同濟大學附屬第十人民醫(yī)院內(nèi)分泌及代謝病科 崔冉 曲伸
曲伸 教授,主任醫(yī)師,博士生導(dǎo)師,浦江人才。中華醫(yī)學會內(nèi)分泌學會、中華醫(yī)學會預(yù)防醫(yī)學糖尿病學會、中國醫(yī)師協(xié)會內(nèi)分泌學院全國委員。美國內(nèi)分泌學會專業(yè)委員會會員,Georgia大學客座教授?,F(xiàn)任同濟大學甲狀腺疾病研究所所長,同濟大學附屬上海市第十人民醫(yī)院內(nèi)分泌科主任。擔任《中華內(nèi)分泌代謝病雜志》編委。承擔各類基金12項,發(fā)表SCI文章60余篇,主編、參編專著10余部。第一完成人獲教育部自然科學二等獎、上海市醫(yī)學三等獎及自然科學三等獎及軍內(nèi)三等獎各一項。主要研究方向為年輕糖尿病的分子生物學鑒別診斷,肥胖黑棘皮病、非酒精性脂肪肝病診療、甲狀腺結(jié)節(jié)鑒別診斷等內(nèi)分泌疾病。
骨質(zhì)疏松癥(osteoporosis)是一種以骨量降低和骨組織微細結(jié)構(gòu)破壞為特征,導(dǎo)致骨脆性增加和易于骨折的代謝性骨病。正常情況下的骨組織骨形成和骨吸收處于動態(tài)平衡,任何引起骨吸收增加和/或骨形成減少而造成骨量流失的病理情況均會導(dǎo)致骨質(zhì)疏松癥。糖尿病性骨質(zhì)疏松(diabetic osteoporosis,DO)是糖尿病在骨骼系統(tǒng)的慢性并發(fā)癥,具體定義為在糖尿病的基礎(chǔ)上發(fā)生的單位體積骨量減少、骨脆性增加、骨折危險增高的代謝性骨病。糖尿病可以通過多種途徑影響骨代謝,而降糖藥物對骨密度也有一定的影響。因此DO的防治不能單純的依靠降低血糖,還應(yīng)結(jié)合其他藥物。
不同類型的糖尿病可以通過影響骨代謝的不同環(huán)節(jié)導(dǎo)致糖尿病性骨質(zhì)疏松。
1型糖尿病(type 1 diabetes mellitus,T1DM)是一種自身免疫性疾病,由自身抗體攻擊胰島細胞,導(dǎo)致體內(nèi)胰島素絕對缺乏而發(fā)生的高血糖狀態(tài)。T1DM患者常表現(xiàn)為骨皮質(zhì)變薄、骨形成降低、骨礦化減慢,骨密度和骨礦含量減少。其導(dǎo)致骨質(zhì)疏松的原因可能有:
1.1 胰島素絕對缺乏 胰島素絕對缺乏對骨組織的影響有:①干細胞向成骨細胞分化減少。骨髓間充質(zhì)多能干細胞既可以向成骨細胞分化,也可以向成纖維細胞、脂肪細胞和肌細胞分化,而胰島素可以促進成骨細胞特異轉(zhuǎn)錄因子RUNX2表達,從而促進多能干細胞向成骨細胞分化[1],胰島素的缺乏將導(dǎo)致成骨細胞數(shù)量減少;②成骨細胞合成代謝降低。胰島素本身是一種合成激素,促進成骨細胞的合成代謝,增加骨形成[2],而胰島素分泌減少導(dǎo)致成骨細胞合成代謝降低、骨形成減少;③胰島素樣生長因子(insulin like growth factor 1,IGF-1)減少。無論男性還是女性在骨組織到達峰值骨量前,骨代謝以骨形成為主,維持峰值骨量一段時間后,開始骨丟失,因此峰值骨量越高,發(fā)生骨質(zhì)疏松的危險性越低。胰島素缺乏使IGF-1水平降低,而IGF-1是影響峰值骨量較為重要的因素,因此易導(dǎo)致峰值骨量降低而發(fā)生骨質(zhì)疏松[3]。1.2 高血糖狀態(tài) 高血糖狀態(tài)可以:①造成高滲狀態(tài)。高血糖所致的高滲環(huán)境一方面影響成骨細胞生長[4],一方面導(dǎo)致尿鈣排出增多、血鈣降低、骨鈣沉積減少。②影響成骨細胞分化。高血糖可以改變某些基因的表達,從而影響成骨細胞分化。例如高血糖促進過氧化物酶增殖體活化受體γ(peroxisome proliferatorsactivated receptor γ,PPARγ)的表達[5],從而誘導(dǎo)骨髓間充質(zhì)干細胞向脂肪細胞分化而向成骨細胞分化減少,而降糖藥物噻唑烷二酮類藥物作為PPARγ激動劑可以增加骨質(zhì)疏松風險[6]。