• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Simultaneous Determination of Six Banned Azo-Dyes in Soybean Products by HPLC-MS/MS

    2015-04-18 02:43:20LIJuanDINGXiaomingLIUHongminZHANGYanbing
    質(zhì)譜學(xué)報 2015年3期
    關(guān)鍵詞:偶氮染料鄭州大學(xué)豆制品

    LI Juan, DING Xiao-ming, LIU Hong-min, ZHANG Yan-bing

    (1.School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China;2.New Drug Research&Development Center, Zhengzhou University, Zhengzhou 450001, China)

    ?

    Simultaneous Determination of Six Banned Azo-Dyes in Soybean Products by HPLC-MS/MS

    LI Juan1,2, DING Xiao-ming1, LIU Hong-min1,2, ZHANG Yan-bing1,2

    (1.SchoolofPharmaceuticalSciences,ZhengzhouUniversity,Zhengzhou450001,China;2.NewDrugResearch&DevelopmentCenter,ZhengzhouUniversity,Zhengzhou450001,China)

    A sensitive and efficient method was developed for the simultaneous determination of six azo-dyes (Chrysoidin, Para Red, Sudan I, SudanⅡ, SudanⅢ and Sudan Ⅳ) in soybean products using high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). The samples were extracted with a simple procedure using acetonitrile. The supernatant was directly analyzed by LC-MS/MS after centrifugation. The sample was separated on a Waters XTerra C18 column, and detected by MS/MS with the multiple reaction monitoring (MRM) mode. Matrix calibration was used for quantitative testing of the method. Good linearity is obtained over the range of 2-100 μg/L with a correlation coefficientR2>0.99. The recoveries are 93.9%-110.6% with good coefficients of variation of 3.1%-14.8%. Limit of detection (LOD) and limit of quantification (LOQ) for the six dyes are in the ranges of 0.03-0.75 μg/kg and 0.1-2.0 μg/kg, respectively. This method has been applied successfully for the determination of the six azo dyes in soybean products.

    azo dyes; food analysis; high performance liquid chromatography-tandem mass spectrometry(HPLC-MS/MS); soybean products

    Color is the first notable characteristic for food industries. Colorants are thereby often added to food for enhancing its visual aesthetics and promoting sales[1]. The use of synthetic organic dyes has been recognized as the most reliable and economical method of restoring or providing color to a processed product. Azo dyes are by far the most widely used synthetic colorants, characterized by chromophoric azo groups (-N=N-)[2]. Currently, there are over 3 000 azo dyes in use worldwide and they offer a wide spectrum of colors[2-3]. Examples of azo dyes include Sudan Ⅰ-Ⅳ, Para Red and Chrysoidin. Some azo dyes, especially the Sudan dyes and their degradation products, have been recognized to be carcinogens[4]and their presence at any level is not safe for the human.

    Many analytical methods have been proposed for the quantitative determination of azo-dyes in foodstuffs. Such as, liquid chromatography with spectrophotometric[5], fluorimetric detection[6]and diode array detector[7]. Due to its high sensitivity, selectivity and minimal sample treatment required, liquid chromatography coupled to mass spectrometry (LC/MS) has become the preferred method for confirmatory analysis[8-10]. Liquid chromatography-tandem mass spectrometry(LC-MS/MS) combined with isotope dilution methods were described for the determination of Sudan dyes in foodstuff[11-12]. Some authors used internal standards[13-14]or standard addition techniques[15]in the analysis of Sudan dyes in order to improve their quantification.

    Prior to the detection of the synthetic dyes, pretreatment of the real samples was necessary. Recently, one-step extraction by organic solvents was imported in the pretreatment of chilli products and spices before HPLC detection of synthetic dyes[16-17]. The determination of dye residues in chili products was studied using acetonitrile/H2O as the extraction solvent[18]. So far, most of the reported LC based methods focused on the determination of synthetic dyes in chili and spice samples. However, these methods are not suitable for determining dyes in bean matrix owing to the high protein content.

    In this paper, an HPLC-MS/MS method was developed with one-step extraction procedure for the determination of six azo dyes in soybean products. The acetonitrile extraction method provided an efficient and convenient way of removing protein and other interferences from the sample. The extract solution can be analyzed directly with LC-MS/MS, thus, eliminate the complicated solid-phase extraction (SPE) cleanup step.

    1 Experimental

    1.1 Chemicals and Reagents

    HPLC grade methanol and acetonitrile were purchased from J. T. Baker (USA). HPLC grade formic acid and ammonium acetate were from Sigma-Aldrich Co. Ltd. (Poole, UK). The water was purified and deionized by a water purify system (Millipore, Bedford, MA, USA). The solvents for HPLC were filtered by 0.45 μm nylon membrane (Whatman, UK) and degassed in an ultrasonic bath. Standards of Sudan Ⅰ-Ⅳ, Para Red and Chrysoidin were purchased from Sigma (St. Louis, MO, USA). The purities of all standards were more than 98%. The molecular structures of six azo-dyes are shown in Table 1.

    Table 1 Chemical structures and tandem mass spectrometry parameters of the six dyes tested

    * Qualifier ions

    Stock solutions of all standard dyes were individually prepared in acetonitrile at 100 mg/L and stored at approximately -20 ℃ in the dark. Spiking and calibration standard mixtures at various concentrations were prepared by combining aliquots of individual stock solutions followed by dilution with acetonitrile-H2O (50∶50,V/V).

