午夜乱码| 国产免费福利视频在线观看| 婷婷色av中文字幕| 亚洲精品色激情综合| 91狼人影院| 亚洲va在线va天堂va国产| 午夜日本视频在线| 久久久久久久久久久丰满| 高清av免费在线| 亚洲欧美日韩东京热| 久久久久九九精品影院| 久久久午夜欧美精品| 免费黄网站久久成人精品| 有码 亚洲区| 国产精品一区二区三区四区免费观看| 在线免费十八禁| 少妇人妻一区二区三区视频| 内地一区二区视频在线| 九色成人免费人妻av| 人妻制服诱惑在线中文字幕| 免费观看的影片在线观看| 亚洲精品乱码久久久久久按摩| 18禁动态无遮挡网站| 国产亚洲91精品色在线| 人妻制服诱惑在线中文字幕| 国产精品久久久久久精品电影小说 | 久久久久免费精品人妻一区二区| 91精品伊人久久大香线蕉| 国内少妇人妻偷人精品xxx网站| 狠狠精品人妻久久久久久综合| 亚洲精品色激情综合| 搞女人的毛片| 成年人午夜在线观看视频 | 国产乱来视频区| 国产伦精品一区二区三区视频9| 免费观看精品视频网站| 国产av国产精品国产| 欧美精品一区二区大全| 欧美日韩亚洲高清精品| 国产成人福利小说| 三级经典国产精品| 国产中年淑女户外野战色| 美女国产视频在线观看| 尾随美女入室| 国内精品宾馆在线| 美女主播在线视频| 久久这里有精品视频免费| 91久久精品国产一区二区成人| 午夜福利网站1000一区二区三区| 欧美成人精品欧美一级黄| 高清av免费在线| 国产精品.久久久| 亚洲人与动物交配视频| 免费av毛片视频| 亚洲无线观看免费| 婷婷色综合www| 黄片无遮挡物在线观看| 国产色婷婷99| av在线播放精品| 国产爱豆传媒在线观看| 亚洲精品一区蜜桃| 日韩强制内射视频| 日本免费在线观看一区| 国产一级毛片在线| 精品久久国产蜜桃| 日韩,欧美,国产一区二区三区| 成人av在线播放网站| 男人舔女人下体高潮全视频| 赤兔流量卡办理| 好男人视频免费观看在线| 男女啪啪激烈高潮av片| videos熟女内射| 国产精品女同一区二区软件| 精品一区二区三区人妻视频| 蜜桃久久精品国产亚洲av| 国产高清国产精品国产三级 | 成人高潮视频无遮挡免费网站| 国产老妇伦熟女老妇高清| 欧美日韩精品成人综合77777| 一级毛片aaaaaa免费看小| 18禁在线无遮挡免费观看视频| 2021天堂中文幕一二区在线观| av在线老鸭窝| 国产黄片视频在线免费观看| 久久热精品热| 亚洲av在线观看美女高潮| 嫩草影院精品99| 国产免费福利视频在线观看| 免费黄网站久久成人精品| 乱人视频在线观看| 亚洲av日韩在线播放| 亚洲精品乱码久久久v下载方式| 亚洲av电影在线观看一区二区三区 | 永久免费av网站大全| 特大巨黑吊av在线直播| 色综合站精品国产| 亚洲国产高清在线一区二区三| 中文字幕亚洲精品专区| 精品久久国产蜜桃| 99视频精品全部免费 在线| 91精品国产九色| av一本久久久久| 欧美三级亚洲精品| 欧美成人精品欧美一级黄| 精品一区在线观看国产| 日本-黄色视频高清免费观看| 亚洲人成网站在线播| 99九九线精品视频在线观看视频| 永久免费av网站大全| 天堂影院成人在线观看| av在线播放精品|