高血糖抑制成骨細胞特異轉(zhuǎn)錄因子RUNX2的表達從而減少成骨細胞分化[7]。③影響炎癥相關(guān)因子。高糖狀態(tài)增加促炎相關(guān)因子,如腫瘤壞死因子(tumor necrosis factor α,TNF-α)的表達會增加破骨細胞凋亡[8]。④增加骨組織氧化應(yīng)激水平。高糖環(huán)境通過增加骨組織內(nèi)活性氧類增加骨組織的氧化應(yīng)激水平,從而增加破骨細胞活性,促進骨吸收[9]。⑤長期的慢性高血糖會導(dǎo)致視網(wǎng)膜、神經(jīng)、腎臟病變,從而增加骨質(zhì)疏松和骨折的風險。如視網(wǎng)膜病變導(dǎo)致患者視力降低;神經(jīng)病變導(dǎo)致肌肉協(xié)調(diào)性下降,跌倒風險增加[10,11];腎臟病變導(dǎo)致活性維生素D水平降低、骨鈣沉積減少、骨形成減少[12]。⑥晚期糖基化終末產(chǎn)物(Advanced Glycation Endproducts,AGEs)形成。AGEs是蛋白質(zhì)、脂類和核酸等大分子經(jīng)過非酶糖基化形成的共價化合物,高血糖、氧化應(yīng)激和腎功能不全導(dǎo)致AGEs形成增加。高濃度AGEs增強破骨細胞活性,促進骨吸收陷窩面積的擴大和數(shù)目增加,從而增加骨吸收[13]。同時也可以抑制成骨細胞分化,抑制骨形成[14]。
1.3 其他因素 T1DM作為一種自身免疫性疾病,可能伴有其他自身免疫疾病,如乳糜瀉(celiac disease)[15]、Graves病[16]可以通過影響維生素D及其他營養(yǎng)物質(zhì)吸收、體重減輕、IGF-1水平降低和增加骨組織代謝等因素導(dǎo)致骨質(zhì)疏松。胰島β細胞在分泌胰島素時,可同時分泌胰淀素(amylin)。在嚙齒類動物實驗中,胰淀素可以促進成骨細胞和成軟骨細胞增殖,并且抑制破骨細胞增殖[17],從而增加骨形成、抑制骨吸收。而在T1DM中,胰淀素分泌減少,其對骨密度的正面作用也相應(yīng)降低。
2型糖尿病(type 2 diabetes mellitus,T2DM)是以胰島素抵抗和/或胰島素分泌不足為特征的糖尿病。與T1DM不同,一部分T2DM患者骨密度反而升高,可能與超重增加骨組織的機械負荷從而促進骨形成有關(guān)[18,19]。但無論骨密度升高或降低,與T1DM患者相同,大部分T2DM患者骨強度下降、骨折風險性升高[20]。類似T1DM患者,T2DM患者高血糖狀態(tài)也易導(dǎo)致骨質(zhì)疏松發(fā)生,其次下列因素也起到關(guān)鍵作用。
2.1 胰島素抵抗 關(guān)于胰島素抵抗與骨密度的相關(guān)性有不同的報道,這也是T2DM患者骨密度有不同表現(xiàn)的主要原因。一部分研究[21,22]認為,胰島素抵抗人群骨密度升高;而也有研究[23,24]認為,胰島素抵抗組人群骨密度較正常人群骨密度降低。造成上述現(xiàn)象的原因,可能與體質(zhì)指數(shù)(body mass index,BMI)是否均衡有關(guān)[25]。
胰島素抵抗影響骨代謝的機制,包括胰島素對骨組織的直接作用和間接作用。骨組織也是胰島素作用的靶器官之一,前部分提到胰島素及其受體對成骨細胞增生、分化、維持穩(wěn)態(tài)有重要作用。實驗[26]證明,高脂飲食誘導(dǎo)大鼠胰島素抵抗后,成骨細胞增生減低會引起下頜骨骨質(zhì)疏松。小鼠實驗也取得類似的結(jié)果[27]。除上述直接作用外,胰島素還通過其他方面影響骨代謝。胰島素抵抗影響腎臟1α-羥化酶水平降低[28],引起維生素D合成障礙、骨鈣沉積減少、骨形成降低,從而易發(fā)生骨質(zhì)疏松。胰島素抵抗患者促炎因子TNF-α、白介素-6(interleukin-6,IL-6)有所增加[29,30],易發(fā)生骨質(zhì)疏松。此外,血脂水平不同,骨密度也有相應(yīng)的變化[31,32]。