    1.2 Sample Preparation

    Sample treatment was as follows. Dye-spiked samples were prepared in a 15 mL centrifuge tube by mixing 2 g of each matrix with a series of the 6-dye mixed standard solutions at various concentrations, and 6 mL of acetonitrile were added. The tube was shaken by hand for 30 s in order to allow the sample to mix thoroughly with the solvent, and the extraction continued for 30 min in an ultrasonic bath. The extraction solution was centrifuged at 12 000 r/min for 10 min to sediment the solids. An aliquot (0.5 mL) of the extraction solution was filtered through a 0.22 μm nylon membrane syringe, then 5 μL of the solution was injected for detection.

    1.3 Liquid Chromatography Conditions

    Waters HPLC system (Milford, MA, USA) including a 2 695 separation module was controlled by Micromass Masslynx V4.1 software. Chromatographic separation was carried out by a Waters XTerra C18 RP column (2.1 mm × 150 mm×5 μm) and a binary gradient which included 5 mmol/L ammonium acetate buffer solution at pH 3.0 (mobile phase A) and methanol (mobile phase B). The linear gradient elution was programmed as follows: 0-2 min, 45%-100% B; 2%-10 min, 100% B; 10-15 min, 100%-45% B. The flow rate was set at 0.2 mL/min while the column temperature was maintained at 35 ℃. The injection volume was 5 μL.

    1.4 Mass Spectrometry Conditions

    A triple quadrupole mass spectrometer (Quattro-Micro, Waters, Manchester, UK) equipped with an electrospray source was used for detection in positive ion mode. The optimum conditions of the ESI interface for all target analytes were as follows: a capillary voltage of 3.0 kV, a source temperature of 120 ℃, and a dry temperature of 300 ℃. High purity nitrogen (N2) was used as both drying gas with a flow rate of 50 L/h and as nebulizing gas with a flow rate of 450 L/h. Argon was used as the collision gas during MS/MS analysis, and the pressure of the collision chamber was kept at 0.35 Pa. Multiple reaction monitoring (MRM) mode was used to monitor two fragment ions for each compound.

    2 Results and Discussion

    2.1 Optimization of Sample Pretreatment

    The development of an efficient extraction procedure is the most important step for accurate determination of dyes in soybean products. Two organic solvents (methanol and acetonitrile) were evaluated in this experiment based on chemical properties of the six dyes. For bean curd and bean sauce, the efficiencies of methanol extraction for Sudan Ⅲ and Sudan Ⅳ were very low (their recoveries less than 35%), and acetonitrile showed good extraction efficiency in terms of recovery and reproducibility for the six dyes.

    In this experiment, further purification of the extract solution with solid-phase extraction (Waters Oasis HLB cartridge) was also considered. With the extra SPE purification step, the chromatograms showed little improvement. These six dyes possess different chemical characteristics, especially Chrysoidin, which belongs to highly polar colorants, no single SPE column can achieve satisfactory retention and recovery performance for each dye. Thus, acetonitrile was chosen as the extraction solvent, and without SPE, the whole pretreatment process is very convenient and effective.

    2.2 LC-MS/MS Analysis

    The chromatographic behaviors were investigated using different mobile phases, including methanol/0.1% formic acid aqueous solution (a) and methanol/5 mmol/L ammonium acetate (pH 3.0) (b). The result showed that the signal of the analytes (especially Chrysoidin) obtained with methanol/5 mmol/L ammonium acetate (pH 3.0) was higher than that obtained with methanol/0.1% formic acid aqueous solution. Satisfactory separation and responses for all analytes were obtained under the gradient elution conditions described above. The cone voltages and collision energies used for MRM transitions of each compound were optimized to increase sensitivity, and the results have been listed in Table 1. MRM chromatograms of the analytes in a spiked bean curd are shown in Fig.1. The daughter-ion mass spectra of the analytes are shown in Fig.2. In our experiments, the daughter ions havingm/z121.0, 247.1, 127.9, 156.0, 196.2 and 224.2 were used for qualifier ions.

    Fig.1 MRM chromatograms of blank bean sample (a) and bean curd spiked with dyes at 30 μg/kg (b)

    Fig.2 The daughter-ion mass spectra of Chrysoidin (a), Para Red (b), SudanⅠ (c), SudanⅡ (d), Sudan Ⅲ (e) and Sudan Ⅳ (f)

    2.3 Method Validation

    The selectivity of the method was investigated by observing potential interferences between the analytes and impurities in the sample extracts. Bean curd spiked at 30 μg/kg for all studied compounds were analyzed, and no significant interferences were observed at the corresponding retention time of the target analytes. The results shown in Fig.1 indicate that the present method has high selectivity for the six azo-dyes.

    Linearity was evaluated using solvent and matrix matched calibration curves at six concentration levels (2, 5, 10, 20, 50 and 100 μg/L for Sudan (Ⅰ-Ⅳ), Para Red and Chrysoidin), based on linear regression and squared correlation coefficient (R2). Matrix-matched calibration curves were constructed by adding different concentrations of standards into bean curd. The linearity of the analytical response for all studied compounds was very good, with correlation coefficients higher than 0.99 in all cases. The linear ranges and matrix effects for each azo dye are listed in Table 2.

