梁青
(海南師范大學(xué) 數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,海南 海口 571158)
兩類廣義Feynman-Kac半群強(qiáng)連續(xù)性的探討
梁青
(海南師范大學(xué) 數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,海南 ???571158)
研究兩類廣義Feynman-Kac半群的強(qiáng)連續(xù)性問題,這些半群是由一些特定的函數(shù)和狄氏過程產(chǎn)生的.得到了廣義Feynman-Kac半群強(qiáng)連續(xù),不強(qiáng)連續(xù)以及能量測度不在Kato類中的充分條件;構(gòu)造了一個帶跳狄氏型相應(yīng)的廣義Feynman-Kac半群強(qiáng)連續(xù)的實(shí)例.
狄氏型;廣義Feynman-Kac半群;強(qiáng)連續(xù);能量測度;Kato類
定義1[2]設(shè)m是E上的σ有限測度,如果存在一個常數(shù)α>0,使得A(f,f)>-α(f,f)m,?f∈D(A),則稱L2(E;m)上的二次型(A,D(A))下半有界.
定義2[3]對?u∈D(E ),存在唯一的正的拉東測度μ〈u〉,如果滿足:
則稱μ〈u〉為u的能量測度.
定義3 設(shè)μ是E上的光滑測度,(B,D(B))是L2(E;m)上的一個二次型,如果存在常數(shù)δμ(B)≥0,Aμ(B)≥0使得
引理2[5]若μ是Kato類的,則對任意的ε>0,存在Aε>0,使得
設(shè)B(Rd)為Rd上的Borel域,dx為(Rd,B(Rd))上的Lebesgue測度,考慮如下的狄氏型:
本節(jié)從一個帶眺狄氏型出發(fā),構(gòu)造一個廣義Feynman-Kac半群強(qiáng)連續(xù)的實(shí)例.
[1]Ma Z M,Rockner M.Introduction to the theory of(Nonsymmetric)Dirichlet forms[M].Berlin:springer-verlag,1992.陳傳鐘.狄氏型擾動與Feynman-Kac半群[D].長沙:中南
[2]大學(xué),2004. Fukushima M,Oshima Y,Takeda M.Dirichlet Forms and
[3]Symmetric Markov Processes[M].New York:Walter de Gruyter Berlin,1994. Chen C Z,Sun W.Strong continuity of generalized Feyn?
[4]man-Kac Semigroups:necessary and sufficient conditions[J]. J Func Anal,2006,237:446-456. Ma Z M,Albeverio S.Perturbation of Dirichlet forms-low?
[5]ersemi-boundedness,closability and form cores[J].Funct A-nal,1991,99:332-356.
責(zé)任編輯:畢和平
Topics on Strong Continuity of Two Generalized Feynman-Kac Semigroups
LIANG Qing
(Faculty of Mathematics and Statistics,Hainan Normal University,Haikou571158,China)
In this paper the strongly continuous character of two classes of generalized Feynman-Kac semigroups is stud?ied.These semigroups are produced by some special functions and Dirichlet processes.We obtain the sufficient condition for some particular Feynman-Kac semigroups to be strongly continuous or not.We also obtain the sufficient condition for the energy measures of the functions which produce strongly continuous generalizd Feynman-Kac semigroups to be not in the Kato class.We construct a generalized Feynman-Kac semigroup related with a Dirichlet form with jump that is strongly con?tinuous.
Dirichlet form;generalized Feynman-Kac semigroup;strongly continuous;energy measure;Kato class
O 211.62
:A
:1674-4942(2015)01-0030-04
2014-11-19