2.2 維生素D和鈣缺乏 盡管T2DM和維生素D缺乏何者為因、何者為果尚不十分清楚,但兩者密切相關(guān)是肯定的[33]。維生素D可以促進胰島素合成[33]、維持胰島β細胞功能[34]、降低肌肉組織胰島素抵抗[35];在骨組織中,維生素D可以促進腸道鈣吸收、骨鈣沉積等??梢?,維生素D缺乏可以同時影響血糖代謝和骨代謝,在DO的發(fā)生中起到一定的作用。
鈣與T2DM的關(guān)系可繼發(fā)于維生素D,而鈣本身也與T2DM密切相關(guān)。低鈣飲食增加T2DM發(fā)生的概率[36],鈣可以影響胰島α和β細胞[37]。同維生素D一樣,鈣在糖代謝和骨代謝的相互影響中也是重要的一環(huán)。
2.3 性激素缺乏 雌激素可以抑制骨吸收,因此可以用雌激素或選擇性雌激素受體激動劑治療絕經(jīng)后骨質(zhì)疏松。T2DM患者雌激素水平下降[38]、雌激素受體表達降低[39],這些因素均可導(dǎo)致T2DM患者骨吸收增加、骨形成相對不足而發(fā)生骨質(zhì)疏松癥。男性骨代謝中,雌激素同樣重要。在男性患者中,低血清雌激素與DO相關(guān)[40]。除雌激素外,雄激素也是影響骨量的獨立因素。T2DM患者雄激素利用明顯降低,因而易患骨質(zhì)疏松[41]。絕經(jīng)后的T2DM患者,骨量與雄激素正相關(guān)[42]。
治療糖尿病的一些藥物如噻唑烷二酮類(thiazolidinediones,TZDs)、二甲雙胍、二肽基肽酶-4(dipeptidyl peptidase 4,DPP-4)抑制劑、胰高血糖素樣肽-1(glucagon-like peptide-1,GLP-1)類似物除可以降低血糖外,本身也可以影響骨密度。
前文已經(jīng)提到,TZDs類作為PPARγ受體激動劑,可以降低骨密度,增加骨折風險。研究[43]發(fā)現(xiàn),服用TZDs類12個月或更多時間可以增加骨質(zhì)疏松非椎體骨折的風險。ADOPT研究[44]發(fā)現(xiàn),與服用其他降糖藥物相比,服用羅格列酮4年骨折風險性明顯增加。TZDs類除了通過PPARγ途徑影響骨密度外,還可能通過抑制雌激素、雄激素的生成而影響骨密度[45]。
在一項使用羅格列酮、吡格列酮、二甲雙胍的臨床試驗中,研究者發(fā)現(xiàn)羅格列酮組松質(zhì)骨骨密度降低、吡格列酮對骨密度無明顯影響,而二甲雙胍則對骨組織具有保護作用[46]。在動物[47]和人體[48]試驗中證實,二甲雙胍可以降低骨鈣素水平,但并不影響骨密度。二甲雙胍可以抑制卵巢去勢建立的骨質(zhì)疏松大鼠模型[49]。Mai等[50]學者發(fā)現(xiàn)二甲雙胍可以顯著增加總骨密度,抑制骨流失,降低抗酒石酸酸性磷酸酶陽性細胞的表達。這個過程中伴隨升高骨保護素(osteoprotegerin,OPG)的表達,降低核因子κ B受體活化因子配體(Receptor Activator for Nuclear Factor-κ B Ligand,RANL)的表達。高血糖狀態(tài)可以通過降低骨髓前體細胞破壞骨組織微細結(jié)構(gòu),而口服二甲雙胍可以完全或部分減輕這種損害[51]。在體外也發(fā)現(xiàn)二甲雙胍具有促進骨生成的潛能[52]。
同二甲雙胍一樣,DPP-4抑制劑對DO也有一定的保護作用,但不同的是,二甲雙胍主要影響骨形成指標,DPP-4則主要影響骨吸收指標。DPP-4抑制劑可以降低尿脫氧吡啶啉(deoxypyridinoline, DPD)的水平[48],從而減少骨吸收。DPP-4抑制劑可以抑制骨吸收、降低AGEs水平,從而增加骨密度[53]。DPP-4抑制劑還可以通過增加腸促胰島素水平降低骨折發(fā)生率[54]。
腸促胰素可以通過促進胰島素分泌而促進骨形成[55]。研究[35]發(fā)現(xiàn),GLP-1類似物Exendin-4注射16周后可以增加血清堿性磷酸酶(alkaline phosphatase,ALP)和骨鈣素水平,降低尿脫氧吡啶啉(deoxypyridinoline,DPD)/肌酐比值,可能對絕經(jīng)后骨質(zhì)疏松有潛在的治療作用。而維格列汀則對血清C末端肽(C-terminal telopeptide,CTX)、ALP、鈣、磷等無明顯影響[56]。