    Table 2 Linear range, correlation coefficients (R2), matrix effect, LOD and LOQ for six dyes in bean curd

    The matrix effect can suppress or enhance the signal and severely interfere with quantitative analysis of targets in trace levels and method reproducibility. Matrix effects were studied by comparing the slopes of solvent calibration curves and matrix-matched calibration curves. The percentage of the difference between these slopes is positive in case of signal enhancement, whereas a negative value is indicative for signal suppression[17]. In this study, the matrix effects of bean curd were within 20.6%, implying soft or medium signal enhancement. Only Chrysoidin had soft signal suppression with -10.5% matrix effects. In view of these results, it can be confirmed that these distributions depend not only on the matrix but also on the combination of the compound and the matrix. This fact highlights the importance of performing quantification with matrix-matched calibration curves.

    The limit of detection (LOD) was determined as the sample concentration that produces a peak with a height three times the level of the baseline noise, and the limit of quantification (LOQ) was calculated as the sample concentration that produces a peak with 10 times the ratio of signal to noise. The determined LOD and LOQ values for the studied dyes in bean curd are shown in Table 2, which were in the ranges of 0.03-0.75 μg/kg and 0.1-2.0 μg/kg, respectively. The LOD and LOQ values for the six dyes are lower than those from the previous reports in chili powder matrix[19-20].

    The precision of the method was verified by measuring recoveries from spiked blank bean curd at three concentrations levels, 7.5, 30 and 120 μg/kg for Sudan (Ⅰ-Ⅳ), Para Red and Chrysoidin. Mean recovery and RSDs obtained, which express the repeatability of the extraction method, are given in Table 3. Intra-day and inter-day recoveries were between 94.0%-110.6% and 93.9%-107.6%, respectively, intra-day and inter-day precision (RSDs) was 3.1%-14.8% and 4.7%-12.9%, respectively. The overall precision and accuracy of the method were sufficient for the quantification of the six dyes in real samples.

    Table 3 Intra-day and inter-day precision and recovery of the HPLC-MS/MS method for bean curd (n=5)

    2.4 Analysis of Real Samples

    Thirty bean samples collected from different markets of local city were applied for validating the proposed method. No peaks of target analytes were detected in any matrices, which demonstrate the safety of the foods tested.

    3 Conclusions

    This work developed a sensitive and effective HPLC-MS/MS method with acetonitrile extraction provides satisfactory specificity and sensitivity for the simultaneous determination of six azo-dyes in soybean products. Analysis of dye-spiked bean samples showed that good recoveries ranged from 93.9% to 110.6% with excellent RSDs, which can meet regular analytical requirements. LODs and LOQs were sufficiently low to determine residues of these dyes in soybean products.

    [1] VIDOTTI E C, CANCINO J C, OLIVEIRA C C, et al. Simultaneous determination of food dyes by first derivative spectrophotometry with sorption onto polyurethane foam[J]. Anal Sci, 2005, 21 (2): 149-153.

    [2] AHLSTROM L H, ESKILSSON C S, BJORKLUND E. Determination of banned azo dyes in consumer goods[J]. Tren Anal Chem, 2005 (1): 24: 49-56.

    [3] RAFII F, HALL J D, CERNIGLIA C E. Mutagenicity of azo dyes used in foods, drugs and cosmetics before and after reduction by Clostridium species from the human intestinal tract[J]. Food Chem Toxicol, 1997, 35(9): 897-901.

    [4] IARC. Monographs on the evaluation of the carcinogenic risk of chemicals to man: Some aromatic azo compounds[R]. Lyon, 1975: 224-231.

    [5] NAGASE M, OSAKI Y, MATESUDA T. Determination of methyl yellow, Sudan I and Sudan II in water by high-performance liquid chromatography[J]. J Chromatogr, 1989, 465 (2): 434-437.

    [6] PIELESZ A, BARANOWSKA I, RYBAK A, et al. Detection and determination of aromatic amines as products of reductive splitting from selected azo dyes[J]. Ecotoxicol Environ Saf, 2002, 53 (1): 42-47.

    [8] FENG F, ZHAO Y S, YONG W, et al. Highly sensitive and accurate screening of 40 dyes in soft drinks by liquid chromatography-electrospray tandem mass spectrometry[J]. J Chromatogr B, 2011, 879 (20): 1 813-1 819.

    [9] LI C, WU Y L, SHEN J Z. UPLC-ESI-MS/MS analysis of Sudan dyes and Para red in food[J]. Food Addit Contam, 2010, 27 (9):1 215-1 220.

    [10]SUN H W, WANG F C, AI L F. Determination of banned 10 azo-dyes in hot chili products by gel permeation chromatographyliquid chromatography-electrospray ionization-tandem mass spectrometry[J]. J Chromatogr A, 2007, 1 164 (1/2): 120-128.

    [11]DI DONNA L, MAIUOLO L, MOZZOTTI F, et al. Assay of Sudan I contamination of foodstuff by atmospheric pressure chemical ionization tandem mass spectrometry and isotope dilution[J]. Anal Chem, 2004, 76 (17): 5 104-5 108.