關(guān)于DO的治療,首要因素是控制血糖穩(wěn)定。糖化血紅蛋白控制在6.5%~7.0%可以將高血糖對骨代謝的影響減小到最低[57]。動物實驗發(fā)現(xiàn),血糖控制水平與骨形態(tài)學改變相關(guān)[58]。T1DM患者使用強化胰島素治療7年后發(fā)現(xiàn),不僅血糖降低,骨密度也有所增加,骨吸收指標明顯降低[1]。而T2DM患者在血糖控制穩(wěn)定后,骨密度也有所增加[59]。前文提到高血糖可以通過多個方面影響骨密度,而維持血糖在正常水平,可以最大限度的減少高糖毒性對骨組織的損害。
骨質(zhì)疏松患者最嚴重的并發(fā)癥是骨折。因此除了提高骨密度,還應(yīng)注意降低骨折發(fā)生的風險。血糖控制穩(wěn)定可以提高骨密度,但與骨折發(fā)生率并不一定相關(guān)。ACCORD研究[60]發(fā)現(xiàn),強化血糖控制和標準血糖控制兩組患者骨折和跌倒發(fā)生的風險無統(tǒng)計學意義。而一項研究[61]發(fā)現(xiàn),過分嚴格控制血糖反而增加髖關(guān)節(jié)骨折風險。所以血糖控制穩(wěn)定僅是防治DO的一方面,還需輔助抗骨質(zhì)疏松藥物治療。
目前循證醫(yī)學證據(jù)比較豐富的、對DO有治療作用的藥物有維生素D、鈣劑、雙膦酸鹽、選擇性雌激素受體激動劑和重組人甲狀旁腺激素(parathyroid hormone,PTH)。鈣劑、維生素D不但可以補充骨質(zhì)疏松所需要的原料,而且對血糖代謝有良好的調(diào)節(jié)作用,因此是治療DO的基礎(chǔ)藥物。雙膦酸鹽、選擇性雌激素受體激動劑除了可以改善骨密度,還可以降低DO患者骨折發(fā)生風險。一項隊列研究[62]認為,雙膦酸鹽和雷洛昔芬在T1DM患者中獲益良好,而且藥物的使用并未對血糖有顯著影響。絕經(jīng)后骨質(zhì)疏松患者無論是否合并T2DM,雙膦酸鹽和雷洛昔芬均可以提高骨密度[62],還可以降低椎骨骨折的風險[63,64]。對于骨形成不足的DO患者,促進骨形成藥物PTH有獨特的治療作用。高劑量的PTH用于T1DM小鼠模型,既可以增加對照組骨密度,又可以增加糖尿病小鼠骨密度,這與PTH增加骨組織礦物質(zhì)沉積和促進成骨細胞活性有關(guān)[65]。
此外,運動也是防治DO的有效方法。老年人群可以通過運動減少隨年齡而增長的骨流失[66]。力量、耐力、平衡和靈敏力的運動可以減少跌倒的風險[67]。Gordon等[68]學者發(fā)現(xiàn),力量和有氧運動可以減少T2DM患者骨折風險。
DO是糖尿病在骨組織的慢性并發(fā)癥。不同類型的糖尿病并發(fā)骨質(zhì)疏松有其各自的特點,但主要由高血糖、胰島素缺乏和胰島素作用缺陷等核心環(huán)節(jié)引起。降糖藥對骨組織造成的影響增加了DO臨床防治的難度。對于DO,不能僅靠降血糖,而應(yīng)結(jié)合抗骨質(zhì)疏松藥物預(yù)防骨折,減少相關(guān)并發(fā)癥。
[1] Campos PM, Lopez-Ibarra PJ, Escobar-Jimenez F, et al. Intensive insulin therapy and bone mineral density in type 1 diabetes mellitus: a prospective study[J]. Osteoporos Int, 2000, 11(5): 455-459.
[2] Hamann C, Kirschner S, Gunther KP, et al. Bone, sweet boneosteoporotic fractures in diabetes mellitus[J]. Nat Rev Endocrinol, 2012, 8(5): 297-305.
[3] Fowlkes JL, Nyman JS, Bunn RC, et al. Osteo-promoting effects of insulin-like growth factor I(IGF-I) in a mouse model of type 1 diabetes[J]. Bone, 2013, 57(1): 36-40.
[4] Moerman EJ, Teng K, Lipschitz DA, et al. Aging activates adipogenic and suppresses osteogenic programs in mesenchymal marrow stroma/stem cells: the role of PPAR-gamma2 transcription factor and TGF-beta/BMP signaling pathways[J]. Aging Cell, 2004, 3(6): 379-389.
[5] Botolin S, McCabe LR. Inhibition of PPARgamma prevents type I diabetic bone marrow adiposity but not bone loss[J]. J Cell Physiol, 2006, 209(3): 967-976.
[6] Bazelier MT, de Vries F, Vestergaard P, et al. Risk of fracture with thiazolidinediones: an individual patient data meta-analysis[J]. Front Endocrinol(Lausanne), 2013, 4: 11.
[7] Gopalakrishnan V, Vignesh RC, Arunakaran J, et al. Effects of glucose and its modulation by insulin and estradiol on BMSC differentiation into osteoblastic lineages[J]. Biochem Cell Biol, 2006, 84(1): 93-101.
[8] Coe LM, Irwin R, Lippner D, et al. The bone marrow microenvironment contributes to type I diabetes induced osteoblast death[J]. J Cell Physiol, 2011, 226(2): 477-483.
[9] Fraser JH, Helfrich MH, Wallace HM, et al. Hydrogen peroxide, but not superoxide, stimulates bone resorption in mouse calvariae[J]. Bone, 1996, 19(3): 223-226.
[10] The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus[J]. N Engl J Med, 1993, 329(14): 977-986.
[11] Hofbauer LC, Brueck CC, Singh SK, et al. Osteoporosis in patients with diabetes mellitus[J]. J Bone Miner Res, 2007, 22(9): 1317-1328.
[12] Miller PD. Chronic kidney disease and osteoporosis: evaluation and management[J]. Bonekey Rep, 2014, 3: 542.