    [12]MAZZOTTI F, DI DONNA L, MAIUOLO L, et al. Assay of the set of all Sudan azodye (Ⅰ, Ⅱ, Ⅲ, Ⅳ, and Para-Red) contaminating agents by liquid chromatography-tandem mass spectrometry and isotope dilution methodology[J]. J Agric Food Chem, 2008, 56 (1): 63-67.

    [13]CALBIANI F, CARERI M, ELVIRI L, et al. Accurate mass measurements for the confirmation of Sudan azo-dyes in hot chilli products by capillary liquid chromatography-electrospray tandem quadrupole orthogonal-acceleration time of flight mass spectrometry[J]. J Chromatogr A, 2004, 1 058 (1/2): 127-135.

    [14]MA M, LUO X B, CHEN B, et al. Simultaneous determination of watersoluble and fat-soluble synthetic colorants in foodstuff by high-performance liquid chromatographyediode array detection[J]. J Chromatogr A, 2006, 1 103 (1): 170-176.

    [15]AHLSTROM L H, AMON S, MATHIASSON L. Standard addition-A way of improving quantification of banned azo dyes in leather[J]. J Sep Sci, 2005, 28 (17): 2 407-2 412.

    [16]LONG C, MAI Z, YANG X, et al. A new liquid-liquid extraction method for determination of 6 azo-dyes in chilli products by highperformance liquid chromatography (DAD)[J]. Food Chem 2011, 126 (3): 1 324-1 329.

    [17]FERRER AMATE C, UNTERLUGGAUER H, FISCHER R J, et al. Development and validation of a LC-MS/MS method for the simultaneous determination of aflatoxins, dyes and pesticides in spices[J]. Anal Bioanal Chem, 2010, 397: 93-107.

    [18]LI J, DING X M, LIU D D, et al. Simultaneous determination of eight illegal dyes in chili products byliquid chromatography-tandem mass spectrometry[J]. J Chromatogr B, 2013, 942: 46-52.

    [19]SCHUMMER C, SASSEL J, BONENBERGER P, et al. Low-level detections of Sudan Ⅰ, Ⅱ, Ⅲ and Ⅳ in spices and chili-containing foodstuffs using UPLC-ESI-MS/MS[J]. J Agric Food Chem, 2013, 61 (9): 2 284-2 289.

    [20]ZHAO S, YIN J, ZHANG J, et al. Determination of 23 dyes in chili powder and paste by high-performance liquid chromatography-electrospray ionization tandem mass spectrometry[J]. Food Anal Methods, 2012, 5 (5): 1 018-1 026.

    高效液相色譜-串聯(lián)質(zhì)譜法同時測定豆制品中6種違禁偶氮染料

    李 娟1,2,丁曉明1,劉宏民1,2,張雁冰1,2

    (1.鄭州大學(xué)藥學(xué)院,河南 鄭州 450001;2.鄭州大學(xué)新藥研究開發(fā)中心,河南 鄭州 450001)

    為了快速、高效的檢測豆制品中非法添加的偶氮染料,建立了高效液相色譜-串聯(lián)質(zhì)譜(HPLC-MS/MS)同時分析豆制品中6種偶氮染料(堿性橙Ⅱ、對位紅、蘇丹紅Ⅰ~Ⅳ)的方法。樣品用乙腈超聲提取、取離心后的上清液直接進樣分析,經(jīng)Waters C18色譜柱分離,電噴霧串聯(lián)質(zhì)譜多反應(yīng)監(jiān)測(MRM)模式檢測,空白基質(zhì)曲線外標法定量。結(jié)果表明:6種染料在2~100 μg/L范圍內(nèi)呈良好的線性關(guān)系,線性相關(guān)系數(shù)R2均大于0.99;提取回收率為93.9%~110.6%,相對標準偏差為3.1%~14.8%;檢測限(LOD)和定量限(LOQ)分別為0.03~0.75 μg/kg和0.1~2.0 μg/kg。該方法操作簡單、靈敏度高、結(jié)果準確可靠,適用于豆制品中6種違禁偶氮染料的定量分析。

    偶氮染料;食品分析;豆制品;高效液相色譜-串聯(lián)質(zhì)譜(HPLC-MS/MS)