[13] Dong XN, Qin A, Xu J, et al. In situ accumulation of advanced glycation endproducts(AGEs) in bone matrix and its correlation with osteoclastic bone resorption[J]. Bone, 2011, 49(2): 174-183.
[14] Franke S, Ruster C, Pester J, et al. Advanced glycation end products affect growth and function of osteoblasts[J]. Clin Exp Rheumatol, 2011, 29(4): 650-660.
[15] Bhadada SK, Kochhar R, Bhansali A, et al. Prevalence and clinical profile of celiac disease in type 1 diabetes mellitus in north India[J]. J Gastroenterol Hepatol, 2011, 26(2): 378-381.
[16]. Lombardo F, Messina MF, Salzano G, et al. Prevalence, presentation and clinical evolution of Graves' disease in children and adolescents with type 1 diabetes mellitus[J]. Horm Res Paediatr, 2011, 76(4): 221-225.
[17] Horcajada-Molteni MN, Chanteranne B, Lebecque P, et al. Amylin and bone metabolism in streptozotocin-induced diabetic rats[J]. J Bone Miner Res, 2001, 16(5): 958-965.
[18] Fujii H, Hamada Y, Fukagawa M. Bone formation in spontaneously diabetic Torii-newly established model of non-obese type 2 diabetes rats[J]. Bone, 2008, 42(2): 372-379.
[19] Reinwald S, Peterson RG, Allen MR, et al. Skeletal changes associated with the onset of type 2 diabetes in the ZDF and ZDSD rodent models[J]. Am J Physiol Endocrinol Metab, 2009, 296(4): E765-774.
[20] Khazai NB, Beck GJ, Umpierrez GE. Diabetes and fractures: an overshadowed association[J]. Curr Opin Endocrinol Diabetes Obes, 2009, 16(6):435-445.
[21] Abrahamsen B, Rohold A, Henriksen JE, et al. Correlations between insulin sensitivity and bone mineral density in non-diabetic men[J]. Diabet Med, 2000, 17(2): 124-129.
[22] Hanley D, Brown J, Tenenhouse A. Associations among disease conditions, bone mineral density, and prevalent vertebral deformities in men and women 50 years of age and older: cross-sectional results from the Canadian Multicentre Osteoporosis Study[J]. J Bone Miner Res, 2003, 18(4): 784-790.
[23] Arikan S, Tuzcu A, Bahceci M, et al. Insulin resistance in type 2 diabetes mellitus may be related to bone mineral density[J]. J Clin Densitom, 2012, 15(2): 186-190.
[24] Shin D, Kim S, Kim KH, et al. Association between insulin resistance and bone mass in men[J]. J Clin Endocrinol Metab, 2014, 99(3): 988-995.
[25] Dennison E, Syddall H, Aihie Sayer A, et al. Type 2 diabetes mellitus is associated with increased axial bone density in men and women from the Hertfordshire Cohort Study: evidence for an indirect effect of insulin resistance?[J]. Diabetologia, 2004, 47(11): 1963-1968.
[26] Pramojanee SN, Phimphilai M, Kumphune S, et al. Decreased jaw bone density and osteoblastic insulin signaling in a model of obesity[J]. J Dent Res, 2013, 92(6): 560-565.
[27] Wei J, Karsenty G. Bone as a site of insulin resistance in type 2 diabetes[J]. BMC Proc, 2012, 3: P74.
[28] Huang CQ, Ma GZ, Tao MD, et al. The relationship among renal injury, changed activity of renal 1-alpha hydroxylase and bone loss in elderly rats with insulin resistance or type 2 diabetes mellitus[J]. J Endocrinol Invest, 2009, 32(3): 196-201.
[29] Cao JJ. Effects of obesity on bone metabolism[J]. J Orthop Surg Res, 2011, 6: 30.
[30] Roodman GD. Role of cytokines in the regulation of bone resorption[J]. Calcif Tissue Int, 1993, 53(Suppl 1): S94-98.
[31] Makovey J, Chen JS, Hayward C, et al. Association between serum cholesterol and bone mineral density[J]. Bone, 2009, 44(2): 208-213.
[32] Orozco P. Atherogenic lipid profile and elevated lipoprotein(a) are associated with lower bone mineral density in early postmenopausal overweight women[J]. Eur J Epidemiol, 2004, 19(12): 1105-1112.
[33] Lamendola CA, Ariel D, Feldman D, et al. Relations between obesity, insulin resistance, and 25-hydroxyvitamin D[J]. Am J Clin Nutr, 2012, 95(5): 1055-1059.
[34] Wolden-Kirk H, Overbergh L, Christesen HT, et al. Vitamin D and diabetes: its importance for beta cell and immune function[J]. Mol Cell Endocrinol, 2011, 347(1-2): 106-120.
[35] Ma X, Meng J, Jia M, et al. Exendin-4, a glucagon-like peptide-1 receptor agonist, prevents osteopenia by promoting bone formation and suppressing bone resorption in aged ovariectomized rats[J]. J Bone Miner Res, 2013, 28(7): 1641-1652.
[36] Candido FG, Ton WT, Alfenas RC. Dairy products consumption versus type 2 diabetes prevention and treatment; a review of recent findings from human studies[J]. Nutr Hosp, 2013, 28(5): 1384-1395.
[37] Rorsman P, Braun M, Zhang Q. Regulation of calcium in pancreatic alpha- and beta-cells in health and disease[J]. Cell Calcium, 2012, 51(3-4): 300-308.
[38] Alonso-Magdalena P, Quesada I, Nadal A. Endocrine disruptors in the etiology of type 2 diabetes mellitus[J]. Nat Rev Endocrinol, 2011, 7(6): 346-353.
[39] Tiano JP, Mauvais-Jarvis F. Molecular mechanisms of estrogen receptors' suppression of lipogenesis in pancreatic beta-cells[J]. Endocrinology, 2012, 153(7): 2997-3005.
[40] Rakic V, Davis WA, Chubb SA, et al. Bone mineral density and its determinants in diabetes: the Fremantle Diabetes Study[J]. Diabetologia, 2006, 49(5): 863-871.
[41] Asano M, Fukui M, Hosoda H, et al. Bone stiffness in men with type 2 diabetes mellitus[J]. Metabolism, 2008, 57(12): 1691-1695.
[42] Hosoda H, Fukui M, Nakayama I, et al. Bone mass and bone resorption in postmenopausal women with type 2 diabetes mellitus[J]. Metabolism, 2008, 57(7): 940-945.
[43] Meier C, Kraenzlin ME, Bodmer M, et al. Use of thiazolidinediones and fracture risk[J]. Arch Intern Med, 2008, 168(8): 820-825.
[44] Kahn SE, Haffner SM, Heise MA, et al. Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy[J]. N Engl J Med, 2006, 355(23): 2427-2443.
[45] Seto-Young D, Paliou M, Schlosser J, et al. Direct thiazolidinedione action in the human ovary: insulin-independent and insulin-sensitizing effects on steroidogenesis and insulin-like growth factor binding protein-1 production[J]. J Clin Endocrinol Metab, 2005, 90(11): 6099-6105.
[46] Wang C, Li H, Chen SG, et al. The skeletal effects of thiazolidinedione and metformin on insulin-resistant mice[J]. J Bone Miner Metab, 2012, 30(6): 630-637.
[47] Jeyabalan J, Viollet B, Smitham P, et al. The anti-diabetic drug metformin does not affect bone mass in vivo or fracture healing[J]. Osteoporos Int, 2013, 24(10): 2659-2670.
[48] Hegazy SK. Evaluation of the anti-osteoporotic effects of metformin and sitagliptin in postmenopausal diabetic women[J]. J Bone Miner Metab, 2015, 33(2): 207-212.
[49] Gao Y, Li Y, Xue J, et al. Effect of the anti-diabetic drug metformin on bone mass in ovariectomized rats[J]. Eur J Pharmacol, 2010, 635(1-3): 231-236.
[50] Mai QG, Zhang ZM, Xu S, et al. Metformin stimulates osteoprotegerin and reduces RANKL expression in osteoblasts and ovariectomized rats[J]. J Cell Biochem, 2011, 112(10): 2902-2909.