    O657.63 Document code: A Article IC: 1004-2997(2015)03-0229-08

    10.7538/zpxb.youxian.2014.0055

    猜你喜歡
    偶氮染料鄭州大學(xué)豆制品
    利用正構(gòu)烷烴建立快速篩查禁用偶氮染料定性分析方法探究
    豆制品食用指南
    出門打工 不如在家做豆腐 新興豆制品機械 效率高 賺錢快
    出門打工 不如在家做豆腐 新興豆制品機械 效率高 賺錢快
    出門打工 不如在家做豆腐 新興豆制品機械 效率高 賺錢快
    《鄭州大學(xué)學(xué)報(理學(xué)版)》征稿簡則
    鄭州大學(xué)學(xué)報(理學(xué)版)
    紡織品偶氮染料中致癌芳香胺檢測的研究進展及存在問題
    中國纖檢(2016年7期)2016-08-08 18:42:42
    一面來自鄭州大學(xué)的錦旗
    中國民政(2016年9期)2016-05-17 04:51:34
    偶氮染料與化合物的顏色及危害
    西藏科技(2015年1期)2015-09-26 12:09:32
    精品亚洲成国产av| 日本av手机在线免费观看| 看免费成人av毛片| 嘟嘟电影网在线观看| 欧美国产精品一级二级三级 | 中文乱码字字幕精品一区二区三区| 91久久精品国产一区二区三区| 熟女电影av网| kizo精华| 内地一区二区视频在线| 国模一区二区三区四区视频| 国产成人免费观看mmmm| 成人亚洲精品一区在线观看 | 一级毛片aaaaaa免费看小| 色视频www国产| 欧美zozozo另类| 深夜a级毛片| 日本黄大片高清| 成人午夜精彩视频在线观看| 亚洲国产成人一精品久久久| 亚洲国产精品专区欧美| 日本黄色日本黄色录像| 久久精品国产亚洲av天美| 91久久精品国产一区二区成人| 丰满人妻一区二区三区视频av| 欧美区成人在线视频| 伊人久久精品亚洲午夜| 欧美3d第一页| 午夜福利视频精品| 各种免费的搞黄视频| 国产乱人视频| 亚洲欧美精品自产自拍| 99re6热这里在线精品视频| 国产成人精品一,二区| 欧美97在线视频| 欧美一级a爱片免费观看看| 日韩电影二区| 精品视频人人做人人爽| 精品久久久噜噜| 老师上课跳d突然被开到最大视频| 香蕉精品网在线| 亚洲国产成人一精品久久久| 国产日韩欧美亚洲二区| 国产乱来视频区| 婷婷色综合www| 亚洲婷婷狠狠爱综合网| 亚洲精品久久午夜乱码| 亚洲精品,欧美精品| 人妻 亚洲 视频| 王馨瑶露胸无遮挡在线观看| 日日啪夜夜撸| 不卡视频在线观看欧美| 91精品国产九色| 午夜老司机福利剧场| 老司机影院成人| 国产一区二区在线观看日韩| 中文资源天堂在线| av不卡在线播放| 欧美bdsm另类| 国产伦在线观看视频一区| 免费看av在线观看网站| 嫩草影院入口| 天美传媒精品一区二区| 哪个播放器可以免费观看大片| av视频免费观看在线观看| av在线播放精品| 国产精品免费大片| 国产免费一级a男人的天堂| 亚洲欧美日韩另类电影网站 | 国产亚洲5aaaaa淫片| 精品一品国产午夜福利视频| 国产老妇伦熟女老妇高清| 一边亲一边摸免费视频| 国产亚洲5aaaaa淫片| 久久毛片免费看一区二区三区| 晚上一个人看的免费电影| 青春草国产在线视频| 超碰av人人做人人爽久久| 日日啪夜夜撸| 最近最新中文字幕大全电影3| 大香蕉97超碰在线| 男女啪啪激烈高潮av片| 国产大屁股一区二区在线视频| 性色avwww在线观看| 成年美女黄网站色视频大全免费 | 亚洲精品成人av观看孕妇| 免费高清在线观看视频在线观看| 春色校园在线视频观看| 成人亚洲精品一区在线观看 | a级一级毛片免费在线观看| 边亲边吃奶的免费视频| 欧美一区二区亚洲| 免费少妇av软件| 亚洲欧美精品专区久久| 人妻系列 视频| 蜜臀久久99精品久久宅男| 最近手机中文字幕大全| 国产有黄有色有爽视频| 国产一区亚洲一区在线观看| 联通29元200g的流量卡| 成人国产av品久久久| 亚洲av综合色区一区| 亚洲怡红院男人天堂| 国产在线男女| 亚洲婷婷狠狠爱综合网| 国产一区二区在线观看日韩| 亚洲国产毛片av蜜桃av| 美女内射精品一级片tv| 精品人妻视频免费看| 国产又色又爽无遮挡免| 下体分泌物呈黄色| 天美传媒精品一区二区| 欧美精品一区二区免费开放| 国产在视频线精品| 18禁在线播放成人免费| 亚洲国产精品专区欧美| 日产精品乱码卡一卡2卡三| 精品亚洲乱码少妇综合久久| 高清欧美精品videossex| 九色成人免费人妻av| 日产精品乱码卡一卡2卡三| 黑丝袜美女国产一区| 