[51] Tolosa MJ, Chuguransky SR, Sedlinsky C, et al. Insulin-deficient diabetes-induced bone microarchitecture alterations are associated with a decrease in the osteogenic potential of bone marrow progenitor cells: preventive effects of metformin[J]. Diabetes Res Clin Pract, 2013, 101(2): 177-186.
[52] Salai M, Somjen D, Gigi R, et al. Effects of commonly used medications on bone tissue mineralisation in SaOS-2 human bone cell line: an in vitro study[J]. Bone Joint J, 2013, 95-B(11): 1575-1780.
[53] Chakhtoura M, Azar ST. Incretin based therapies: bone protective effects[J]. Endocr Metab Immune Disord Drug Targets, 2013, 13(4): 289-294.
[54] Hayakawa N, Suzuki A. Diabetes mellitus and osteoporosis. Effect of antidiabetic medicine on osteoporotic fracture[J]. Clin Calcium, 2012, 22(9): 1383-1390.
[55] Nuche-Berenguer B, Moreno P, Esbrit P, et al. Effect of GLP-1 treatment on bone turnover in normal, type 2 diabetic, and insulin-resistant states[J]. Calcif Tissue Int, 2009, 84(6): 453-461.
[56] Bunck MC, Poelma M, Eekhoff EM, et al. Effects of vildagliptin on postprandial markers of bone resorption and calcium homeostasis in recently diagnosed, well-controlled type 2 diabetes patients[J]. J Diabetes, 2012, 4(2): 181-185.
[57] Gonnelli S, Caffarelli C, Giordano N, et al. The prevention of fragility fractures in diabetic patients[J]. Aging Clin Exp Res, 2015, 27(2): 115-124.
[58] Follak N, Kloting I, Wolf E, et al. Improving metabolic control reverses the histomorphometric and biomechanical abnormalities of an experimentally induced bone defect in spontaneously diabetic rats[J]. Calcif Tissue Int, 2004, 74(6): 551-560.
[59] Vestergaard P, Rejnmark L, Mosekilde L. Diabetes and its complications and their relationship with risk of fractures in type 1 and 2 diabetes[J]. Calcif Tissue Int, 2009, 84(1): 45-55.
[60] Schwartz AV, Margolis KL, Sellmeyer DE, et al. Intensive glycemic control is not associated with fractures or falls in the ACCORD randomized trial[J]. Diabetes Care, 2012, 35(7): 1525-1531.
[61] Puar TH, Khoo JJ, Cho LW, et al. Association between glycemic control and hip fracture[J]. J Am Geriatr Soc, 2012, 60(8): 1493-1497.
[62] Vestergaard P, Rejnmark L, Mosekilde L. Are antiresorptive drugs effective against fractures in patients with diabetes?[J]. Calcif Tissue Int, 2011, 88(3): 209-214.
[63] Johnell O, Kanis JA, Black DM, et al. Associations between baseline risk factors and vertebral fracture risk in the Multiple Outcomes of Raloxifene Evaluation(MORE)Study[J]. J Bone Miner Res, 2004, 19(5): 764-772.
[64] Keegan TH, Schwartz AV, Bauer DC, et al. Effect of alendronate on bone mineral density and biochemical markers of bone turnover in type 2 diabetic women: the fracture intervention trial[J]. Diabetes Care, 2004, 27(7): 1547-1553.
[65] Motyl KJ, McCauley LK, McCabe LR. Amelioration of type I diabetesinduced osteoporosis by parathyroid hormone is associated with improved osteoblast survival[J]. J Cell Physiol, 2012, 227(4): 1326-1334.
[66] Shapses SA, Riedt CS. Bone, body weight, and weight reduction: what are the concerns? [J]. J Nutr, 2006, 136(6): 1453-1456.
[67] Gillespie LD, Robertson MC, Gillespie WJ, et al. Interventions for preventing falls in older people living in the community[J]. Cochrane Database Syst Rev, 2012, 9: CD007146.
[68] Gordon BA, Benson AC, Bird SR, et al. Resistance training improves metabolic health in type 2 diabetes: a systematic review[J]. Diabetes Res Clin Pract, 2009, 83(2): 157-175.