亚洲国产精品国产精品| 国产亚洲午夜精品一区二区久久| 国产成人一区二区在线| 晚上一个人看的免费电影| 在线观看美女被高潮喷水网站| 国产极品天堂在线| 久久久久久久亚洲中文字幕| 91精品国产九色| 大香蕉97超碰在线| 久久久精品94久久精品| 人人妻人人澡人人爽人人夜夜| 国产精品一二三区在线看| 观看美女的网站| 男女边摸边吃奶| 日日摸夜夜添夜夜添av毛片| av国产久精品久网站免费入址| 午夜福利在线观看免费完整高清在| 乱系列少妇在线播放| freevideosex欧美| 久久久久久久亚洲中文字幕| 久久影院123| 日韩人妻高清精品专区| 国产精品久久久久久精品电影小说 | 色视频www国产| 自拍偷自拍亚洲精品老妇| 欧美区成人在线视频| 热re99久久精品国产66热6| 久久人人爽av亚洲精品天堂 | 国内揄拍国产精品人妻在线| 97超碰精品成人国产| 熟女人妻精品中文字幕| 欧美一区二区亚洲| 色吧在线观看| 久久精品人妻少妇| 国产成人午夜福利电影在线观看| 亚洲欧美一区二区三区国产| 91久久精品国产一区二区三区| 日韩中文字幕视频在线看片 | 亚洲欧美日韩无卡精品| 亚洲精品久久久久久婷婷小说| 亚洲欧美一区二区三区黑人 | 国产精品福利在线免费观看| 国产成人精品久久久久久| h日本视频在线播放| 一级毛片aaaaaa免费看小| 久久久久久久久久久丰满| 色视频www国产| 国产亚洲最大av| 亚洲国产成人一精品久久久| 日韩强制内射视频| 亚洲av.av天堂| 亚洲欧洲国产日韩| 男女免费视频国产| 亚洲成色77777| 妹子高潮喷水视频| 97热精品久久久久久| 精品久久久久久久久av| 亚洲精品视频女| 夫妻性生交免费视频一级片| 赤兔流量卡办理| 一区二区三区四区激情视频| 国产亚洲最大av| 色网站视频免费| 亚洲丝袜综合中文字幕| 国产精品99久久99久久久不卡 | 免费大片18禁| 少妇被粗大猛烈的视频| 91午夜精品亚洲一区二区三区| 成人毛片60女人毛片免费| 久久精品熟女亚洲av麻豆精品| 久热久热在线精品观看| 乱系列少妇在线播放| 久久国内精品自在自线图片| 自拍欧美九色日韩亚洲蝌蚪91 | 下体分泌物呈黄色| 日日摸夜夜添夜夜爱| 自拍欧美九色日韩亚洲蝌蚪91 | www.色视频.com| 两个人的视频大全免费| 国产精品.久久久| 成人一区二区视频在线观看| 午夜免费观看性视频| 国产免费视频播放在线视频| 成人亚洲精品一区在线观看 | 精品久久久噜噜| 观看免费一级毛片| 女的被弄到高潮叫床怎么办| 亚洲欧美成人综合另类久久久| .国产精品久久| 亚洲精品国产av蜜桃| 自拍偷自拍亚洲精品老妇| 国产日韩欧美在线精品| 亚洲最大成人中文| 伊人久久国产一区二区| 春色校园在线视频观看| 国精品久久久久久国模美| 精品国产乱码久久久久久小说| 少妇被粗大猛烈的视频| 九九在线视频观看精品| 久久久久久久久久成人| 国产又色又爽无遮挡免| 国产久久久一区二区三区| 两个人的视频大全免费| 一个人看的www免费观看视频| 久久精品国产亚洲av涩爱| 亚洲在久久综合| 久久国产精品男人的天堂亚洲 | 丰满迷人的少妇在线观看| 啦啦啦在线观看免费高清www| 国产一区二区在线观看日韩| 久久久午夜欧美精品| 国产精品国产av在线观看| 日日摸夜夜添夜夜添av毛片| 乱码一卡2卡4卡精品| 日本黄色片子视频| 欧美性感艳星| 尤物成人国产欧美一区二区三区| 欧美zozozo另类| 久久久精品94久久精品| 视频区图区小说| 最新中文字幕久久久久| www.色视频.com| 夫妻午夜视频| 久久97久久精品| 婷婷色综合www| 一区二区三区乱码不卡18| 久久久久人妻精品一区果冻| 久久综合国产亚洲精品| 啦啦啦视频在线资源免费观看| 91在线精品国自产拍蜜月| 一级二级三级毛片免费看| 免费久久久久久久精品成人欧美视频 | 亚洲国产色片| 午夜老司机福利剧场| 一本久久精品| 精品一区二区三区视频在线| 99久久精品国产国产毛片| 嫩草影院入口| 一级毛片久久久久久久久女| 欧美少妇被猛烈插入视频| 中文精品一卡2卡3卡4更新| 一级a做视频免费观看| 精品久久久久久电影网| 黑人猛操日本美女一级片| 中文精品一卡2卡3卡4更新| 99热国产这里只有精品6| 精品久久国产蜜桃| 久久久久人妻精品一区果冻| 男人狂女人下面高潮的视频| 联通29元200g的流量卡| 久久女婷五月综合色啪小说| 日日啪夜夜撸| 国产亚洲91精品色在线| 2018国产大陆天天弄谢| 深爱激情五月婷婷| 国产免费视频播放在线视频| 天堂俺去俺来也www色官网| 老女人水多毛片| 国产成人午夜福利电影在线观看| 色网站视频免费| 成人亚洲精品一区在线观看 | 中文字幕久久专区| 日日啪夜夜爽| 亚洲av中文字字幕乱码综合| 又黄又爽又刺激的免费视频.| 日本欧美视频一区| 亚洲中文av在线| 精品一区二区三卡| 亚洲久久久国产精品| 欧美xxⅹ黑人| 亚洲成人中文字幕在线播放| 国内少妇人妻偷人精品xxx网站| 3wmmmm亚洲av在线观看| 日本猛色少妇xxxxx猛交久久| 日韩成人av中文字幕在线观看| 我要看黄色一级片免费的| 韩国高清视频一区二区三区| 国产 一区 欧美 日韩| 在线播放无遮挡| 99视频精品全部免费 在线| 岛国毛片在线播放| 免费高清在线观看视频在线观看| 美女国产视频在线观看| 国产精品女同一区二区软件| 中文字幕精品免费在线观看视频 | 亚洲精品色激情综合| 成人漫画全彩无遮挡| 一级毛片久久久久久久久女| 亚洲精品国产av成人精品| 人妻系列 视频| 亚洲av成人精品一区久久| 亚洲性久久影院| 永久免费av网站大全| 欧美日韩精品成人综合77777| 国产欧美另类精品又又久久亚洲欧美| 久久久久久久精品精品| 国产片特级美女逼逼视频| 精品99又大又爽又粗少妇毛片| 久久毛片免费看一区二区三区| 男人舔奶头视频| 中国三级夫妇交换| 青青草视频在线视频观看| 日韩亚洲欧美综合| 蜜臀久久99精品久久宅男| 久久国产乱子免费精品| 一本—道久久a久久精品蜜桃钙片| 黑人猛操日本美女一级片| 春色校园在线视频观看| 国产精品蜜桃在线观看| 美女中出高潮动态图| 三级经典国产精品| 人人妻人人澡人人爽人人夜夜| 国产高潮美女av| 精品久久国产蜜桃| 亚洲欧美日韩卡通动漫| 黄色视频在线播放观看不卡| 亚洲美女搞黄在线观看| 亚洲国产精品999| 日本黄大片高清| 日韩制服骚丝袜av| 国产成人精品久久久久久| 联通29元200g的流量卡| 成人免费观看视频高清| 国产男女超爽视频在线观看| 亚洲国产最新在线播放| 国产精品.久久久| 99视频精品全部免费 在线| 免费观看a级毛片全部| 男女国产视频网站| 美女内射精品一级片tv| 欧美xxxx黑人xx丫x性爽| 亚洲精品第二区| 精品亚洲成a人片在线观看 | 国产精品99久久99久久久不卡 | 亚洲av不卡在线观看| 中文资源天堂在线| av在线蜜桃| 国产av精品麻豆| 一级毛片电影观看| 国产精品嫩草影院av在线观看| 婷婷色av中文字幕| 亚洲,欧美,日韩| 亚洲欧美日韩无卡精品| 中文欧美无线码| 午夜激情久久久久久久| 亚洲婷婷狠狠爱综合网| 男人狂女人下面高潮的视频| 亚洲,欧美,日韩| 男的添女的下面高潮视频| 99精国产麻豆久久婷婷| 视频区图区小说| 在线观看美女被高潮喷水网站| 99热这里只有是精品在线观看| 丝袜喷水一区| 伦理电影大哥的女人| 久久久午夜欧美精品| 国产精品欧美亚洲77777| 国产黄片视频在线免费观看| 亚洲婷婷狠狠爱综合网| 在线免费十八禁| 亚洲国产精品国产精品| 男女免费视频国产| 舔av片在线| 国产亚洲一区二区精品| 午夜视频国产福利| 免费大片黄手机在线观看| 亚洲av中文av极速乱| 免费久久久久久久精品成人欧美视频 | 中文在线观看免费www的网站| 麻豆成人av视频| 在线看a的网站| 26uuu在线亚洲综合色| 中文精品一卡2卡3卡4更新| 午夜老司机福利剧场| 国产大屁股一区二区在线视频| 中国美白少妇内射xxxbb| 午夜福利网站1000一区二区三区| 国内少妇人妻偷人精品xxx网站| 又爽又黄a免费视频| 国产日韩欧美亚洲二区| 尾随美女入室| 午夜福利高清视频| 视频区图区小说| 少妇裸体淫交视频免费看高清| 成人无遮挡网站| 最近的中文字幕免费完整| 超碰97精品在线观看| 男女边摸边吃奶| 婷婷色综合大香蕉| 午夜福利视频精品| 老熟女久久久| 久久鲁丝午夜福利片| 国产欧美日韩精品一区二区| 久久热精品热| 草草在线视频免费看| 日韩成人av中文字幕在线观看| 成人无遮挡网站| 久久久久久久久久久丰满| 久久久亚洲精品成人影院| 亚洲国产欧美在线一区| 久久国产亚洲av麻豆专区| 国产伦理片在线播放av一区| 国产免费一级a男人的天堂| 欧美zozozo另类| 亚洲精品一区蜜桃| av播播在线观看一区| 国产精品爽爽va在线观看网站| 国产美女午夜福利| 亚洲精品一二三| 国产午夜精品久久久久久一区二区三区| 色哟哟·www| 久久 成人 亚洲| 亚洲国产最新在线播放| 中文字幕人妻熟人妻熟丝袜美| 高清黄色对白视频在线免费看 | 蜜桃亚洲精品一区二区三区| 国产成人一区二区在线| 午夜视频国产福利| 少妇 在线观看| 插阴视频在线观看视频| 99久国产av精品国产电影| 亚洲av在线观看美女高潮| 日本午夜av视频| 少妇的逼好多水| 亚洲欧美一区二区三区国产| 国产欧美日韩精品一区二区| 国产熟女欧美一区二区| 精品久久国产蜜桃| 日本一二三区视频观看| 春色校园在线视频观看| 成人影院久久| 香蕉精品网在线| 久久久亚洲精品成人影院| 亚洲av电影在线观看一区二区三区| 直男gayav资源| 边亲边吃奶的免费视频| 99久久综合免费| 搡老乐熟女国产| 晚上一个人看的免费电影| 日韩国内少妇激情av| 久久精品久久久久久噜噜老黄| 一二三四中文在线观看免费高清| 熟妇人妻不卡中文字幕| 身体一侧抽搐| 精品久久久久久电影网| 在线观看免费日韩欧美大片 | 免费黄网站久久成人精品| 日韩视频在线欧美| 色综合色国产| 日本vs欧美在线观看视频 | 简卡轻食公司| 丝袜脚勾引网站| 极品教师在线视频| 免费看日本二区| 亚洲av在线观看美女高潮| 在线精品无人区一区二区三 | 亚洲成人av在线免费| 欧美精品一区二区免费开放| 有码 亚洲区| 狂野欧美白嫩少妇大欣赏| 不卡视频在线观看欧美| 汤姆久久久久久久影院中文字幕| 九色成人免费人妻av| av不卡在线播放| 高清毛片免费看| 人妻制服诱惑在线中文字幕| 亚洲精品视频女| 久久久久视频综合| 一二三四中文在线观看免费高清| 在线免费观看不下载黄p国产| 人妻 亚洲 视频| 欧美日韩在线观看h| 成人漫画全彩无遮挡| 亚洲欧美一区二区三区国产| 一个人免费看片子| 久久久久久久久久久免费av| 精品人妻偷拍中文字幕| 国产一区亚洲一区在线观看| 亚洲精品日本国产第一区| 免费黄频网站在线观看国产| 舔av片在线| 精品久久久噜噜| freevideosex欧美| 女人十人毛片免费观看3o分钟| av在线app专区| 日本色播在线视频| 一本久久精品| 国产精品不卡视频一区二区| 在线观看一区二区三区| 国产成人免费无遮挡视频| av在线老鸭窝| 91午夜精品亚洲一区二区三区| 高清不卡的av网站| 国产 一区 欧美 日韩| av在线蜜桃| 超碰av人人做人人爽久久| 日韩欧美一区视频在线观看 | 精品亚洲乱码少妇综合久久| 身体一侧抽搐| 精品久久国产蜜桃| 久久国产精品男人的天堂亚洲 | 国产精品久久久久久精品电影小说 | 成人二区视频| av.在线天堂| 偷拍熟女少妇极品色| 国产精品久久久久久精品古装| 国产成人一区二区在线| 中国国产av一级| 中文字幕人妻熟人妻熟丝袜美| 亚洲精品久久久久久婷婷小说| 日日撸夜夜添| 国产黄片视频在线免费观看| 亚洲精品一区蜜桃| 国产精品无大码| 啦啦啦啦在线视频资源| 国产黄片美女视频| av在线播放精品| 免费少妇av软件| 日日啪夜夜撸| 久久久精品94久久精品| 一级毛片aaaaaa免费看小| 99热国产这里只有精品6| 亚洲欧美一区二区三区国产| 老司机影院毛片| 777米奇影视久久| 亚洲精品日本国产第一区| 大香蕉久久网| av又黄又爽大尺度在线免费看| 国产精品久久久久成人av| 国产av一区二区精品久久 | 欧美成人精品欧美一级黄| 色网站视频免费| 欧美性感艳星| 中文字幕人妻熟人妻熟丝袜美| 熟女电影av网| 少妇裸体淫交视频免费看高清| 青春草视频在线免费观看| 中文欧美无线码| 99久国产av精品国产电影| 日韩国内少妇激情av| av又黄又爽大尺度在线免费看| 韩国高清视频一区二区三区| 看十八女毛片水多多多| 精品久久国产蜜桃| 纯流量卡能插随身wifi吗| 久久久亚洲精品成人影院| 美女国产视频在线观看| 国产成人a∨麻豆精品| 中文字幕免费在线视频6| 最近中文字幕2019免费版| 国产亚洲91精品色在线| 久久久久久久国产电影| 亚洲一区二区三区欧美精品| 一级毛片久久久久久久久女| 韩国av在线不卡| 精品国产一区二区三区久久久樱花 | 高清毛片免费看| 国产午夜精品久久久久久一区二区三区| 18禁在线无遮挡免费观看视频| 一级爰片在线观看| 亚洲欧美成人综合另类久久久| 91精品国产国语对白视频| a级毛色黄片| 亚洲,欧美,日韩| 成人特级av手机在线观看| 亚洲精品成人av观看孕妇| .国产精品久久| 七月丁香在线播放| 国产日韩欧美亚洲二区| 亚洲真实伦在线观看| 下体分泌物呈黄色| 国产精品.久久久| 欧美少妇被猛烈插入视频| 亚洲精品乱码久久久v下载方式| 在线看a的网站| 男男h啪啪无遮挡| 亚洲,欧美,日韩| 美女内射精品一级片tv| 日韩成人伦理影院| 2018国产大陆天天弄谢| 欧美成人午夜免费资源| 久久热精品热| 国产一区二区在线观看日韩| 大码成人一级视频| 啦啦啦啦在线视频资源| 成年美女黄网站色视频大全免费 | 国产精品一二三区在线看| 亚洲国产日韩一区二区| 有码 亚洲区| 国产男女内射视频| 婷婷色麻豆天堂久久| 建设人人有责人人尽责人人享有的 | 免费观看无遮挡的男女|